# Introduction to Theoretical Computer Science 

Lecture 10 [bonus]: Games

Dr. Liam O'Connor<br>University of Edinburgh<br>Semester 1, 2023/2024

## Logical Games

■ Consider a game played between two players, Abelard, written $\forall$ and Eloise, written $\exists$.
■ The game involves alternately choosing elements of a domain $\Omega$. As they choose, they produce a sequence of elements $a_{0}, a_{1}, a_{2}, \ldots$

- An infinite sequence of such elements is called a play. (w.l.o.g. we generalise finite to infinite sequences)

■ There are disjoint sets $\mathcal{W}_{\exists}$ and $\mathcal{W}_{\forall}$, which contain the winning plays for $\exists$ and $\forall$ respectively.
■ A logical game is total if all plays are in $\mathcal{W}_{\exists}$ or $\mathcal{W}_{\forall}$.

- A logical game is well-founded if every play is determined to be in $\mathcal{W}_{\exists}$ or $\mathcal{W}_{\forall}$ based on a finite prefix.
- A logical game is finite if there is an $n$ such that all plays are determined to be in $\mathcal{W}_{\exists}$ or $\mathcal{W}_{\forall}$ based on a finite prefix of length $n$.


## Winning Strategies

A logical game is determined if one or the other players have a winning strategy.

## Definition

A winning strategy is a series of moves for a player $p$ such that, regardless of the moves of the other player, the resulting play will be in $\mathcal{W}_{p}$.

Any problem in $\Sigma_{n}^{0}$ can be expressed as finding an $\exists$-winning strategy for a finite game of length $n$ (see previous lecture).

$$
\varphi \equiv \exists x . \forall y \cdot \exists z . R(x, y, z)
$$

$\exists$-winning strategy: we have a proof of $\varphi$.
$\forall$-winning strategy: we have a counterexample to $\varphi$.

## Determined Games

## Theorem

Every well-founded game is determined.

- Suppose $\forall$ has no winning strategy for the game. That is, $\forall$ has no winning strategy from the initial position of the game.
- If $\forall$ moves, then the next position must also give no winning strategy, or there would have been a winning strategy from the previous position.
■ If $\exists$ moves, she must have a move that does not put $\forall$ into a winning strategy, or otherwise the previous position would have a $\forall$-winning strategy.
- Thus, inductively, the entire run will never put $\forall$ in a winning position. Thus, $\exists$ has won.


## Hintikka Games

## Duality

The dual of a game $G$, written $\bar{G}$, is the game where $\forall$ and $\exists$ are transposed in both the rules for playing and for winning.

We can give a meaning to first-order logic using Hintikka games. Define $G[\varphi]$ for all first-order formulae $\varphi$ :

- $G[\forall x . P]=\forall$ picks an $x$ and the game proceeds as $G[P]$.

■ $G[\exists x . P]=\exists$ picks an $x$ and the game proceeds as $G[P]$.
■ $G[P \wedge Q]=\forall$ picks if the game proceeds as $G[P]$ or $G[Q]$.
■ $G[P \vee Q]=\exists$ picks if the game proceeds as $G[P]$ or $G[Q]$.
■ $G[\neg P]=\overline{G[P]}$

- $T$ is winning for $\exists . \perp$ is winning for $\forall$.

A formula $\varphi$ holds iff $\exists$ has a winning strategy for $G[\varphi]$.

## Logics for Infinite Games

We can specify infinite (or unbounded) games using fixed-point logics. There are a lot of subtleties here that I can talk about later if time.
For now, let's just add a least fixed point formula construct $\left[\operatorname{lfp}_{R(\vec{x})} \cdot \varphi\right]$, with the equivalence:

$$
\left[\mid f \mathrm{f}_{R(\vec{x})} \cdot \varphi\right](\vec{y}) \equiv \varphi[\vec{y} / \vec{x}]\left[\left[\operatorname{lfp} p_{R(\vec{x})} \cdot \varphi\right](\vec{z}) / R(\vec{z})\right]
$$

## Example (Solitaire Games)

Given a graph consisting of a connectness predicate $E(a, b)$, the cycle-finding game can be stated as:

$$
\left[\operatorname{lf} p_{R(u, v)} \cdot E(u, v) \vee(\exists w \cdot E(u, w) \wedge R(w, v))\right]
$$

Why is this a solitaire game?

