
Introduction to Theoretical Computer
Science

Lecture 1: Finite Automata

Dr. Liam O’Connor
University of Edinburgh
Semester 1, 2023/2024

Administrivia, Motivation Finite Automata

Course Aims

understanding of computability, complexity and
intractability;
knowledge of lambda calculus, types, and type safety.

Administrivia, Motivation Finite Automata

Course Outcomes

By the end of the course you should be able to
Explain (non-)deterministic finite and pushdown automata
and use the pumping lemma to show languages
non-regular

Explain decidability, undecidability and the halting
problem.
Demonstrate the use of reductions for undecidability
proofs.
Explain the notions of P, NP, NP-complete.
Use reductions to show problems to be NP-hard.
Write short programs in lambda-calculus.

Administrivia, Motivation Finite Automata

Course Outcomes

By the end of the course you should be able to
Explain (non-)deterministic finite and pushdown automata
and use the pumping lemma to show languages
non-regular
Explain decidability, undecidability and the halting
problem.

Demonstrate the use of reductions for undecidability
proofs.
Explain the notions of P, NP, NP-complete.
Use reductions to show problems to be NP-hard.
Write short programs in lambda-calculus.

Administrivia, Motivation Finite Automata

Course Outcomes

By the end of the course you should be able to
Explain (non-)deterministic finite and pushdown automata
and use the pumping lemma to show languages
non-regular
Explain decidability, undecidability and the halting
problem.
Demonstrate the use of reductions for undecidability
proofs.

Explain the notions of P, NP, NP-complete.
Use reductions to show problems to be NP-hard.
Write short programs in lambda-calculus.

Administrivia, Motivation Finite Automata

Course Outcomes

By the end of the course you should be able to
Explain (non-)deterministic finite and pushdown automata
and use the pumping lemma to show languages
non-regular
Explain decidability, undecidability and the halting
problem.
Demonstrate the use of reductions for undecidability
proofs.
Explain the notions of P, NP, NP-complete.

Use reductions to show problems to be NP-hard.
Write short programs in lambda-calculus.

Administrivia, Motivation Finite Automata

Course Outcomes

By the end of the course you should be able to
Explain (non-)deterministic finite and pushdown automata
and use the pumping lemma to show languages
non-regular
Explain decidability, undecidability and the halting
problem.
Demonstrate the use of reductions for undecidability
proofs.
Explain the notions of P, NP, NP-complete.
Use reductions to show problems to be NP-hard.

Write short programs in lambda-calculus.

Administrivia, Motivation Finite Automata

Course Outcomes

By the end of the course you should be able to
Explain (non-)deterministic finite and pushdown automata
and use the pumping lemma to show languages
non-regular
Explain decidability, undecidability and the halting
problem.
Demonstrate the use of reductions for undecidability
proofs.
Explain the notions of P, NP, NP-complete.
Use reductions to show problems to be NP-hard.
Write short programs in lambda-calculus.

Administrivia, Motivation Finite Automata

Course Outline
Introduction. Finite automata.
Regular languages and expressions.
Context-free languages and pushdown automata.
Register machines and their programming.
Universal machines and the halting problem.
Decision problems and reductions.
Undecidability and semi-decidability.
Complexity of algorithms and problems.
The class P
Non-determinism and NP
NP-completeness
Beyond NP.
Lambda-calculus.
Recursion.
Types.

Administrivia, Motivation Finite Automata

Assessment

The course is assessed by a written examination (80%) and
two coursework exercises, the first formative and the second
summative (for the remaining 20%).
Coursework deadlines: End of weeks 5 and 9.

Administrivia, Motivation Finite Automata

Textbooks

It will be useful, but not absolutely necessary, to have access
to:

Michael Sipser Introduction to the Theory of Computation,
PWS Publishing (International Thomson Publishing)
Benjamin C. Pierce Types and Programming Languages,
MIT Press

There is also much information on the Web, and in particular
Wikipedia articles are generally fairly good in this area.
Generally I will refer to textbooks for the detail of material I
discuss on slides.

Administrivia, Motivation Finite Automata

What is computation? What are computers?

Some computing devices:
The abacus – some millennia BP.

[Association pour le musée international du calcul de l’informatique
et de l’automatique de Valbonne Sophia Antipolis (AMISA)]

Administrivia, Motivation Finite Automata

First mechanical digital calculator – 1642 Pascal

[original source unknown]

Administrivia, Motivation Finite Automata

The Difference Engine, [The Analytical Engine] – 1812, 1832
Babbage / Lovelace.

