
Draft { not for distribution

These are first-draft lecture notes issued for an optional PG theory course in Edinburgh. The

course was concerned with descriptive hierarchies, specifically the arithmetical, analytic, and

fixpoint hierarchies. The main aim was to go through the proof of the modal mu-calculus

alternation hierarchy; on the way, a quick survey of the basics of effective descriptive set theory

is given, together with a few of the more amusing set-theoretic facts. – JCB

1 Introduction

Let us recall some basic facts about computable functions on the natural numbers, which

were covered in earlier courses. We know that a (possibly partial) function is computable

by a Turing machine iff it can be defined by means of a small set of operators, including

in particular primitive recursion and minimalization. Accordingly we call a set of numbers

‘recursive’ if its characteristic function is computable. We know that there exist non-recursive

sets and functions; indeed, we know that there are sets that are not even semi-recursive. (Recall

that a set is semi-recursive if there is a program which confirms membership, even if it doesn’t

necessarily terminate on a non-member. Equivalently, we can list all the members of the set;

hence the equivalent term ‘recursively enumerable’, or r.e.)

Given this, we might reasonably ask, what can we say about these ‘hard’ non-r.e. sets? How

complicated can they be? And what is the right notion of complicated, anyway?

One approach to answering these questions is to keep our focus on the notation of compu-

tation, and start asking questions such as: if somebody gives me some non-recursive set as an

oracle, what other sets can I then compute, using a standard Turing machine together with

the oracle? If I then take a set I can’t even compute with my oracle, and then add that as an

oracle, what happens? How far can I go on? Can I order sets in terms of the strength of the

oracles needed to compute them? And so on. This approach leads to the extensive area known

as degree theory—a degree is effectively a measure of how non-recursive a set is, with respect

to other sets. It turns out that the structure of degrees is quite complex. For example, any

countable partial order can be embedded in the lattice of degrees, and there is an antichain of

cardinality 2ℵ0.

However, that is not the approach I want to discuss. Rather, let’s draw back a little from

computation: after all, if we can’t compute a set, what’s the point in discussing just how badly

we can’t compute it? How did we get this nasty set, anyway? Well, probably someone presented

us with a problem which defined the set in some way. For example, we were asked “is x a zero of

the function f?”. Or, we might have been asked “does process P satisfy the modal mu-calculus

Φ?” In other words, we have a description of the set, as “the zeros of f” or “the states satisfying

Φ”.

This suggests the question, what can we say about how hard it is to describe sets? Now

usually we describe things using predicate calculus (or rather, some English that we could in

principle turn into predicate calculus), so the complexity of the describing formula is an obvious

measure. But what complexity? One obvious, and easy to work with, definition is the number

of alternations between existential and universal quantifiers . . .

This course is intended to give overviews of the ideas, and avoid the tricky technical details.

However, if you need to use this stuff, or are just interested, you have to read the details some

time. There are several books on recursion theory, and all of them contain the details of the first

part of this course (the arithmetical and analytical hierarchies). The main library has a copy of

1

Draft { not for distribution

the now out-of-print classic Theory of recursive functions and effective computability by Rogers.

A newer book is by Shoenfield, called Recursion Theory. Moschovakis’ book Descriptive Set

Theory is a wonderful text covering both the effective theory we’re looking at, and the classical

theory, and many advanced topics. However, it assumes a basic knowledge of topology and

analysis (only very basic, though).

2

Draft { not for distribution

2 The arithmetical sets.

Let us fix the world we’re describing, and the language we’re using to describe it. For this

section, we take N as the structure, and we describe subsets of N by means of formulae in

the first-order language of recursive arithmetic. That is, we have first-order predicate logic,

together with constants for all the recursive relations on N
k, for any k. Note that functions are

not built in: a function f is described in terms of its graph Gf = { (x, y) | y = f(x) }. However,

if f is a total recursive function, then its graph is recursive, so we may as well add constants

for recursive functions as well. In particular, it’s essential to have functions that code a finite

sequence x1, . . . , xk (for any k) of integers into a single integer 〈x1, . . . , xk〉, and corresponding

functions len (u) and (u)i to give the length of a coded sequence and extract its ith element.

(Boring exercise: define such functions.)

We shall assume that we may freely use the standard laws of predicate logic; in particular,

the De Morgan laws can be used to push negation inwards.

Now we define a hierarchy of formulae according to the alternation of quantifiers, thus:

Definition 1 If a formula φ contains no quantifiers, it is Σ0
0 and also Π0

0. Otherwise, for n ≥ 1:

• If φ is Σ0
n−1 or Π0

n−1, it is both Σ0
n and Π0

n

• If φ1 and φ2 are Σ0
n (resp. Π0

n), then so are φ1 ∨ φ2, φ1 ∧ φ2 and ∃x. φ1 (resp. ∀x. φ1).

• If φ is Σ0
n (resp. Π0

n), then ∀x. φ (resp. ∃x. φ) is Π0
n+1 (resp. Σ0

n+1).

In other words, a Σ0
n formula has n blocks of quantifiers, starting with an ∃ block. Note that

the classes Σ0
0 and Π0

0 are often not defined in presentations of the subject; and since they don’t

really fit very well, unless otherwise stated all future references to Σ0
n etc. should be taken to

assume n ≥ 1.

Exercise 2

(1) Verify that φ is Σ0
n iff ¬φ is Π0

n.

(2) Why is it reasonable that we don’t consider ∃x. ∃y. φ to be any more complex than ∃x. φ?

(3) The prenex normal form theorem for first-order arithmetic says that any Σ0
n formula φ is

equivalent to a formula of the form ∃~x1. ∀~x2 (∃/∀) ~xn. ψ, where the last quantifier is ∃

or ∀ according as n is odd or even, and ψ is quantifier-free. Prove this. For this reason, the

definitions of Σ0
n usually assume prenex normal form, and the closure of Σ0

n under ∨,∧, ∃

is proven as a theorem rather than stated in the definition. We choose to put it in the

definition because we shall later work with a logic, the modal mu-calculus, that doesn’t

have a prenex normal form.

(4) Verify that a relation T (~x) is semi-recursive iff there is a recursive relation R(y, ~x) such

that T (~x) ⇔ ∃y. R(y, ~x).

The last exercise says that a relation is semi-recursive iff it is definable by a Σ0
1 formula. It

should perhaps be noted here that this is not true in all the spaces on which we might define

recursive functions. It is possible to develop the theory in a somewhat more general setting,

and in that case the last exercise does not necessarily hold. One then has to define Σ0
1 to be

the semi-recursive relations, and Π0
1 to be their complements. (For example, the exercise fails

in R.)

Now we can define a hierarchy, the arithmetical hierarchy, of definable sets and relations:

Definition 3 A relation T (~x) is Σ0
n (Π0

n) if there is a Σ0
n (Π0

n) formula φ(~x) such that T (~x) ⇔

φ(~x).

3

Draft { not for distribution

Warning: the definition says that φ exists; it doesn’t say that we know what it is. For example,

consider the set T of integers defined by

T (x) ⇔ (x = 1) ∧ the Riemann hypothesis is true.

The Riemann hypothesis is not even expressible as a first-order sentence about N, and it’s

certainly very difficult, so we might reasonably consider T to be a very difficult set. However,

either it is the case that T = �, or it is the case that T = {1}, and both of these sets are

as about as simple as possible. The point is that if we were clever enough, we could describe

T with a Σ0
0 formula; whereas, as we shall see, there are sets that simply can’t be described

without using umpteen quantifiers. (Incidentally, you might like to consider the nature of the

set defined by “x = 1 and the continuum hypothesis holds”.)

It is also useful to have a notation for sets that are both Σ and Π:

Definition 4 A relation is ∆0
n if it is both Σ0

n and Π0
n.

Note that this is a property of relations, not of formulae. Note also that ∆0
1 = ∆0

0 = recursive.

Exercise 5 The Σ0
n classes are closed under ∃ but not ∀, and the Π0

n classes are closed under ∀

but not ∃. Thus the ∆0
n classes are not closed under quantification. However, there is a restricted

form of quantification, bounded quantification, which is often useful: the bounded universal

quantification of φ(x) is ∀x<y. φ (note that y is a free variable), and similarly for existential. It’s

trivial that Π0
n is closed under bounded universal quantification, since (∀x<y. φ) ⇔ (∀x. (x <

y) ⇒ φ).

Show that Σ0
n is closed under bounded universal quantification. (Hint: use the sequence

coding functions to represent a suitable Skolem function as a single integer.) Thus all the

classes are closed under bounded quantification.

We have the following diagram, which is (in our formulation) trivial to obtain:

Σ0
1 Σ0

2 · · ·

⊆
⊆

⊆

∆0
1 ∆0

2 · · ·
⊆

⊆
⊆

Π0
1 Π0

2 · · ·

The next task is to show that all these inclusions are indeed strict. We already know that

there are semi-recursive relations that are not recursive; the strictness of remaining inclusions

are shown by a similar technique of uniformization and diagonalization. To do these proofs

properly requires tedious attention to detail in the form of coding techniques; we’ll not worry

about this, and so the word ‘proof’ should be fairly loosely interpreted in these notes. The real

proofs can be found in the standard texts.

The main result is the parameter theorem for Σ0
n:

Theorem 6 There are universal Σ0
n formulae: that is, for each n ≥ 1 and k ≥ 1, there is a

Σ0
n (k + 1)-ary relation Uk

n such that for each Σ0
n k-ary relation R there is an integer r such

that R(~x) ⇔ Uk
n(r, ~x); and dually there are universal Π0

n formulae V k
n .