## Back and Forth Games

Back and forth games can be viewed as a game to construct a comparison between two structures $A$ and $B$.

- The two players are called Spoiler and Duplicator.

■ S first picks an element of $A$.
■ D picks a "matching" element of $B$.

- S wins if he picks an element that $\mathbf{D}$ cannot match.

■ D wins if she can continue matching S's moves forever.

## Simulation Games

Consider a traffic light system and its specification:

## System



## Spec



## Abstraction

Showing that the system meets the spec requires a simulation relation: a winning strategy for a back and forth game where $\mathbf{S}$ picks system moves and $\mathbf{D}$ picks matching spec moves.

## Simulation Relations

## Definition

A simulation of an automaton $C$ by an automaton $A$ is defined as a relation $\mathcal{S} \subseteq Q_{C} \times Q_{A}$ which satisfies:

■ If $s \mathcal{S} t$ then $L_{C}(s) \cap L_{A}=L_{A}(t)$
$\square$ If $s \mathcal{S} t$ and $s \xrightarrow{a} s^{\prime}$ (with $a \in \Sigma_{C}, s^{\prime} \in Q_{C}$ ) then there exists a $t^{\prime} \in Q_{A}$ such that $t \xrightarrow{a} t^{\prime}$ and $s^{\prime} \mathcal{R} t^{\prime}$.
The automaton $A$ is an abstraction of the concrete automaton $C$ iff a $A$ simulates $C$. This is sometimes written $A \sqsubseteq C$.

Simulation relations are the foundation of abstraction - a key technique in formal modelling and verification.

## Model Equivalence

## Question

When do two automata represent the same system? hmm...

Is it (only) when $A=B$ (graph isomorphism)?


Nope!

## Tree Equivalence?

Is it (only) when the two automata have the same computation tree?


Also no!

## Bisimulations

## Definition

A (strong) bisimulation between two automata $A$ and $B$ is defined as a relation $\mathcal{R} \subseteq Q_{A} \times Q_{B}$ which satisfies:

- If $s \mathcal{R} t$ then $L_{A}(s)=L_{B}(t)$
$\square$ If $s \mathcal{R} t$ and $s \xrightarrow{a} s^{\prime}$ (with $a \in \Sigma_{A}, s^{\prime} \in Q_{A}$ ) then there exists a $t^{\prime} \in Q_{B}$ such that $t \xrightarrow{a} t^{\prime}$ and $s^{\prime} \mathcal{R} t^{\prime}$.
- If $s \mathcal{R} t$ and $t \xrightarrow{a} t^{\prime}$ (with $a \in \Sigma_{B}, t^{\prime} \in Q_{B}$ ) then there exists a $s^{\prime} \in Q_{A}$ such that $s \xrightarrow{a} s^{\prime}$ and $s^{\prime} \mathcal{R} t^{\prime}$.
Two automata are bisimulation equivalent or bisimilar iff there exists a bisimulation between their initial states.

Let's find bisimulations for the previous examples.

## Bisimulation Games

We can turn our simulation games into bisimulation games by allowing the locus of control to switch between the two players.

## Bisimulation Games

- S goes first and picks a move from either system $A$ or system $B$.
- If $\mathbf{S}$ picked a move from system $A, \mathbf{D}$ must pick a matching move from system $B$, and vice versa.
- Then, $\mathbf{S}$ picks another move...
- If $\mathbf{S}$ can find a move that $\mathbf{D}$ cannot match, $\mathbf{S}$ wins.
- $\mathbf{D}$ wins if it can match all moves selected by $\mathbf{S}$.


## Parity Games

## Definition

A parity game is played between two players on a directed graph. Player 0 chooses moves from circular nodes and Player 1 chooses for square nodes. Player $n$ wins an infinite play if the highest number infinitely visited in the play $\equiv n[\bmod 2]$.


## Parity Games

■ Parity games can be used to give a model-checking algorithm for a type of logic called modal $\mu$-calculus, commonly used to express properties of systems.

- Validity and satisfiability for many other modal logics is reducible to parity game solving.
■ Parity games are history-free determined.
■ Zielonka gives an algorithm for solving parity games.
■ Open question: Can parity games be solved in polynomial time?