[Science Museum ??]

Analytical Engine (never built) anticipated many modern
aspects of computers. See
http://www.fourmilab.ch/babbage/.

http://www.fourmilab.ch/babbage/

Administrivia, Motivation Finite Automata

ENIAC – 1945, Eckert & Mauchley

[University of Pennsylvania]

Administrivia, Motivation Finite Automata

What do computers manipulate?

Symbols? Numbers? Bits? Does it matter?

What about real numbers? Physical quantities? Proofs?
Emotions?
Do we buy that numbers are enough? If we buy that, are bits
enough?
How much memory do we need?

Administrivia, Motivation Finite Automata

What do computers manipulate?

Symbols? Numbers? Bits? Does it matter?
What about real numbers? Physical quantities? Proofs?
Emotions?

Do we buy that numbers are enough? If we buy that, are bits
enough?
How much memory do we need?

Administrivia, Motivation Finite Automata

What do computers manipulate?

Symbols? Numbers? Bits? Does it matter?
What about real numbers? Physical quantities? Proofs?
Emotions?
Do we buy that numbers are enough? If we buy that, are bits
enough?

How much memory do we need?

Administrivia, Motivation Finite Automata

What do computers manipulate?

Symbols? Numbers? Bits? Does it matter?
What about real numbers? Physical quantities? Proofs?
Emotions?
Do we buy that numbers are enough? If we buy that, are bits
enough?
How much memory do we need?

Administrivia, Motivation Finite Automata

What can we compute?

If we can cast a problem in terms that our computers
manipulate, can we solve it?

Always? Sometimes? With how
much time? With how much memory?

In this course
We will seek mathematical answers to these questions. For
that, we will need a model of computation.

Administrivia, Motivation Finite Automata

What can we compute?

If we can cast a problem in terms that our computers
manipulate, can we solve it? Always? Sometimes?

With how
much time? With how much memory?

In this course
We will seek mathematical answers to these questions. For
that, we will need a model of computation.

Administrivia, Motivation Finite Automata

What can we compute?

If we can cast a problem in terms that our computers
manipulate, can we solve it? Always? Sometimes? With how
much time?

With how much memory?

In this course
We will seek mathematical answers to these questions. For
that, we will need a model of computation.

Administrivia, Motivation Finite Automata

What can we compute?

If we can cast a problem in terms that our computers
manipulate, can we solve it? Always? Sometimes? With how
much time? With how much memory?

In this course
We will seek mathematical answers to these questions. For
that, we will need a model of computation.

Administrivia, Motivation Finite Automata

What can we compute?

If we can cast a problem in terms that our computers
manipulate, can we solve it? Always? Sometimes? With how
much time? With how much memory?

In this course
We will seek mathematical answers to these questions. For
that, we will need a model of computation.

Administrivia, Motivation Finite Automata

Finite Automata

Example

q0 q1

q2

1
0

1
0

0
1

A finite automaton takes
a string as input and says
“yes” or “no”.

Define the language of a fi-
nite automaton A, written,
L(A) to be the set of strings
for which A says “yes”.

A string is a (possibly-empty)
sequence of symbols from a
set called an alphabet, usu-
ally written Σ.

Administrivia, Motivation Finite Automata

DFAs, formally

Definition
A deterministic finite automaton (DFA) is a quintuple
(Q,Σ, q0, δ,F) where:

Q is a finite set of states,

Σ is the alphabet, the set of symbols,
q0 ∈ Q is the initial state
δ : Q × Σ → Q is the transition function,
F ⊆ Q is the set of final states.

Exercise: What is the formal definition of our example?

Administrivia, Motivation Finite Automata

DFAs, formally

Definition
A deterministic finite automaton (DFA) is a quintuple
(Q,Σ, q0, δ,F) where:

Q is a finite set of states,
Σ is the alphabet, the set of symbols,

q0 ∈ Q is the initial state
δ : Q × Σ → Q is the transition function,
F ⊆ Q is the set of final states.

Exercise: What is the formal definition of our example?

Administrivia, Motivation Finite Automata

DFAs, formally

Definition
A deterministic finite automaton (DFA) is a quintuple
(Q,Σ, q0, δ,F) where:

Q is a finite set of states,
Σ is the alphabet, the set of symbols,
q0 ∈ Q is the initial state

δ : Q × Σ → Q is the transition function,
F ⊆ Q is the set of final states.