4

Draft { not for distribution

Proof. By induction on n. The base case is Σ0
1; but this is Kleene’s Parameter Theorem, so

we already know it (fortunately, since it’s where the hard work happens).

So suppose we have the result for Σ0
n and Π0

n, and let R be a Σ0
n+1 k-ary relation. Then

R(~x) ⇔ ∃y. S(y, ~x) where S is Π0
n. By induction, there is an s such that S(y, ~x) ⇔ V k+1

n (s, y, ~x)

where V k+1
n is Π0

n. So define Uk
n+1(r, ~x) ⇔ ∃y. V k+1

n (r, y, ~x) and we’re done. Negating Uk
n+1 gives

us V k
n+1.

Corollary 7 For n ≥ 1 and k ≥ 1 there is a Σ0
n k-ary relation that is not Π0

n.

Proof. Consider U = Uk
n . Define the k-ary relation W (y, ~x) = ¬U(y, y, ~x). Since U is Σ0

n, W

is Π0
n. Suppose that W is also Σ0

n. Then it has an index w such that W (y, ~x) ⇔ U(w, y, ~x).

Now consider W (w, ~x). We have W (w, ~x) ⇔ ¬U(w,w, ~x) ⇔ ¬W (w, ~x), contradiction. So W

can’t be in Σ0
n, and ¬W can’t be in Π0

n.

This result establishes that all the inclusions in the hierarchy diagram are strict (exercise:

why?).

Exercise 8 Define a relation on N that is not Σ0
n for any n. (Hint: take n as one of the

arguments of the relation.)

Finally, let’s reconsider the language we’re using, in particular the stock of constants. It may

seem unduly generous to allow all recursive relations as constants, particularly since we don’t

have any way of telling whether a given relation (presented as a Turing machine, or recursive

definition) is recursive! This isn’t much of a problem, since the constants we actually want

to use are always relations that are very easily shown to be recursive. However, the following

amazing theorem, which resolved (negatively) Hilbert’s Tenth Problem, tells us that we don’t

need to be so profligate with constants.

Theorem 9 (Matijacevič’ Theorem) If R(~x) is a semi-recursive relation, it can be defined

by a formula of the form ∃~y. p(~y, ~x) = q(~y, ~x), where p and q are polynomials over N.

So it suffices to take the constants 0, 1,+, · , and everything remains unchanged (apart from

the definition of Σ0
0, which doesn’t really count).

5

Draft { not for distribution

3 Second-order arithmetic.

3.1 Semi-recursive relations on N → N.

Now that we’ve dealt with first-order arithmetic, the obvious next step is second-order. One

might ask whether this is necessary—do we ever see non-first-order sets in real life? The answer

is ‘yes’, for two reasons. Firstly, it turns out that such computer-science stalwarts as fix-points

and games take us quickly into second-order territory; and secondly, most of the real world is

concerned with R, not N, and first-order statements about R turn into second-order statements

about N.

What do we mean by second-order? We mean that as well as quantifying over N, we can

quantify over functions N → N. Functions are slightly abstract objects, and it’s helpful to think

of a function α: N 7→ N as an infinite sequence α(0), α(1), . . . of numbers. Of course, if we’re

going to quantify over functions, all our definitions of ‘recursive’ and so on need to be revised

to apply to relations that may be over functions as well as numbers; this means we need to

know what a (semi-)recursive set of functions is, which may not be entirely obvious. However,

if we follow our computational intuition, everything works out.

So, suppose we have a unary relation R(α) over functions—what should it mean for R to

be semi-recursive? (As I noted earlier, semi-recursiveness is the primitive notion, not recursive-

ness.) It should mean that we can write a program which will determine membership of R, in

the sense that if R(α), then the program should terminate with the answer ‘yes’ when given

input α. This raises the question of how a function can be given as input to a program. There

are two ways of thinking about the natural answer to this: either we can think of the machine

being fed the infinite sequence α(0), α(1), . . . of function values, which it can read as it desires;

or we can think of the machine being given α as a black box or oracle, so that whenever it wants

to know α(n), it just asks the oracle. (Note that we are absolutely not placing any restrictions

on how hard α is to compute; we’re not even trying to compute it, it’s just there.) Given this,

it’s clear that the only way the program can terminate is if it only needs a finite number of

function values in order to answer the question of whether α ∈ R.

This suggests the following definition:

Definition 10 Let N denote the space N → N, viewed as the space of infinite sequences. Let

ri, i ∈ N be some enumeration of the set of finite sequences of numbers, and define the ith

basic recursive set to be

B′

i = {α | ∀j≤len ri. α(j) = (ri)j }

and say that a relation R(α) is semi-recursive if it is of the form

R =
⋃

i∈N

B′

ǫ(i)

for some recursive function ǫ.

We sometimes use the word irrational to denote a member of N (see the following section

for the reason).

This definition coincides with the intuition above, since to determine that α is in R, we have

check it against a recursively enumerated list of possible finite prefixes, and this will terminate

6

Draft { not for distribution

if the answer is ‘yes’. Note that the function ǫ is just a function N → N, so it’s a member of

N .

This definition works fine for N , and there’s an obvious generalization for relations in-

volving any (finite) number of arguments from N and N . However, it is actually a simplified

version of a more general definition. Understanding the general version is helpful, but requires

a little topology; I’ll therefore sketch it in the following section, but feel free to omit this.

3.2 Recursiveness in general spaces.

The general theory is developed for perfect Polish spaces. That is, a metric space that is

complete (every Cauchy sequence converges to a limit) and separable (contains a countable

dense set) with no isolated points. Most reasonable spaces are such things. In particular, N

(called Baire space) is a perfect Polish space if we give it the following metric d, which is a

metric for the natural product topology on N = N
N:

d(α, β) =
1

1 + min{n | α(n) 6= β(n) }

(where, of course, we take 1/∞ = 0!). R is also such a space; and so is Cantor space, the space

of functions 2 → N, with the same metric as N . Any finite product of perfect Polish spaces is

one also.

Given a perfect Polish space X , there’s an obvious neighbourhood basis, namely the open

balls B(x,m/(n + 1)) = { y | d(x, y) < m/(n + 1) } for x ∈ X and m,n ∈ N. Unfortunately,

although there are only countably many rationals to put in the second place, there are still

uncountably many x to put in the first place. However, all interesting perfect Polish spaces

admit a recursive presentation: that is, an infinite sequence r0, r1, . . . of points, which is dense

in X and such that the following relations are recursive:

P (i, j,m, n) ⇔ d(ri, rj) ≤ m/(n+ 1)

Q(i, j,m, n) ⇔ d(ri, rj) < m/(n + 1);

that is, given any two of the points, and some rational distanceD, we can effectively tell whether

they’re more or less than D apart. In the case of N , the set of ultimately zero sequences forms

a recursive presentation (that’s what we were really doing above).

Exercise 11 Give a recursive presentation of R.

If X has a recursive presentation, then we have a recursively enumerable neighbourhood

basis N(i), i ∈ N for X , by taking some convenient enumeration of the balls B(rk, m/(n+1)).

We can now define

Definition 12 A relation R on X is semi-recursive if it has the form
⋃

i∈N
N(ǫ(i)) for some

recursive ǫ: N → N.

Although this is not quite the same as the simplified definition we had before, it’s morally

equivalent for N . However, this full definition is required for spaces such as R.

Exercise 13 If you’re wondering what is so different about R, consider this. The main dif-

ference is that given x, y ∈ R, we need to know all the digits of both x and y in order to

calculate d(x, y) = |x − y|, whereas with N we only need a finite number of digits, unless

7

Draft { not for distribution

x = y. Topologically, R is a connected space. N , however, is totally disconnected—and so the

basic open sets B are in fact also closed.

Now in general, a relation R is defined to be recursive if both R and its complement are

semi-recursive. So, using the above definition, if a relation R on R is recursive, then it is a

union of open sets, and also an intersection of closed sets. What does this say about R, and

why does it show that Exercise 2(4) fails on R?

We may remark here that N is actually homeomorphic to the set of irrational numbers,

viewed as a subspace of R; and hence the elements of N are often called irrationals.

Having dealt with perfect Polish spaces, it’s easy to throw in some copies of N; so the

general spaces on which descriptive set theory is done are products of the form N
k × X1 ×

. . . × Xm, where each Xi is some basic space such as N or R. Given a space of this form,

one can imagine projecting it down one of the copies of N; this corresponds to a first-order

existential quantification. Thus one can build up complex relations by applying projection and

complementation to existing relations—and of course one can project along one of the Xi,

a second-order projection. So for the classical descriptive set theorist, the logical description

we’re using is just a description of the underlying operations on our spaces. However, it makes

life a lot easier for us to take the logic as primary, so we’ll stick with that.

That ends (for the moment) our brief diversion into the general setting—we now return to

the special case of N and N .

3.3 The analytical hierarchy.

Everything we did for the naturals extends to relations on N and N , as far as the arithmetical

hierarchy goes. So now we start applying second order quantification. From now on, I’ll only

state definitions for Σ, and assume the dual definition for Π. So, our language is now second-

order arithmetic; and we shall have the convention that α, β, . . . range over N , and most roman

letters range over N.

Definition 14 If a formula φ is Σ0
1, then it is Σ1

0. Otherwise, for n ≥ 1,

• if φ is Σ1
n−1 or Π1

n−1, it is both Σ1
n and Π1

n;

• if φ1 and φ2 are Σ1
n, so are φ1 ∨ φ2, φ1 ∧ φ2, ∃x. φ1, ∀x. φ1, and ∃α. φ1;

• if φ is Σ1
n, then ∀α. φ is Π1

n+1.

