
Introduction to Theoretical Computer
Science

Lecture 11: (Polynomial) Complexity

Dr. Liam O’Connor
University of Edinburgh
Semester 1, 2023/2024

Complexity Measures Polynomial Time Nondeterminism

Time Complexity

We have looked into whether problems can be computed or
not. But are they easy to compute or hard to compute?

Time Complexity
The time complexity of a (deterministic) machine M that halts
on all inputs is a function f : N → N where f (n) is the
maximum number of steps that M uses on any input of size n.

Complexity Measures Polynomial Time Nondeterminism

Example

Example
Recall that {0i1i | i ∈ N} is a CFL and decidable by e.g. a TM M1
that given input w :

1 Scan w and reject if anything not in {⊔, 0, 1} or 10 is found.
2 While there are 0s and 1s left in the tape:

▶ Scan across and replace with blanks both the leftmost 0
and the rightmost 1.

3 If any 0s or 1s are left on the tape, reject. Else, accept.

Time complexity measure:

w ε 01 0212 0313 0414 0515

f (|w |) 2 8 19 34 53 76

Complexity Measures Polynomial Time Nondeterminism

Big Letters
Recall from previous courses...

Big O and Ω

Let f , g : N → R≥0. Say that f (n) ∈ O(g(n)) if there exists
c , n0 > 0 such that for all n > n0:

f (n) ≤ c · g(n)

Similarly f (n) ∈ Ω(g(n)) if:

f (n) ≥ c · g(n)

Example
f (n) = 5n3 + 2n2 + 22n + 6 is ∈ O(n3).
M1’s complexity is O(n2).

Complexity Measures Polynomial Time Nondeterminism

Logarithms

Recall that comparison-based sorting has Ω(n log n) time
complexity, and we have an O(n log n) algorithm.

Omitting the bases
We may safely omit the base of the logarithms here because:

loga n =
logbn
logba

Complexity Measures Polynomial Time Nondeterminism

Model Concerns

Addition of two numbers is O(n) in our RM models.

Why is this bad?
In TMs, addition is O(log n) (e.g. consider binary addition).
⇒ exponential penalty for RMs!

If we extend our RMs with ADD(i , j) SUB(i , j) which instantly
add/subtract Rj from/to Ri , putting the result in Ri :

Less inaccurate.. but
Now addition is O(1) instead of O(log n), but this is a smaller
inaccuracy than the exponential penalty from before.

Complexity Measures Polynomial Time Nondeterminism

Variations in Models

Problem?
For sorting, we counted the number of comparisons as our
time measure: we assumed comparison of small numbers and
big numbers take the same time.

What about control flow or memory access costs? In RMs
this can be fast, but in TMs we have to move symbol by
symbol.
As we’ve seen, addition has different complexities based
on the model.

Question
Can we ignore these differences? How?

Complexity Measures Polynomial Time Nondeterminism

What counts as different?

While complexity is useful, the measures are slightly bogus:
If a problem is O(n) on some model, it’s surely easy on
any model.
Not really: If n is a petabyte..
If a problem is Ω(2n) on some model, it’s surely hard on
any model.
Actually: There are problems that are much worse than
this, but still solvable for real examples. We’ll see later.
What about something that is O(n10) or Ω(n10)?
An Ω(n10) problem seems practically insoluble.
However: Maybe a new algorithm or fancy model makes it
Ω(n2)?

There’s also our coefficients. If f (n) ≥ 10100 log n, that’s
only O(log n).
However this isn’t common.

Complexity Measures Polynomial Time Nondeterminism

Complexity Classes

Definition
Let t : N → R≥0. A time complexity class TIME(t(n)) to be the
collection of all problems that are decidable by a machine in
O(t(n)) time.

We’ll give a more precise definition of time in terms of
bounded machines later.

Example
Recall A = {0i1i | i ∈ N}. Our TM M1 can decide this in O(n2).
Therefore A ∈ TIME(n2).

Complexity Measures Polynomial Time Nondeterminism

Can we do better?

Can we come up with a machine M2 that shows A is in
TIME(t(n)) for some t(n) that is asymptotically < n2?

Example
Given w input:

1 Scan w left to right and reject if 10 is found.
2 Repeat as long as there are 0s and 1s on the tape:

2.1 Scan from right to left and reject if there is an odd number
of non-Xs on the tape.

2.2 Scan from left to right and replace every other 0 by an X,
beginning from the first 0. Then, do the same for 1s.

3 If neither 0s nor 1s are left, accept. Else, reject.

Steps 1, 2.1, 2.2, and 3 are all O(n). Step 2 runs the substeps
O(log n) times. So this is O(n log n).

Complexity Measures Polynomial Time Nondeterminism

Comparing real times

Comparing the running times of M1 and M2:

w ε 01 0212 0313 0414 0515

fM1(|w |) 2 8 19 34 53 76
fM2(|w |) 1 15 45 63 117 141

M2 has “better” complexity, but M1 performs better for small n.
(M2 will be faster for 020120)

Complexity Measures Polynomial Time Nondeterminism

Doing better

Could we do still better for A? I.e. a sub-O(n log n) algorithm
for A?