Exercise: What is the formal definition of our example?

Administrivia, Motivation Finite Automata

DFAs, formally

Definition
A deterministic finite automaton (DFA) is a quintuple
(Q,Σ, q0, δ,F) where:

Q is a finite set of states,
Σ is the alphabet, the set of symbols,
q0 ∈ Q is the initial state
δ : Q × Σ → Q is the transition function,

F ⊆ Q is the set of final states.

Exercise: What is the formal definition of our example?

Administrivia, Motivation Finite Automata

DFAs, formally

Definition
A deterministic finite automaton (DFA) is a quintuple
(Q,Σ, q0, δ,F) where:

Q is a finite set of states,
Σ is the alphabet, the set of symbols,
q0 ∈ Q is the initial state
δ : Q × Σ → Q is the transition function,
F ⊆ Q is the set of final states.

Exercise: What is the formal definition of our example?

Administrivia, Motivation Finite Automata

DFAs, formally

Definition
A deterministic finite automaton (DFA) is a quintuple
(Q,Σ, q0, δ,F) where:

Q is a finite set of states,
Σ is the alphabet, the set of symbols,
q0 ∈ Q is the initial state
δ : Q × Σ → Q is the transition function,
F ⊆ Q is the set of final states.

Exercise: What is the formal definition of our example?

Administrivia, Motivation Finite Automata

Languages

Definition
A DFA accepts a string w ∈ Σ∗ iff δ∗(q0,w) ∈ F , where δ∗ is δ

applied successively for each symbol in w . The language of a
DFA L(A) ⊆ Σ∗ is the set of all strings accepted by A.

Exercise: What is the language of our example?

Administrivia, Motivation Finite Automata

Languages

Definition
A DFA accepts a string w ∈ Σ∗ iff δ∗(q0,w) ∈ F , where δ∗ is δ

applied successively for each symbol in w . The language of a
DFA L(A) ⊆ Σ∗ is the set of all strings accepted by A.

Exercise: What is the language of our example?

Administrivia, Motivation Finite Automata

Determinism
In a DFA, the transition function is a total function which gives
exactly one next state for each input symbol (it’s deterministic).

Questions
Does relaxing any of these requirements affect the set of
languages we can recognise? How would we prove this?

What if we made δ partial?

q0 q1
0

1

What if we made δ non-deterministic?

q0 q1 q2
0 0

0,1

Administrivia, Motivation Finite Automata

Determinism
In a DFA, the transition function is a total function which gives
exactly one next state for each input symbol (it’s deterministic).

Questions
Does relaxing any of these requirements affect the set of
languages we can recognise? How would we prove this?

What if we made δ partial?

q0 q1
0

1

What if we made δ non-deterministic?

q0 q1 q2
0 0

0,1

Administrivia, Motivation Finite Automata

Determinism
In a DFA, the transition function is a total function which gives
exactly one next state for each input symbol (it’s deterministic).

Questions
Does relaxing any of these requirements affect the set of
languages we can recognise? How would we prove this?

What if we made δ partial?

q0 q1
0

1

What if we made δ non-deterministic?

q0 q1 q2
0 0

0,1

Administrivia, Motivation Finite Automata

Nondeterministic Finite Automata

Definition
A nondeterministic finite automaton (NFA) is a quintuple
(Q,Σ, q0, δ,F) where:

Q is a finite set of states,
Σ is the alphabet, the set of symbols,
q0 ∈ Q is the initial state
δ : Q × Σ → P(Q) is the transition function,
F ⊆ Q is the set of final states.

Note the only difference here is the transition function, which
gives a set of next states for a given symbol.

Administrivia, Motivation Finite Automata

Nondeterministic Finite Automata

Definition
A nondeterministic finite automaton (NFA) is a quintuple
(Q,Σ, q0, δ,F) where:

Q is a finite set of states,
Σ is the alphabet, the set of symbols,
q0 ∈ Q is the initial state
δ : Q × Σ → P(Q) is the transition function,
F ⊆ Q is the set of final states.

Note the only difference here is the transition function, which
gives a set of next states for a given symbol.