Definition 15 A relation R on N and N is Σ1
n if it is definable by a Σ1

n formula. It is ∆1
n if

it is both Σ1
n and Π1

n.

Exercise 16

(1) Show that it is possible to code an infinite sequence α0, α1, . . . of irrationals into a single

irrational 〈α0, α1, . . .〉 by recursive coding. (Hint: it’s just like the standard mapping of

N × N into N.)

(2) As with first-order arithmetic, there is a prenex normal form theorem: any Σ1
n formula is

equivalent to one of the form ∃ ~α1. ∀ ~α2 (∃/∀) ~αn. (∀/∃)~x. φ (for n odd/even), where φ

is quantifier-free; and so the hierarchies are customarily defined assuming normal form,

and the closure properties proved. Prove the normal form theorem. (Hint: you need to

push quantifiers around. The tricky part is showing that ∀x can be pushed inside ∃α. Use

part (1) to do this. Then to get the induction going, you need to show that any first-order

formula can be put into the form ∃α. ∀x. φ, by Skolemizing and pushing ∀x’s inside. (This

incidentally shows that
⋃

n Σ0
n ⊆ ∆1

1.))

8

Draft { not for distribution

(3) Show that if S(α, ~x) is Σ0
1 and R is defined by R(~x) ⇔ ∃α. S(α, ~x), then R is also Σ0

1.

There is a useful fact about both the arithmetical and analytical hierarchies, which you

probably assume without thinking about it, but which actually requires proof. The term Kleene

pointclass refers to any of the (Σ/Π/∆)
(0/1)
n (the term ‘pointclass’ is from the jargon of descrip-

tive set theory, and means ‘set of relations’). We’ll state it for the record, but shan’t prove it.

The enthusiastic reader may wish to sketch the proof.

Theorem 17 The Kleene pointclasses are closed under recursive substitution. That is, if R(x, . . .)

is a member of a Kleene pointclass, and f is a recursive function, then R(f(x), . . .) is also in

the Kleene pointclass.

Exercise 18 This is also true when x is an irrational: what is a recursive function N → N ?

We have the obvious inclusion hierarchy, as for the arithmetical hierarchy. It remains to

prove that the inclusions are strict.

Theorem 19 There are universal Σ1
n relations, and hence the analytical hierarchy is strict.

Proof. Exactly analogous to the proof for the arithmetical hierarchy.

9

Draft { not for distribution

4 The hyperarithmetic hierarchy.

In this section, I’d like to say a few things about what happens between the top of arithmetical

hierarchy and the bottom of the analytical hierarchy. We’ve already seen (if you did Exercise

8) an example of a non-arithmetical set; and we’ve seen artificial examples of arbitrarily hard

analytical sets. One might wonder how big the gap between arithmetical and, say, ∆1
1, really

is. It turns out to be quite large, in some senses—but quite small in another!

If you followed the hint in Exercise 8, you probably produced a set looking something like

T (n, w, x) ⇔ Un(w, x)

where Un is the universal Σ0
n relation. This set is obviously not arithmetical, but it’s not very

unarithmetical—it’s just a union or disjunction of arithmetical sets, since each Un is arithmeti-

cal. Moreover, it’s a very well-behaved union: it’s a union of countably many sets, and we know

effectively for each i what the ith set in the union is. There’s an obvious similarity between such

a union and the operation of existential quantification—∃x. P (x, y) ⇔ y ∈
⋃

i∈N
{ y | P (i, y) }—

and this might suggest to us that the arithmetical hierarchy could be extended into the trans-

finite. Of course, to keep our notion of effectiveness, we must take well-behaved, i.e. recursive,

unions, rather than arbitrary unions. This leads us to the following definition:

Definition 20 A relation T is Σ0
ζ for a recursive ordinal ζ if T =

⋃
i∈N

Rf(i), where the Rj

enumerate the relations in
⋃

ξ<ζ Π0
ξ, and f is a recursive function.

Several things in this definition require comment. Firstly, we’ve defined Σ0
ζ directly on

relations, rather than on formulae, contrary to our previous policy. There’s no difficulty about

doing it logically, but it requires us to extend our previous definitions to infinitary first-order

logic, which isn’t worth the effort for the small use we’ll make of this definition. Secondly, we’ve

said that ζ is a recursive ordinal—what is that, and why do we require it? Well, we require it

to keep things effective: we can’t hope to have a recursive enumeration of the
⋃

ξ<ζ Π0
ξ relations

unless we can recursively enumerate the ordinals below ζ , and we can only do that if ζ is

recursive: that is, there is a recursively coded notation for the ordinals less than ζ , such that

we can recursively determine for any two codes which is less than which.

Exercise 21 Convince yourself that if we restrict to the finite ordinals, the above definition

agrees with our existing definition of Σ0
n relations. (You’ll need the parameter theorem.)

We can deal formally with recursive ordinals as follows. Let ≺ be a binary relation on N

which is a well-order. (Write down the formal expression of ‘being a well-order’.) The order

type of ≺ is some (countable) ordinal ζ . Then ≺ gives us integer notations for all the ordinals

less than ζ—ξ is denoted by the ξth number in the well-ordering. If ≺ is recursive, then we can

effectively determine ξ1 < ξ2 by comparing their notations. Thus we can certainly enumerate

the ordinals less than any given ξ, provided we know the code of ξ. However, it’s not at all

obvious how to find the code of ξ—indeed, it’s not obvious how to find the code of 0! Not only is

it not obvious, it’s not possible in general, which may seem a bit of a drawback. An alternative

approach is instead to define directly ordinal notation systems—for example, Cantor normal

form gives notations for all the ordinals below ǫ0, and one can go much further. In fact, one can

give a sensible notation system for all the recursive ordinals; but then the ≺ relation is only a

semi-recursive partial well-order, not a recursive total well-order. However, that’s enough for

the above definition.

10

Draft { not for distribution

The smallest non-recursive ordinal is called ωCK
1 (Church–Kleene ω1). It is the smallest

ordinal that is not the order type of a recursive well-ordering of N, and has many other char-

acterizations. Our definition of Σ0
ζ above only really makes sense for the ordinals below ωCK

1 ,

and so the hierarchy stops naturally there. The relations in
⋃

ζ<ωCK
1

Σ0
ζ are called the hyper-

arithmetic relations. One of the most important results in descriptive set theory is Kleene’s

theorem

Theorem 22 A relation R is hyperarithmetic iff it is ∆1
1.

Thus the extension of the arithmetical hierarchy into the ‘recursively transfinite’ takes us

exactly up to the bottom of the analytical hierarchy. The proof of this theorem is quite hard,

and involves a normal form for the Π1
1 relations in terms of well-orderings.

5 Notes on the classical theory.

5.1 Basic definitions and results.

The theory we’ve been doing so far appears to stand by itself. However, it can be seen as

an effective version of an older theory, classical descriptive set theory. This theory started

when people wanted to analyse the descriptive complexity of sets of real numbers, rather

than integers. The idea was that the open sets are the simplest sets of reals, and then one

forms more complex sets by operations such as countable union or existential quantification,

complementation, and so on. It turns out that you don’t have to go very far into the classical

equivalent of the analytical hierarchy, for set-theoretic hypotheses to force their attentions upon

you.

We’ll now glance very quickly at some features of the classical theory. We’ll consider relations

on finite products of N and N (or in general, N and perfect Polish spaces). N comes equipped

with a topology (see section 3.2).

Definition 23 A relation R is Σ0
1 if it is open (in the appropriate product topology). R is Π0

n

if ¬R is Σ0
n. If T on N × X is Π0

n, then R = { x ∈ X | ∃i ∈ N. (i, x) ∈ T } is Σ0
n+1. If R is

both Σ0
n and Π0

n, it is ∆0
n.

This is the traditional definition. Equivalently, we could define these bold-face classes in terms

of formulae, just as we did for the light-face classes. For general reasons, we start with Σ0
1

being the open sets, the equivalent of semi-recursive sets in the effective theory; in fact, for N

we can if we wish start with Σ0
0 being the clopen sets, but this doesn’t work in general (see

Exercise 13).

The bold-face versions of the parameter and hierarchy theorems are true, and easier than

the light-face versions: to prove the Kleene parameter theorem (there is a universal Σ0
1 relation),

one can’t avoid all the work of coding recursive definitions, whereas to show there’s a universal

Σ0
1 relation one only needs some manipulation of basic neighbourhoods and Cauchy sequences.

Note, incidentally, that any set of naturals is Σ0
1, since the only topology on N is the discrete

topology in which all sets are open (and therefore closed). This is why the classical theory has

nothing useful to say about sets of naturals.

Definition 24 A relation R is Σ1
0 if it is Σ0

1. R is Π1
n if ¬R is Σ1

n. If T on N × X is Π1
n,

then R = { x ∈ X | ∃α ∈ N . (α, x) ∈ T } is Σ1
n+1. If R is both Σ1

n and Π1
n, it is ∆1

n.

11

Draft { not for distribution

Again, this is the traditional definition, and again, we could equally well cast it in logical terms.

And the hierarchy theorem is true.

There is actually a tight relationship between the bold-face and light-face classes:

Theorem 25 If Γ is any of (Σ/Π/∆)
(0/1)
n , then a relation R on X is Γ iff there is a Γ

relation S on N × X and an irrational ǫ such that R(x) ⇔ S(ǫ, x).

Proof. Any open set is a countable union of basic neighbourhoods, and we have a countable

basis N(i) such that each N(i) is semi-recursive (see section 3.2), so if R is open, i.e. Σ0
1, it

satisfies R(x) ⇔ ∃i. N(ǫ(i))(x) for some irrational ǫ, and this right-hand side is Σ0
1. Then a

simple induction extends the result to the other Σ/Π classes, and a small coding trick deals

with ∆.