Example (Two tape TMs)
The answer is no, for a single-tape TM. But in a two tape TM,
we can copy all 0s onto the second tape and then compare the
number of 0s to 1s by moving the second tape head
synchronously with the first.

Complexity Measures Polynomial Time Nondeterminism

Polynomial Time

Definition

P =
⋃
k∈N

TIME(nk)

That is, the class of problems decidable with some
(deterministic) polynomial time complexity.

Problems in P are called tractable.
The class is robust: “Reasonable” changes in model don’t
change it, and “reasonable” translations between
problems preserve membership in P.
Any problem not in P is Ω(nk) for every k , e.g. 2n or 2

√
n.

Complexity Measures Polynomial Time Nondeterminism

Outside P

Definition
A polynomially-bounded RM is an RM together with a
polynomial (wlog nk for some k), such that given an input w , it
will always halt after executing |w |k instructions.

A problem Q is in P iff it is computed by polynomially-bounded
RM.

Complexity Measures Polynomial Time Nondeterminism

Polynomial Reductions

Recall:
To prove that a problem P2 is hard, show that there is an easy
reduction from a known hard problem P1 to P2.

Definition
A polynomial reduction from P1 = (D1,Q1) to P2 = (D2,Q2) is a
P-computable function f : D1 → D2 such that d ∈ Q1 iff
f (d) ∈ Q2.

If P2 is in P, then P1 is in P straightforwardly.
Therefore: To prove that a problem P2 is not in P, show
that there is a polynomial reduction from a known non-P
problem P1 to P2.

Question: Is this more like a mapping or Turing reduction?

Complexity Measures Polynomial Time Nondeterminism

Apparently Intractable Problems
These problems appear to be non-P, so if they are, we could
use them as our known non-P problems.

Example (Hamiltonian Path Problem)
Given a graph G = (V ,E), is there a path that visits every
vertex in V exactly once?
We could solve this in O(|V |!), but this is not ideal..

Example (Timetabling)
Given students taking exams, and timetable slots for exams, is
it possible to schedule the exams so that there are no clashes?
It also apparently requires looking at exponentially many
possible assignments.
(That’s why Registry starts timetabling exams 9 weeks in advance...)

Open problem: Are they really not in P?

Complexity Measures Polynomial Time Nondeterminism

Checking

Consider HPP (the Hamiltonian Path Problem) or timetabling.
Both are apparently not in P.

However..
They are easy to check:
Given a claimed solution, it’s tractable to check if the solution
is indeed a correct solution.

Theorem
Any problem that can be checked in polynomial time on a
deterministic RM/TM can be computed in polynomial time on a
nondeterministic RM/TM.

Complexity Measures Polynomial Time Nondeterminism

Nondeterminism

We can have nondeterministic RMs just like we have
nondeterministic finite automata.

The Change
Add a special instruction MAYBE(j) that will
nondeterministically either do nothing or jump to Ij .

Example (generating a nondetermined number)
CLEAR R0

beg : MAYBE end
INC 0
GOTO beg

end :

Complexity Measures Polynomial Time Nondeterminism

Non-nondeterminism

Acceptance
An NRM accepts if there is some run (sequence of instructions
through the choices) halts and accepts.
“Accepts” could mean halting, halting with 1 in R0 or anything else.

Nondeterminism is NOT probability. No randomness is
involved.
The presence of infinite runs doesn’t matter if there are
also accepting finite runs.
I sometimes like to think of MAYBE as FORK: the machine
forks a copy of itself which takes the jump. If any copy
accepts, it signals the OS, which kills off all the others.

Question: Do NRMs have the same deciding power as RMs?

Complexity Measures Polynomial Time Nondeterminism

Comparing RMs and NRMs

Power
NRMs have the same deciding power as RMs, because we can
use the interleaving technique to simulate all runs of an NRM.
Sipser has the same result for TMs.

However!
In time n, an RM can explore only O(n) possibilities, but an
NRM can explore 2O(n) possibilities.

NRMs are potentially exponentially faster than RMs

Complexity Measures Polynomial Time Nondeterminism

NP

Definition
Let t : N → R≥0. Define NTIME(t(n)) to be the collection of all
problems that are decidable by an NRM in O(t(n)) time.

Definition

NP =
⋃
k∈N

NTIME(nk)

That is, the class of problems decidable with some
nondeterministic polynomial time complexity.

Is HPP in NP? Nondeterministically “guess” any path and
check if it is Hamiltonian (O(n)).

Complexity Measures Polynomial Time Nondeterminism

A Short Aside

Can we implement nondeterminism or is it just a theoretical
exercise?

Quantum Computing
Quantum computers can achieve a similar effect: an n-qubit
computer computes on all 2n values simultaneously. But it’s
hard to get many qubits; and there are subtleties—not every
NP algorithm is quantum-computable (as far as we know).

Complexity Measures Polynomial Time Nondeterminism

Is NP All?

Is every exponentially-bounded problem in NP? probably No!

Tough problem
Given a machine M and input w , determine if M halts in less
than 2|w | steps.
There doesn’t seem to be anything to do but run the machine
M for an exponential number of steps ⇒ Probably not in NP.

	Complexity Measures
	Polynomial Time
	Nondeterminism