Administrivia, Motivation Finite Automata

Nondeterministic Finite Automata

Definition
A run of an NFA A on a string w = a1a2 . . . ak is a sequence of
states q0q1 . . . qk in Q such that:

q0 is the initial state
for all i = 1 . . . k we have qi ∈ δ(qi−1, ai).

A run is accepting if the last state qk ∈ F .

The nondeterminism means that we have multiple alternative
computations. For our purposes we will use angelic
non-determinism, which says that we achieve success if any of
our alternatives succeed.

L(A) = {w | there exists an accepting run of A on w}

Exercise: Is 10100 in the language of our previous example?

Administrivia, Motivation Finite Automata

Nondeterministic Finite Automata

Definition
A run of an NFA A on a string w = a1a2 . . . ak is a sequence of
states q0q1 . . . qk in Q such that:

q0 is the initial state
for all i = 1 . . . k we have qi ∈ δ(qi−1, ai).

A run is accepting if the last state qk ∈ F .

The nondeterminism means that we have multiple alternative
computations. For our purposes we will use angelic
non-determinism, which says that we achieve success if any of
our alternatives succeed.

L(A) = {w | there exists an accepting run of A on w}

Exercise: Is 10100 in the language of our previous example?

Administrivia, Motivation Finite Automata

Nondeterministic Finite Automata

Definition
A run of an NFA A on a string w = a1a2 . . . ak is a sequence of
states q0q1 . . . qk in Q such that:

q0 is the initial state
for all i = 1 . . . k we have qi ∈ δ(qi−1, ai).

A run is accepting if the last state qk ∈ F .

The nondeterminism means that we have multiple alternative
computations. For our purposes we will use angelic
non-determinism, which says that we achieve success if any of
our alternatives succeed.

L(A) = {w | there exists an accepting run of A on w}

Exercise: Is 10100 in the language of our previous example?

Administrivia, Motivation Finite Automata

NFA = DFA

Claim
Making finite automata non-deterministic does not change
their expressivity. That is, for every non-deterministic
automaton A there is a deterministic automaton D such that
L(D) = L(A) and vice versa.

DFA ⇒ NFA:Easy, the DFA is already an NFA where the
transition function always returns a singleton set.
NFA ⇒ DFA:We will use the subset construction.

Administrivia, Motivation Finite Automata

NFA = DFA

Claim
Making finite automata non-deterministic does not change
their expressivity. That is, for every non-deterministic
automaton A there is a deterministic automaton D such that
L(D) = L(A) and vice versa.

DFA ⇒ NFA:

Easy, the DFA is already an NFA where the
transition function always returns a singleton set.
NFA ⇒ DFA:We will use the subset construction.

Administrivia, Motivation Finite Automata

NFA = DFA

Claim
Making finite automata non-deterministic does not change
their expressivity. That is, for every non-deterministic
automaton A there is a deterministic automaton D such that
L(D) = L(A) and vice versa.

DFA ⇒ NFA:Easy, the DFA is already an NFA where the
transition function always returns a singleton set.
NFA ⇒ DFA:

We will use the subset construction.

Administrivia, Motivation Finite Automata

NFA = DFA

Claim
Making finite automata non-deterministic does not change
their expressivity. That is, for every non-deterministic
automaton A there is a deterministic automaton D such that
L(D) = L(A) and vice versa.

DFA ⇒ NFA:Easy, the DFA is already an NFA where the
transition function always returns a singleton set.
NFA ⇒ DFA:We will use the subset construction.

Administrivia, Motivation Finite Automata

Subset Construction

Key Idea
For an NFA A, the corresponding DFA D tracks the set of states
that A could possibly be in, given the string read so far. So,
each state of D is a set of states from A.

Example (From earlier)

q0 q1 q2
0 0

0,1

Administrivia, Motivation Finite Automata

Formally

The Subset Construction
Given an NFA (QA,Σ, q0, δA,FA), construct a DFA
(P(QA),Σ, {q0}, δD ,FD) where:

δD(S , a) =
⋃
q∈S

δA(q, a) for each S ⊆ Q

and
FD = {S ⊆ Q | S ∩ FA ̸= ∅}

Question: If our NFA has n states, how many states could our
DFA have?

Administrivia, Motivation Finite Automata

Formally

The Subset Construction
Given an NFA (QA,Σ, q0, δA,FA), construct a DFA
(P(QA),Σ, {q0}, δD ,FD) where:

δD(S , a) =
⋃
q∈S

δA(q, a) for each S ⊆ Q

and
FD = {S ⊆ Q | S ∩ FA ̸= ∅}

Question: If our NFA has n states, how many states could our
DFA have?