We can also extend the Σ0
n classes into the transfinite. Since we’re not worrying about

effectiveness, there’s no need to restrict ourselves to recursive unions; we can take arbitrary

countable unions.

Definition 26 A relation T is Σ0
ζ for a countable ordinal ζ if T =

⋃
i∈N

Ri, where each Ri is

in
⋃

ξ<ζ Π0
ξ.

This hierarchy extends up to ω1, the first uncountable ordinal. It is called the Borel hier-

archy, and sets in the hierarchy are the Borel sets. (The Σ0
n don’t have a name of their own;

they’re just the ‘Borel pointclasses of finite order’. The Σ1
n are called the Lusin or projective

pointclasses. Warning: the Σ1
1 sets are traditionally called analytic sets, not to be confused

with the analytical sets!) The classical equivalent of Kleene’s theorem is Suslin’s theorem

Theorem 27 A relation is Borel iff it is ∆1
1.

There is a huge body of work analysing the structure of these classes. However, here I just

want to give a few examples of some of the remarkable connections between descriptive set

theory and the wilder reaches of set theory.

5.2 The impact of set theory on descriptive set theory.

Throughout these notes, we’ve been implicitly assuming that we’re working in ZFC, Zermelo–

Fraenkel set theory with the full Axiom of Choice (AC). (Recall that AC asserts that given

any set {Sx | x ∈ X } of non-empty sets indexed by the set X, there exists a function f :X →⋃
x∈X Sx such that f(x) ∈ Sx.) As is well known, there are other axioms besides choice which

one might (or might not) believe should be true, and which are independent of the other axioms

of ZF.

The first such axiom is CH, the Continuum Hypothesis, and its Generalized version GCH.

CH states that ℵ1 = 2ℵ0 ; in other words, every set of reals (or irrationals) is finite, countably

infinite, or has the same cardinality as R (or N). (ℵ0 denotes the first infinite cardinal (ω), and

so on. ℵ1 was also called ω1 above, when we were using it in its role as an ordinal.) GCH states

the general version ℵλ+1 = 2ℵλ . Gödel and Cohen proved that GCH is independent of ZFC

(although GCH implies AC). In fact, CH can be false in a very strong sense, as we’ll remark

below. However, if we restrict our attention to reasonably simple sets (and in the mathematics

that is applied to the real world, most sets are simple), we don’t have to worry so much:

Theorem 28 CH is true of Σ1
1 sets.

12

Draft { not for distribution

In other words, every infinite Σ1
1 set is either countable or has the cardinality of N . There are

plenty of other curious results about cardinals and the bottom end of the projective hierarchy:

for example:

Theorem 29

• Every Σ1
1 set is a union (or intersection) of ℵ1 Borel sets.

• (easy) Any Σ1
1 well-ordering of N is countable.

• (not easy) Any Σ1
2 well-ordering has order type less than ℵ2; and so if CH is false, there is

no Σ1
2 well-ordering of R or N .

Another property that one might want to be true of the world is that all sets of reals are

Lebesgue measurable. Roughly, this means that every set of reals has a sensible ‘length’, so one

can do integration etc. For the sets and functions one meets in practice, this isn’t a problem,

but it’s not obvious (or true) that all sets of reals are Lebesgue measurable. Again, if we stick

to simple sets we’re OK. Let LM mean ‘sets of reals are Lesbesgue measurable’.

Theorem 30 LM holds for Σ1
1 sets (and indeed for countable unions and intersections of Σ1

1

and Π1
1 sets).

However, it is consistent with ZFC that there are ∆1
2 sets that are not measurable. Full LM

is not consistent with ZFC, since full choice always allows the construction of non-measurable

sets; but it is probably consistent with ZF + DC, where DC is the Axiom of Dependent

Choice, which states that one can make a countable sequence of choices, each depending on

the previous choices. This is a weak form of choice, but it does provide enough choice for the

theory of Lebesgue measure to make sense. The ‘probably’ in the last but one sentence needs

explanation, and brings us to one of the most surprising links, between Lesbesgue measurability

and the existence of large cardinals.

An infinite cardinal κ is regular if it is not the sum of less than κ cardinals each less than

κ. For example, ℵ0,ℵ1, . . . are regular, but ℵω is not, since ℵω =
∑

i<ω ℵi. An uncountable

cardinal κ is weakly inaccessible if it is regular and is a limit cardinal, i.e. is ℵλ for some limit

ordinal λ (note that by regularity, it must then be the case that λ = κ). Such a cardinal, if

it exists, is very large: it’s impossible to reach it ‘from below’ by any form of summation or

limit. If moreover 2λ < κ for all λ < κ, then κ is (strongly) inaccessible—it can’t be reached

from below even with the help of the powerset operation. Let IC denote the assertion that an

inaccessible cardinal exists. IC implies that ZF is consistent (because an inaccessible cardinal

is a model for ZF), and hence it cannot be proven from ZF, and further cannot be shown to

be consistent with ZF ; this makes it different in kind from properties such as GCH. Thus it

remains possible that ZF can prove that there is no inaccessible cardinal, though everybody

would be astonished if this were ever done.

How does this connect with measurability? Solovay proved that ZF + DC + LM is con-

sistent, but to do this, he had to assume IC (why, would be too complicated to go into). The

surprise came when Shelah proved that this is necessary: the consistency of ZF + DC + LM

implies the consistency of ZF + IC. (Note carefully, by the way, that we are not saying that

IC implies LM or vice versa; we are saying that their consistency is equivalent.)

IC is only the smallest of many ‘large cardinal’ axioms. One of the largest is MC, the

assertion that a measurable cardinal exists. The definition of a measurable cardinal is a bit

complicated, but if one exists, it must, in the presence of choice, be really huge: much bigger

13

Draft { not for distribution

than just inaccessible. (Without choice, even ℵ1 could be measurable!) However, if MC is true,

then every Σ1
2 set is measurable.

It was mentioned above that CH can fail in very strong ways. What this means is that it is

consistent with ZF(C) that 2ℵ0 = ℵβ for any ‘reasonable’ β. In particular, it is consistent that

there is a weak inaccessible less than 2ℵ0 (assuming that the existence of weak inaccessibles is

consistent, that is)! Indeed, if you don’t believe that 2ℵ0 = ℵ1, there’s a reasonable argument

for saying that the first weak inaccessible is the next plausible value to take.

5.3 Games.

Finally, a few remarks on how games tie up with descriptive set theory and large cardinal

axioms.

A Gale–Stewart game is specified by a set A ⊆ X ω, for some space X . For simplicity, let’s

take X to be N. The game is played by two players, I and II, who take turns. At each turn,

the player chooses a number. This defines an infinite play α (an irrational in our case); then

player I wins the game if α ∈ A.

A strategy for a player is a function from sequences of numbers to numbers: given a play-

so-far, it defines a next move. A winning strategy for a player is a strategy which, if followed,

guarantees winning. A game is determined if one player has a winning strategy. It may seem

a little surprising, but not all games are determined: if the payoff set A is very complicated,

there may not be a winning strategy for either player—unless you add some axioms to ZF . . .

So one can ask, for what sets A is the game on A determined? Write Det(Γ) to mean the

game on A is determined for all A ∈ Γ. Gale and Stewart in their original paper showed that

Det(Π0
1), i.e. that all closed games are determined. In the 50s, this was improved to Det(Σ0

2).

However, the major advance was made in the early 70s by Martin, who showed Det(∆1
1). He

also showed that if MC holds, then Det(Σ1
1).

It turns out that for any significant further advance, one just has to assume the result.

There are two such axioms commonly studied: Projective Determinacy (PD), which asserts

that all the projective classes are determined; and the Axiom of Determinacy (AD), which

simply asserts that all games are determined! These axioms are very strong: AD contradicts

AC (but is consistent with DC), and implies that ℵ1 is a measurable cardinal; it also implies

LM. However, most people would consider it to be false. Despite that, working in the theory

ZF + DC + AD can provide interesting and useful results, because even though one might

consider AD to be false, one might expect there to be a restricted universe in which it’s true,

and then one can get results about sets in that universe.

14

Draft { not for distribution

6 Induction and fixpoints.

Definition by induction is fundamental to all mathematics. The general form of inductive

definitions is that you have some operation which, given a collection of objects, gives you a

bigger collection of objects, and you want to close under the application of that definition.

For example, the set of formulae of first-order arithmetic is formed by starting with the basic

formulae, and closing under the operation that forms conjunctions, quantifications, etc. This

looks rather like ordinary recursion; and of course, if you want to check that a string is a

well-formed formula, you write a recursive function that winds its way down the inductive

definition, checking each step.

The inductive definition of well-formed formulae is fairly simple; in particular, it closes at

ω: once you’ve applied the construction rule ω times, you don’t get any more formulae by

applying it again. In general, however, inductive definitions don’t necessarily close at ω. Thus

one might expect inductive definition to be quite a powerful way of describing sets—and one

can certainly ask how powerful, in terms of the notations we already know about. So we’ll now

consider the power of inductive definition.

Definition 31 Suppose W is some set, and Φ:℘(W) → ℘(W) is a operation taking subsets

of W to subsets of W , and suppose further that Φ is monotone. The iterates of Φ are defined

by induction on the ordinals, thus:

Φζ = Φ(
⋃

ξ<ζ

Φξ)

and we write Φ<ζ for
⋃

ξ<ζ Φξ.

Notice that this single definition covers zero (giving Φ0 = Φ(�)), successor (giving Φζ+1 =

Φ(Φζ)), and limit iterates. In some earlier work on inductive definitions, a different definition

of iterate was used, namely to separate out these cases by defining Φ0 = �, Φζ+1 = Φ(Φζ) and

Φλ =
⋃

ξ<λ Φξ for limit λ. (I’m just adding underlines to distinguish them from our notation.)

Although this definition is superficially perhaps more obvious, the notation of the definition

is on the whole more attractive. Unfortunately, the underlined notation has been transferred

into the modal mu-calculus; but I live in hope of driving it out again.

Exercise 32 (Trivial) Show that the relation between the two notations is: Φζ = Φ<ζ , and

conversely Φζ = Φ(Φζ).

It is convenient to use ∞ as a notation for something ‘larger than all the ordinals’, and

write Φ∞ = Φ<∞ =
⋃

ζ∈Ord Φζ . Of course, ∞ doesn’t exist, since Ord is a proper class, but this

doesn’t matter, because as the following result shows, in any given circumstance we can take

∞ to be some sufficiently large ordinal.

Theorem 33 If Φ is as above, then

(1) if ζ < ξ then Φζ ⊆ Φξ;

(2) for some ordinal κ of cardinality ≤ |W |, we have Φ∞ = Φκ = Φ<κ;

(3) Φ∞ is the least (pre-)fixpoint of Φ.

Proof. Exercise. (Hints, in case you haven’t seen this before: (1) follows straight from mono-

tonicity; (2) follows because otherwise you’d be putting more than |W | elements into a subset

of W ; and (3) follows from (2) and an easy induction to show that every iterate is contained in

15

Draft { not for distribution

every pre-fixpoint. (A ‘pre-fixpoint’ of Φ is an A such that Φ(A) ⊆ A. It is easy to show that

the least pre-fixpoint is also the least fixpoint.))

That defines a form of induction, and allows us to define sets as fixpoints of a monotone

operator, but that doesn’t quite fit neatly into our framework of definability, where we would

want to define a relation R by R(x) ⇔ ‘inductive definition given by φ’(x) for some relation

φ that is built up (by quantification, for example) from already defined relations. To use the

inductive definition, we need to produce a Φ from a formula φ. Clearly φ will have to have a

free ‘relation variable’ W so we can feed in the argument of Φ; but it also has to return a set

in some way—and naturally, it can do this by having a free variable w so that it returns the

set {w | φ(w, . . . ,W) }. This leads us to the following definition of inductively defined sets.

Definition 34 Suppose φ(w, x,W) is a relation on W ×X ×℘(W) (so W ranges over subsets

of the space W) that is monotone in W . Define, for each x, a monotone operation Φx on ℘(W)

by

Φx(W) = {w | φ(w, x,W) }

and define φζ(w, x) ⇔ w ∈ Φζ
x. We then say that a relation R(x) is inductively defined by φ if

there is some w0 such that R(x) ⇔ φ∞(w0, x).

The appearance of w0 may seem a little strange, but there’s really no way to avoid it in a

general framework. (Compare the modal mu-calculus, where fixpoints appear directly without

a w0; but modal mu-calculus doesn’t have any first-order variables at all!)

Now we can ask, if φ is in some class Γ of relations, what can we say about the relations

inductively defined by φ? Let us write IND(Γ) for the relations inductively defined by Γ. Of

course, we have the catch that φ has to be monotone, so Γ had better contain only monotone

relations. The easiest way to ensure this is to stick to positive formulae (i.e. W occurs within

the scope of an even number of negations)—so if Γ is a class of definable relations, let pos-Γ

denote the positive relations in that class.

In order to simplify things, we’ll assume from now on that W is actually N, so we’re only

taking fixpoints of operations on sets of numbers; after all, taking fixpoints of operations on sets

of irrationals feels like a third-order thing, and we certainly don’t want that! (In fact, there are

things to say about induction on N , but we shan’t say them). The following theorems assume

W = N.

In the simplest case, inductive definitions don’t actually buy you anything: induction over

a semi-recursive relation achieves nothing.

Theorem 35 IND(pos-Σ0
1) = Σ0

1

Proof. Fixpoints of semi-recursive operations are simple, in the sense that they close at ω.

To see this, consider some w ∈ Φω = Φ(Φ<ω). Since Φ is semi-recursive, to determine that

w ∈ Φ(Φ<ω) requires looking at only a finite number of wi in Φ<ω. Each wi is in some Φni ; but

then w ∈ Φ(Φ<1+max ni) = Φ1+max ni ⊆ Φ<ω. So now w ∈ Φ∞ ⇔ ∃n. w ∈ Φn, and being in Φn

can be defined by a semi-recursive function, and we’re done.

Exercise 36 (Long) Flesh out this sketch into a rigorous proof.

16

Draft { not for distribution

However, if we do induction over co-semi-recursive relations, things take off very quickly.

Kleene’s theorem (yes, another one!) on induction states

Theorem 37 IND(pos-Π0
1) = Π1

1

Proof. A little trickier than we really want to do here, but not too bad. The ⇒ direction is

easy, because sets of integers can be coded up as irrationals, and then we just have to say ‘for

all sets that are fixpoints, w is in the set’, which is a Π1
1 statement. The ⇐ direction involves

a little more work.

Once we get to Π1
1, another induction doesn’t get us any further:

Theorem 38 IND(Π1
1) = Π1

1

Proof. As noted in the previous theorem, taking least fixpoints is a Π1
1 operation, so taking

least fixpoints over Π1
1 is still Π1

1.

Suppose we negate our least fixpoints, and then do induction? In other words, do induction

over a greatest fixpoint; or do nested induction and co-induction. (The greatest fixpoint of Φ

is the complement of the least fixpoint of the dual operator Φ̂ defined by Φ̂(W) = ¬Φ(¬W)—

prove this, if you haven’t already seen it.)

One of the most surprising things to me about the study of inductive definitions is that the

obvious hierarchy of nested induction and co-induction was not studied at all until the early

90s. Perhaps a reason for this is that it is actually extremely hard to characterize its power in

terms of something else; but as we shall also see, the most basic properties are easy, and not

even they were established—or at least, they weren’t written down anywhere!

In the classical work on inductive definability, only the following result was stated. Recall

that one induction over first-order properties gives us Π1
1, which if complemented gives Σ1

1.

Theorem 39 R(w) is in IND(Σ1
1) iff R is the set of w such that player I wins the game

{α | P (w, α) }, where P is a Σ0
2 relation.

We shan’t prove this, but by the end of this section of the course, we should have a vague

woolly feeling as to why it’s true.

17

Draft { not for distribution

7 Arithmetic with fixpoints.

7.1 The language and its normal form.

So, since we wish to study mixed induction and coinduction, let us add them to the our logic.

Starting with first-order arithmetic as before, we add set variables W,X, Y, . . ., new atomic

terms of the form τ ∈ Ξ, where τ is a (first-order) term and Ξ is a set term; and set terms

are either set variables or have the form µ(w,W). φ, where φ is a formula, w is a first-order

variable, and W a set variable; the two variables are bound in the term. We also have the dual

set term ν(w,W). φ, and as usual we’ll use duality to push negations inward, and work entirely

in positive form. The meaning of the set terms is the obvious one: µ(w,W). φ denotes the set

φ∞(w, . . .) as previously defined, where . . . denotes the other free variables of φ. We’ll freely

use various obvious notations for the iterates of φ, which in modal mu-calculus are traditionally

called approximants of the fixpoints.

Since we are going to work entirely in positive form, we also need a notation for the ‘iterates’

of maximal fixpoints. These can be defined entirely by duality: νζ(w,W). φ = ¬µζ(w,W). φ̂

(whereˆdenotes the dual formula), or alternatively can be defined directly by νζ(w,W). φ =

{w | φ(w,
⋂

ξ<ζ ν
ξ(w,W). φ) }. (Exercise: check these agree!)

As a space saving notational convention, let us write just µX for µ(x,X), and so on.

It’s quite hard to give any non-trival examples of formulae in this language, so here are a

couple of trivial examples. µX. x = 0 ∨ (x > 1 ∧ (x − 2) ∈ X) is the set of even numbers; the

formula is just writing down the inductive definition of ‘even’. Of course, the even numbers are

also the complement of the odd numbers: the odd numbers are defined by µX. x = 1 ∨ (x >

1 ∧ (x − 2) ∈ X), so by negating we can express the even numbers as a maximal fixpoint

νX. x 6= 1 ∧ (x > 1 ⇒ (x− 2) ∈ X). (Here the intuition is that we start with everything, and

then throw out the odd numbers one after the other.)

Notice (and verify) that in both these cases, we actually get the same answer whether we

take minimal or maximal fixpoints. This is essentially because in both cases we are coding a

well-founded inductive definition.

Exercise 40 Consider the formula

�X. (x = 0 ∨ (x+ 2) ∈ X)

Show that if � is µ, then the formula denotes the set {0}, and if � is ν, it denotes N.

This illustrates a general trend: for simple fixpoints, either both are the same, or one of

them is trivial. Can you come up with an example formula where the two fixpoints are distinct

and non-trivial?

We can now define the obvious hierarchy of fixpoint formulae, along the same lines as before.

Of course, we now have set terms in the language, so we have to include them.

Definition 41 If a formula or set term has no fixpoint operators, it is Σµ
0 and Πµ

0 . Otherwise,

for n ≥ 1:

• If φ and Ξ are Σµ
n−1 or Πµ

n−1, they are both Σµ
n and Πµ

n.

• If φ1, φ2 and Ξ are Σµ
n, the formulae φ1 ∨ φ2, φ1 ∧ φ2, ∃x. φ1, ∀x. φ1, τ ∈ Ξ are Σµ

n; and the

set term µX. φ1 is Σµ
n.