Administrivia, Motivation Finite Automata

Proof?
Proving that this is correct (i.e. that the DFA D obtained from
an NFA A recognises the same language as A) relies on a proof
by induction on the length of the input string w , that
δ∗D({q0},w) is the set of all states q such that there exists a run
of A on w from q0 to q.
We will cover this if we have extra time.

Administrivia, Motivation Finite Automata

ε-NFAs

Another Generalisation
What if we allow non-deterministic state changes that do not
consume any input symbols?

We label these silent moves with ε (the empty string):

q0

q1

q2

1

0
0

1

ε

ε

Exercise: Is 001 accepted above? Can we express this as a
DFA?

Administrivia, Motivation Finite Automata

ε-NFAs

Another Generalisation
What if we allow non-deterministic state changes that do not
consume any input symbols?

We label these silent moves with ε (the empty string):

q0

q1

q2

1

0
0

1

ε

ε

Exercise: Is 001 accepted above? Can we express this as a
DFA?

Administrivia, Motivation Finite Automata

ε-NFA to DFA
The subset construction also applies to ε-NFAs.

Definition
Define the ε-closure E (q) of a state q as the set of all states
reachable from q by silent moves.That is, E (q) is the least set
satisfying:

q ∈ E (q)
For any s ∈ E (q), we also have δ(s, ε) ⊆ E (q).

We also extend this to sets, where E (S) =
⋃

q∈S E (q).

In our subset construction, everything is the same except that
each subset (each state of our DFA) is ε-closed:

δD(S , a) = E

⋃
s∈S

δA(s, a)

Administrivia, Motivation Finite Automata

ε-NFA to DFA
The subset construction also applies to ε-NFAs.

Definition
Define the ε-closure E (q) of a state q as the set of all states
reachable from q by silent moves.

That is, E (q) is the least set
satisfying:

q ∈ E (q)
For any s ∈ E (q), we also have δ(s, ε) ⊆ E (q).

We also extend this to sets, where E (S) =
⋃

q∈S E (q).

In our subset construction, everything is the same except that
each subset (each state of our DFA) is ε-closed:

δD(S , a) = E

⋃
s∈S

δA(s, a)

Administrivia, Motivation Finite Automata

ε-NFA to DFA
The subset construction also applies to ε-NFAs.

Definition
Define the ε-closure E (q) of a state q as the set of all states
reachable from q by silent moves.That is, E (q) is the least set
satisfying:

q ∈ E (q)
For any s ∈ E (q), we also have δ(s, ε) ⊆ E (q).

We also extend this to sets, where E (S) =
⋃

q∈S E (q).

In our subset construction, everything is the same except that
each subset (each state of our DFA) is ε-closed:

δD(S , a) = E

⋃
s∈S

δA(s, a)

Administrivia, Motivation Finite Automata

ε-NFA to DFA
The subset construction also applies to ε-NFAs.

Definition
Define the ε-closure E (q) of a state q as the set of all states
reachable from q by silent moves.That is, E (q) is the least set
satisfying:

q ∈ E (q)
For any s ∈ E (q), we also have δ(s, ε) ⊆ E (q).

We also extend this to sets, where E (S) =
⋃

q∈S E (q).

In our subset construction, everything is the same except that
each subset (each state of our DFA) is ε-closed:

δD(S , a) = E

⋃
s∈S

δA(s, a)

Administrivia, Motivation Finite Automata

Summary

DFAs, NFAs and ε-NFAs all recognise the same class of
languages, called the regular languages. They are equal in
expressive power, although some representations (NFAs) are
more compact than others (DFAs).

Questions for next time1

Are the regular languages closed under union? sequential
composition? intersection? complement?
(How would we prove this?)
What languages are not regular?
(How would we prove this?)

1Or this time, if we have time.

Administrivia, Motivation Finite Automata

Summary

DFAs, NFAs and ε-NFAs all recognise the same class of
languages, called the regular languages. They are equal in
expressive power, although some representations (NFAs) are
more compact than others (DFAs).

Questions for next time1

Are the regular languages closed under union? sequential
composition? intersection? complement?
(How would we prove this?)
What languages are not regular?
(How would we prove this?)

1Or this time, if we have time.

	Administrivia, Motivation
	Finite Automata