• If φ is Σµ
n, then the set term νX. φ is Πµ

n+1.

18

Draft { not for distribution

We remarked when dealing with first-order arithmetic that our slighly non-standard defi-

nition had the same effect as the usual definition, and the proof of this relied upon the prenex

normal form theorem for arithmetic. If the above definition of fixpoint alternation is to behave

nicely, there had better be a prenex normal form for arithmetic with fixpoints. Fortunately,

there is; but as it is not to be found in standard texts, and is also rather more complicated

to prove than the first-order case, we’ll give the proof. (Note that the modal mu-calculus does

not have a prenex normal form, which is why there is some mess involved with the defini-

tion of alternation there, as we shall see.) (Most of the rest of this section is lifted from my

TCS/CONCUR ’96 and STACS ’98 papers.)

Definition 42 A Σµ
n formula of arithmetic with fixpoints is in pair-normal form if it has the

form

τn ∈ µXn. τn−1 ∈ νXn−1. τn−2 ∈ µXn−2. . . . τ1 ∈ �X1. φ

(the last fixpoint being µ or ν according as n is odd or even) where φ is first-order.

The terminology ‘pair-normal’ comes from Lubarsky’s paper on mu-arithmetic, and is used

because there is a weaker normal form that can be used in structures that can’t code up the

pairing function. He then proved the normal form theorem. (The presentation here is somewhat

better . . .)

Theorem 43 If φ is Σµ
n (Πµ

n), it is semantically equivalent to a pair-normal formula that is

also Σµ
n (Πµ

n).

Proof. We proceed by induction on n, and by structural induction on formulae and set terms.

For a set term µX. φ, we assume inductively that φ is pair-normal; then we are already

pair-normal unless φ is τ ∈ µY. ψ. In that case, the translation pairs up X and Y into W in

the natural way, so that m ∈ X iff 〈0, m〉 ∈ W and n ∈ Y iff 〈1, 〈x, n〉〉 ∈ W (remember that

τ , ψ and Y may depend on the individual variable x as well as the set variable X). Note that

although Y depends on both x and X, we have only explicitly coded the dependency on x. By

standard monotonicity arguments about adjacent fixpoints of the same sign, the dependency

on X can be ignored. Thus we translate the original term into

µW. ((w)0 = 0 ∧ 〈1, 〈(w)1, τ
′〉〉 ∈W) ∨ ((w)0 = 1 ∧ ψ′)

where τ ′ is obtained from τ by replacing every occurrence of x by (w)1, and ψ′ is obtained

from ψ by replacing every ‘ρ ∈ X’ by ‘〈0, ρ〉 ∈W ’, and every ‘ρ ∈ Y ’ by ‘〈1, 〈x, ρ〉〉 ∈W ’, and

then every x by ((w)1)0 and every y by ((w)1)1. This procedure clearly preserves the level in

the hierarchy. Now, as φ was pair-normal, its body ψ was a Πµ
n−1 formula; hence the body of

µW. . . . is Πµ
n−1, and by induction can be transformed into a Πµ

n−1 pair-normal formula, and

we are done.

Now we consider formulae. For the case τ ∈ Ξ, inductively transform Ξ to its pair-normal

form Ξ′, as in the previous paragraph. Note that if the pairing of adjacent fixpoints above is

required, then we need to write 〈0, τ〉 ∈ Ξ′, as τ is supposed to be in X, not W .

The booleans are easy, since (τ ∈ µZ. φ) ∧ ψ is equivalent to τ ∈ µZ. φ ∧ ψ. A little care is

needed, though: if we have the conjunction of two fixpoints, one µ and the other ν, we need to

put the µ on the outside if we’re trying to make it Σµ
n, and the ν if we’re trying to make it Πµ

n.

19

Draft { not for distribution

Thus a formula that is both Σµ
n and Πµ

n has a Σµ
n pair-normal form and also a Πµ

n pair-normal

form, but does not have a pair-normal form that is both Σµ
n and Πµ

n.

For formulae ∃x. φ, assume that φ is τ ∈ µY. ψ. The existential quantifier is pushed inside

the fixpoint by a similar construction to that used in the case of set terms: let W be a new

variable, and build ψ′ from ψ exactly as before. Then the set term

µW. (w = 〈0, 0〉 ∧ ∃x. 〈1, 〈x, τ〉〉 ∈W) ∨ ((w)0 = 1 ∧ ψ′)

contains 〈0, 0〉 iff ∃x. φ. Now the case of φ being τ ∈ νY. ψ is similar.

Similarly for formulae ∀x. φ.

So we see that the transformation makes no change to the Σµ
n level, as claimed.

Exercise 44 (Long) Fill in the details; in particular, prove the correctness of the ‘push ∃

through µ’ construction.

This is quite a complex construction, and some simple examples may be helpful. Firstly,

consider ‘t is even and t is not a multiple of three’. If we use an inductive definition of ‘multiple

of three’ (quite unnecessary, of course, but never mind), we get

(t ∈ µX. x = 0 ∨ (x > 1 ∧ (x− 2) ∈ X))

∧ (t ∈ νY. y 6= 0 ∧ (y > 2 ⇒ y − 3 ∈ Y)) .

As the two fixpoints are independent, we can move one inside the other to get

t ∈ µX. t ∈ νY. (x = 0 ∨ (x > 1 ∧ (x− 2) ∈ X))

∧ (y 6= 0 ∧ (y > 2 ⇒ y − 3 ∈ Y)) .

As an example of the treatment of first-order quantifiers, consider ‘t is a composite number’.

Let us again, for the purposes of exposition, use an inductive definition of multiple, but use

an existential quantifier over possible factors, that is to say ‘there is an x > 1 such that t is a

multiple (> 1) of x’:

∃x. x > 1 ∧ t ∈ µY. y = 2x ∨ (y > 2x ∧ (y − x ∈ Y)).

Applying the construction given above yields, where for readability we write w10 etc. for ((w)1)0

etc.:

〈0, 0〉 ∈ µW. (w = 〈0, 0〉 ∧ ∃x. 〈1, 〈x, t〉〉 ∈W)

∨ (w0 = 1 ∧ w10 > 1 ∧ (w11 = 2w10 ∨

(w11 > 2w10 ∧ 〈1, 〈w10, w11 − w10〉〉 ∈W))) .

Here the meat of the inductive definition is the same as before, but it’s now being carried on

in the (()1)1 component of W , which is parametrized by the (()1)0 component representing x.

The first line says, effectively, that the flag value 〈0, 0〉 is in W only if ∃x. t ∈ µY. . . . , and

the second and third lines compute Y as the last component of W , with the constraint on x

included in this computation.

Exercise 45 It was claimed in the lecture that existential quantification can be replaced by a

least fixpoint, though I didn’t write it down correctly. It’s true, though: prove that

(∃x. φ) ⇔ 0 ∈ µX. φ ∨ (x+ 1) ∈ X

20

Draft { not for distribution

(Of course, this doesn’t help in general, since we don’t want to replace simple first-order

quantifiers by fixpoints, but it’s a simpler illustration of the ‘flag value’ idea.)

21

Draft { not for distribution

7.2 The hierarchy theorem.

Having established the normal form theorem, we can now deal with the hierarchy. It would in

fact be possible to proceed exactly as in the previous hierarchy theorems, taking the Kleene

theorems as the base case; but there are one or two minor complications to worry about. It

turns out to be easier to prove the entire theorem from scratch, via a rather pleasant encoding.

The strategy is the same as before, namely to show that the truth of Σµ
n formulae can itself

be expressed by a Σµ
n formula, and to use a diagonalization argument to show that this formula

cannot be equivalent to any Πµ
n formula.

Firstly, take a suitable Gödel numbering of mu-arithmetic. We consider only formulae with-

out free set variables; wlog, we may assume that all encoded formulae are in normal form, and

are normalized so that the free individual variables are z0, . . . , zk, the first-order quantifiers

bind zk+1, . . . , and for a formula of alternation depth n, the fixpoint variables are Xn, . . . ,X1,

with associated individual variables xn, . . . , x1. We use sans-serif type to indicate that the vari-

able is being seen as part of an encoded object-level formula; normal italic type indicates a

meta-level variable. We use corner quotes to denote the Gödel coding. We also need coded

assignments which map an encoded variable to a value: we write [v/z] for the assignment that

maps z (strictly, the code �z�) to the integer v, and a[v/z] for the updating of a by [v/z].

We use double quotes to indicate the appropriate meta-language formalization of the informal

statement inside the quotes.

Now suppose that Satn(x, y) is a formula of mu-arithmetic expressing the truth of Σµ
n

formulae, so that if φ is a formula and a an assignment of values ~v to the free variables ~z of φ,

then Satn(�φ�, a) is true just in case φ(~v/~z) is true. We have the

Lemma 46 Satn(z0, [z0/z0]) is not equivalent to any Πµ
n formula.

Proof. The proof is exactly as for the arithmetical hierarchy. Suppose the contrary, i.e. that

¬Satn(z0, [z0/z0]) is equivalent to some Σµ
n formula θ(z0). Then we have

θ(�θ�) iff ¬Satn(�θ�, [�θ�/z0]) iff ¬θ(�θ�)

, which is a contradiction.

It remains to show that Satn exists and is indeed a Σµ
n formula.

Theorem 47 Satn is a Σµ
n formula of mu-arithmetic, for n > 0.

Proof. We start by constructing Sat0, truth in first-order arithmetic, both as a Σµ
1 formula

and as a Πµ
1 formula. Sat0(x, y) is defined as:

〈x, y〉 ∈ µ(w,W). “(w)0 = �P (τ)� and pred(�P �, eval(�τ�, (w)1))”

∨ “(w)0 = �φ1 ∧ φ2� and (〈�φ1�, (w)1〉 ∈W ∧ 〈�φ2�, (w)1〉 ∈W)”

∨ “(w)0 = �φ1 ∨ φ2� and (〈�φ1�, (w)1〉 ∈W ∨ 〈�φ2�, (w)1〉 ∈W)”

∨ “(w)0 = �∃zi. φ1� and ∃v. 〈�φ1�, (w)1[v/zi]〉 ∈ W”

∨ “(w)0 = �∀zi. φ1� and ∀v. 〈�φ1�, (w)1[v/zi]〉 ∈ W”

where eval(t, a) is the recursive function which evaluates a coded term t = �τ� under the

variable assignment a, and pred(p, x) is the computable predicate which is true if the value x

satisfies the predicate coded by p = �P �.

22

Draft { not for distribution

We have here skipped the details of the coding, which are standard. For example, if we look

in more detail at the clause for ∀, it actually says:

f((w)0) = �∀� ∧ ∀v. 〈g((w)0), h((w)1, v, g
′((w)0))〉 ∈W

where f extracts the top-level connective of a coded formula, g extracts the body of a ∀ formula

and g′ extracts the bound variable, and h(a, v, z) takes the variable assignment a and updates

the variable whose code is z by the value v. The fact that these functions f, g, h are recursive

is obvious, and since we allow ourselves all recursive functions as primitives, that is sufficient;

but explicit definitions in standard arithmetic may be found in standard references.

It is clear that this fixpoint formula simply encodes directly the definition of truth in

arithmetic. The formula is Σµ
1 , but since the encoded recursive function terminates on all

arguments—it is just a definition by induction on the structure of formulae—it does not matter

whether we use a minimal or maximal fixpoint to achieve the recursion. Thus we may also obtain

Sat0 as a Πµ
1 formula.

In order to encode within mu-arithmetic the evaluation of formulae with fixpoints, it is

necessary to have the same fixpoint structure in the Sat formula as in the formula it’s evaluating.

Recall that we assume pair-normal form, and suppose that we wish to evaluate Σµ
n formulae

where n is odd, that is, formulae of the form

τn ∈ µXn. τn−1 ∈ νXn−1 τ2 ∈ νX2. τ1 ∈ µX1. φ (∗)

where φ is first-order. The interpretation of the pure first-order part of φ may be done with the

Σµ
1 version of Sat0—but φ may also now contain formulae τ ∈ Xi. We cannot code as integers

the sets referred to by the Xi, so they must be represented by set variables in the meta-language.

We use the meta-level variable Xi to represent the object variable Xi, and extend the body of

Sat0 by the clauses (for each 1 ≤ i ≥ n)

∨ “(w)0 = �τ ∈ Xi� and eval(�τ�, (w)1)) ∈ Xi”.

Let Sat′0 denote the adjusted Sat0.

With these adjustments, we have that (∗) is true with free variable assigment a just in case

eval(�τn�, a) ∈ µXn.

eval(�τn−1�, a[xn/xn]) ∈ νXn−1. . . .

eval(�τ1�, a[xn, . . . , x2/xn, . . . , x2]) ∈ µX1.

Sat′0(�φ�, a[xn, . . . , x1/xn, . . . , x1])

Now we just parametrize on (∗): let f1(x, y) be the function that given x encoding a Σµ
n

formula (∗) and an assignment y, computes eval(�τn�, y), and so on, and let g(x) extract the

body of (∗). Then we have Satn(x, y) in the form

fn(x, y) ∈ µXn. fn−1(x, y[xn/xn]) ∈ νXn−1. . . .

f1(x, y, [xn, . . . , x2/xn, . . . , x2]) ∈ µX1. Sat′0(g(x), y[xn, . . . , x1/xn, . . . , x1])

which is Σµ
n as required. If n is even, we use the Πµ

1 version of Sat0 instead.

23

Draft { not for distribution

The fact that Satn does indeed code truth is easily shown: show by induction on i that each

meta-level fixpoint set Xi coincides with the object-level set Xi. The base case follows from the

correctness of Sat′0, and the induction step is easy.

It may be noted that we have also skipped details of what the functions f1 etc. should do

if given ill-formed arguments. Any convenient trick may be used; the details are unimportant.

That concludes our investigation of arithmetic with fixpoints; the next stage is the somewhat

surprising discovery that it can be used to solve a long-standing problem in the modal mu-

calculus.

24

Draft { not for distribution

8 Alternation in the modal mu-calculus.

8.1 The language; simple alternation.

I assume that you are familiar with the modal mu-calculus, so let us just briefly review the

syntax and semantics.

We assume some countable set L of labels. The formulae Φ are defined inductively thus:

variables Z and the boolean constants tt, ff are formulae; if Φ1 and Φ2 are formulae, so are

Φ1 ∨ Φ2 and Φ1 ∧ Φ2; if Φ is a formula and l a label, then [l]Φ and 〈l〉Φ are formulae; and

if Φ is a formula and Z a variable, then µZ.Φ and νZ.Φ are formulae. (As with first-order

logic, we adopt the convention that the scope of the binding operators µ and ν extends as

far as possible. Note also that in this section we’ll stick to the convention that upper-case

Greek letters Φ,Ψ,Υ are modal mu-calculus formulae, whereas lower-case Greek letters φ, ψ

are mu-arithmetic formulae.)

Given a labelled transition system T = (S ,L ,−→), where S is a set of states, L a set

of labels, and −→ ⊆ S ×L ×S is the transition relation (we write s
l

−→ s′), and given also

a valuation V assigning subsets of S to variables, the denotation ‖Φ‖T
V

⊆ S of a mu-calculus

formula Φ is defined in the obvious way for the variables and booleans, for the modalities by

‖[l]Φ‖T

V
= { s | ∀s′. s

l
−→ s′ ⇒ s′ ∈ ‖Φ‖T

V
}

‖〈l〉Φ‖T

V
= { s | ∃s′. s

l
−→ s′ ∧ s′ ∈ ‖Φ‖T

V
} ,

and for the fixpoints by

‖µZ.Φ‖T

V =
⋂

{S ⊆ S | ‖Φ‖T

V [Z:=S] ⊆ S }

‖νZ.Φ‖T

V
=

⋃
{S ⊆ S | S ⊆ ‖Φ‖T

V [Z:=S] } .

Approximants (iterates) of the fixpoint formulae are defined just as before.

Note a major difference from mu-arithmetic: there is no distinction between formulae and

set terms, because all formulae are implicitly describing sets of states.

To start with, we’ll define the hierarchy of alternating formulae by exact analogy with

arithmetic. We’ll see later that this is not really what we want to do; but that will be a detail

we can resolve independently of the main argument.

Definition 48 A formula with no fixpoint operators is ΣSµ
0 and ΠSµ

0 . Otherwise, for n ≥ 1:

• If Φ is ΣSµ
n−1 or ΠSµ

n−1, it is both ΣSµ
n and ΠSµ

n .

• If Φ1 and Φ2 are ΣSµ
n , so are Φ1 ∨ Φ2, Φ1 ∧ Φ2, 〈l〉Φ1, [l]Φ1, and µX.Φ1.

• If Φ is ΣSµ
n , then νX.Φ is ΠSµ

n+1.

The S here stands for ‘simple’ or ‘syntactic’; later, we’ll define stronger notions of alternation.

In the model-checking work on alternation, you won’t see alternation expressed in terms of

these classes of formulae. Instead, you’ll see references to the ‘alternation depth’ of a formula.

This is defined algorithmically, but we can cast it in terms of our classes:

Definition 49 The simple alternation depth adS(Φ) of a formula Φ is the least n such that Φ

is both ΣSµ
n and ΠSµ

n .

25

Draft { not for distribution

The motivation for this definition gives one of the main reasons why it has been considered

interesting to study the alternation hierarchy.

Theorem 50 If Φ is a formula and T a transition system, with |T | · |Φ| = n and ad(Φ) = d,

then all known algorithms for model-checking, i.e. determining whether s ∈ ‖Φ‖, have worst-

case complexity Ω(nΩ(d)).

(This is actually true for the stronger notion of alternation depth that we’ll see later,

not for the simple one; hence I’ve dropped the S.) In other words, all known algorithms for

model-checking are at least exponential in the alternation depth. However, although the best

algorithms also give us an O(nO(d)) upper bound for the complexity of the model-checking

problem, we don’t have any useful lower bounds. (The problem is known to be PTIME-hard,

but that’s no great surprise.) In particular, we don’t know whether the problem is polynomial

or not. We do know that it is both NP and co-NP, which makes it one of very few examples of

such problems that are not known to be polynomial (primality is another). It seems possible

that the above is also a lower bound; but that would imply P 6= NP, so is unlikely to be easy

to prove. Of course, if the alternation hierarchy collapsed, one might hope to prove that the

problem is polynomial, by smashing all formulae down to low alternation equivalents. However,

the alternation hierarchy doesn’t collapse.

8.2 The strictness of the simple alternation hierarchy.

The strategy here is to transfer the result from mu-arithmetic. Specifically, we shall show that

on ‘reasonable’ transition systems, the denotation of a ΣSµ
n formula is (coded as) a Σµ

n set of

integers; and conversely, we shall construct a reasonable transition system and a ΣSµ
n formula

Φ such that the denotation of Φ is a strict Σµ
n set of integers, and so Φ can’t be equivalent to

any lower alternation formula.

We define a recursively presented transition system (r.p.t.s.) to be a labelled transition

system (S ,L ,−→) such that S is (recursively codable as) a recursive set of integers, L

likewise, and −→ is recursive. Henceforth we consider only recursively presented transition

systems, with recursive valuations for the free variables. We have the following theorem:

Theorem 51 For a modal mu-calculus formula Φ ∈ ΣSµ
n , the denotation ‖Φ‖ in any r.p.t.s.

is a ΣSµ
n definable set of integers.

Proof. This is a trivial translation of the semantics of the modal mu-calculus into arithmetic.

For each modal formula Ψ, we define an arithmetic formula ψ(s) such that ψ(s) ⇔ s ∈ ‖Ψ‖,

by structural induction. For example, the translation of µX.Ψ is s ∈ µ(x,X). ψ(x).

The remaining task is to construct an r.p.t.s. and a modal formula with a strict Σµ
n de-

notation. The trick here is to build a machine which ‘interprets’ formulae of mu-arithmetic.

Now, a recursively presented transition system can’t possibly correctly interpret incredibly

complicated things like mu-arithmetic, so we’ll cheat, and move part of the interpretation into

a modal formula, which tells us which execution sequences of the machine are ‘correct’ inter-

pretations. Roughly, the easy recursive parts of the job are done by the transition system, the

first-order quantifiers are specified by modalities, and the arithmetic fixpoints are specified by

modal fixpoints. So, let’s proceed.

We aim to construct a transition system T and a ΣSµ
n modal mu-calculus formula Φ such

that the set of states satisfying Φ is defined by the strict Σµ
n arithmetic formula Satn.

26

Draft { not for distribution

The transition system T should be viewed as a machine for evaluating arithmetic expres-

sions in the same way that Satn does: the computation happening in the body of Sat′0 will be

dealt with by the definition of the transitions of T , and the arithmetic fixpoints are translated

into modal fixpoints in Φ.

The states of T encode several pieces of information. Namely, a state s contains: a formula

ψs of the form (∗) (see page 23), and a variable assignment as, and a pointer ps into ψs which

keeps track of where we are in the evaluation. We use the notation of (∗) to refer to parts of

ψs.

The labels of T are used to distinguish various steps of computation; we shall start with

enough labels to make the construction clear, and then argue the number down a little.

The transitions of T from a state s are defined thus:

• If ps points at τi (or after �Xi+1. , which we consider to be the same), then s
xi−→ s′ where

ψs′ = ψs, and as′ = as[eval(τi, as)/xi] and ps′ points after �Xi. That is, the term τi is

evaluated in the current assignment, xi is set to its value, and we start evaluating the inner

fixpoint.

Otherwise, ps points at a subformula of φ. The transition from s mimics the appropriate clause

of Sat′0. The ψ component is not altered by any transition, and the a component is unchanged

unless otherwise stated.

• If ps points at P (τ), then s
a

−→ sa (‘a’ for atom), where sa is a special state with no structure,

only if P (τ) is true with variable assignment as; otherwise there are no transitions from s.

• If ps points at φ1 ∧ φ2, then s
c

−→ sk (‘c’ for conjunction) for k = 1, 2, where psk
points at

φk.

• If ps points at ∀zi. φ1, then s
c

−→ sk (universal quantification is treated as conjunction) for

k ∈ N, where psk
points at φ1, and ask

= as[k/zi].

• If ps points at φ1 ∨ φ2, then s
d

−→ sk (‘d’ for disjunction) for k = 1, 2, where psk
points at

φk.

• If ps points at ∃zi. φ1, then s
d

−→ sk (existential quantification is treated as disjunction) for

k ∈ N, where psk
points at φ1, and ask

= as[k/zi].

• If ps points at τ ∈ Xi, then s
xi−→ s′, where ps′ points after �Xi. , and as′ = as[eval(τ, as)/xi].

That is, the term τ is evaluated, copied to the input variable xi of the fixpoint Xi, and

evaluation of the fixpoint started.

It is clear that T is a recursively presented transition system.

Now consider the following modal mu-calculus formula:

MuSatn
def
= 〈xn〉µXn. 〈xn−1〉νXn−1. . . . 〈x1〉µX1. µW.

〈a〉tt ∨ (〈c〉tt ∧ [c]W) ∨ 〈d〉W

∨ 〈x1〉X1 ∨ . . . ∨ 〈xn〉Xn

By the construction of T , we have:

Theorem 52 s |= MuSatn just in case ps points at ψs, and Satn(�ψs�, as). Hence MuSatn is

a strict ΣSµ
n modal formula.

Proof. A fairly routine inductive proof. It’s a simplified version of the main theorem in my

TCS paper on the topic.

27

Draft { not for distribution

MuSatn is already quite a simple formula, but it is interesting to try to simplify it further,

which we shall do in stages.

Firstly, is it necessary to have the double occurrence of 〈xi〉, or can we remove the guards

from the fixpoint formulae? Yes, we can: consider the formula

MuSat′n
def
= µX ′

n. νX
′

n−1. . . . µX
′

1. µW.Ψ

where Ψ is formed from the body of MuSatn by priming the Xis. The relation between MuSatn

and MuSat′n is that X ′
n = . . . = X ′

1 = X1) (note that in MuSatn, we have X1 ⊇ X2 ∪ . . .∪Xn),

and conversely Xi = 〈xi〉X
′
i for i = n, . . . , 2. The denotation of MuSat′n is still a strict Σµ

n set,

since the denotation of MuSatn is a projection of it.

Next, the occurrence of 〈c〉tt is irritating. Its purpose is to assert that ps is indeed pointing at

an ∧-subterm of ψs—of course, [c]W is true at any state with no c-transitions from it. However,

we can render it unnecessary by modifying T : if s is any state other than an ∧-subterm state,

then add a transition s
c

−→ s. Since W is a least fixpoint variable, if W is true at a state with

a c-loop, it is true by virtue of some other disjunct than [c]W , and it is not true if it was not

true before the loop was added.

We can also eliminate the requirement for a separate a-transition, by modifying the mod-

ification: for all those states s with an a-transition, remove the c-loop added in the previous

paragraph; now [c]W is true at those states, so we can discard the 〈a〉tt clause.

Finally, we note that W = X ′
1, and they are adjacent least fixpoints, so we can amalgamate

them; further, the job of the d transition can as well be done by x1, since they work on disjoint

sets of states.

Hence we arrive at the following very simple example of a strict ΣSµ
n modal formula (re-

placing X ′ by X again):

MuSat′′n
def
= µXn. νXn−1. . . . µX1. [c]X1 ∨ 〈x1〉X1 ∨ . . . ∨ 〈xn〉Xn

8.3 ‘Real’ alternation.

Finally, let us return to the question of alternation in the modal mu-calculus, and how it should

be defined. The reason for questioning the utility of the simple definition is this: consider the

formula µX. (νY. P ∧ [a]Y) ∨ 〈b〉X. This is ΣSµ
2 , and not ΠSµ

2 , and so its simple alternation

depth is 2; but in terms of complexity, it’s no harder to compute than a formula with just

one fixpoint, because the inner fixpoint is entirely independent of the outer fixpoint: so it

‘should’ have alternation depth 1. On the other hand, µX. νY. (P ∧ [a]Y) ∨ 〈b〉X does have

an interdependence, and is hard to compute. Hence when the notion of alternation depth was

defined by the model-checking people, it was done like this:

Definition 53 The Emerson–Lei alternation classes and depth ΣELµ
n and adEL are defined as

in definition 48, with the addition of the following clause:

• if Φ(X) is ΣELµ
n with free variable X, and Ψ is ΣELµ

n , then Φ[Ψ/X] is ΣELµ
n provided that Ψ

is a closed formula.

This captures the idea that completely independent fixpoints shouldn’t count as alternation.

If you read papers on model-checking, when they talk about alternation depth, they usually

mean adEL. However, this notion is not really satisfactory. Here’s one reason: consider

Υ = µX1. νX2. µX3. . . . νXn−1. µXn. X1 ∨Xn.

28

Draft { not for distribution

This formula is strict ΣELµ
n , but it’s obviously not really complicated, since in fact the middle

fixpoints are irrelevant. Another reason is that it is often convenient to consider simultaneous

fixpoints, where one takes a vector of variables and a vector of defining equations, and takes

fixpoints simultaneously over all variables—and the Emerson–Lei definition is not robust when

one moves to such fixpoints.

A definition that addresses these problems is that of Niwiński. It works thus:

Definition 54 The Niwiński alternation classes and depth ΣNµ
n and adN are defined as in

definition 48, with the addition of the following clause:

• if Φ(X) is ΣNµ
n with free variable X, and Ψ is ΣNµ

n , then Φ[Ψ/X] is ΣELµ
n provided that no

free variable of Ψ is captured by a fixpoint operator of Φ.

Exercise 55 Show that adN(Υ) = 1.

Now it turns out that we can establish the hierarchy for the Niwiński classes as well.

Obviously any ΣSµ
n formula is also ΣNµ

n , so the hard formulae stay the same. To get the theorem,

we need the following:

Theorem 56 On an r.p.t.s., any ΣNµ
n formula has a denotation that is arithmetic Σµ

n.

Proof. The proof works by showing that the translation into arithmetic produces a formula

that can be put into Σµ
n. The details involve manipulation along the lines of the normal form

theorem, and can be found in the TCS paper.

That concludes our investigation of the modal mu-calculus alternation hierarchy.

Version Control: part1.tex:1.3; part2.tex:1.3; part3.tex:1.2; part4.tex:1.2; part5.tex:1.2; part6.tex:1.1; part7.tex:1.1.

29

