SAT is NP-complete
Suppose \((D, Q) \in \text{NP}\). We shall construct a reduction \(Q \leq^P \text{SAT}\).
Outline of proof:
Given an instance \(d \in D\), design a boolean formula \(\phi_d\) which can be satisfied if its variables describe the successful executions of an NRM checking \(Q\). The machine can be polynomially bounded, so the size of \(\phi_d\) is polynomial in the size of \(d\).
The rest is detail.

We have an instance \(d \in D\).
Since \((D, Q) \in \text{NP}\), there is a polynomially bounded NRM \(M = (R_0, \ldots, R_{m-1}, I_0, \ldots I_{n-1})\) ... with intended interpretations. ‘Intended’ because we will design \(\phi_d\) so that these interpretations do what we want.

Variable
Name Meaning How many?
\(C_{tj}\) program counter at step \(t\) is on \(I_j\) \(s \cdot n\)
\(R_{tik}\) \(k\)th bit of \(R_i\) at step \(t\) \(s \cdot m \cdot 2s\)

Formulas
Name Meaning How big?
\(\chi_{\text{one}}\) prog cntr in one place \(s \cdot n \cdot n\)
\(\chi_t\) step \(t + 1\) follows from step \(t\) ??
\(\rho_{\text{init}}\) initial register values ??
The formula \(\rho_{\text{init}} \land \chi_{\text{one}} \land \bigwedge_t \chi_t\) is then satisfied by assignments corresponding to valid executions of the machine.
The \(\chi_{\text{one}}\) formula is easy:
\[
\bigwedge_t \bigvee_j \left(C_{tj} \land \bigwedge_{j' \neq j} \neg C_{tj'} \right)
\]

more details
Coding \(\chi_t\) is a bit tedious . . . step \(t + 1\) follows from step \(t\) if the control flow is correct and if the registers have changed correctly.
For control flow: the formula is \(\bigvee_j (C_{tj} \land \nu_{ij})\), where \(\nu_{ij}\) is:
\[
\begin{align*}
C_{t+1,j+1} & \quad \text{if } I_j \text{ is INC, ADD or SUB} \\
C_{t+1,j+1} \lor C_{t+1,j'} & \quad \text{if } I_j \text{ is MAYBE}(j') \\
(\lor_k R_{tik}) \land C_{t+1,j+1} \lor ((\lor_k \neg R_{tik}) \land C_{t+1,j'}) & \quad \text{if } I_j \text{ is DEC}(i,j')
\end{align*}
\]
To code the register changes, we need to express the addition of \((2s)\)-bit numbers by boolean operations on the bits. See your hardware course!

Exercise: write the formula \(\rho_{\text{tik}}\) which says that at step \(t + 1\), the value of \(R_i\) is the sum of the values of \(R_i\) and \(R_j\) at step \(t\)
Despite the very tedious nature of these formulas, it’s clear that the whole thing is \(O(s^3)\) in length.
And so the theorem is proved.
More NP-complete problems

There are many hundreds of natural problems that are NP-complete. Look at the Wikipedia article ‘List of NP-complete problems’ for a range of examples, or Sipser for more details on a smaller range. Starting from SAT, we use reductions to build a library of NP-complete problems, for use in tackling new potential problems. Sometimes, the reductions from SAT (or other known problem) require considerable ingenuity. E.g., showing NP-completeness of HPP is quite tricky. We’ll do a couple of examples.

3SAT

There are special forms of SAT that turn out to be particularly handy. A literal is either a propositional variable P or the negation $\neg P$ of one. ϕ is in conjunctive normal form (CNF) if it is of the form $\bigwedge_i \bigvee_j p_{ij}$ where each p_{ij} is a literal. ϕ is in k-CNF if each clause $\bigvee_j p_{ij}$ has at most k literals. 3SAT is the problem of whether a satisfying assignment exists for a formula in 3-CNF. The reduction from unrestricted SAT to 3-SAT is also a bit tricky, mostly because normal boolean logic conversion to CNF introduces exponential blowup. The Tseitin encoding is used to produce a not equivalent but equisatisfiable CNF formula. We are paying a price here for having done Cook–Levin with RMs. The original version with TMs manages to produce a CNF formula describing machine executions. In fact, SAT is often defined to mean CNF-SAT.

CLIQUE

Given a graph $G = (V, E)$ and a number k, a k-clique is a k-sized subset C of V, such that every vertex in C has an edge to every other. (C forms a complete subgraph.) The CLIQUE problem is to decide whether G has a k-clique. The problem has applications in chemistry and biology (and of course sociology). It is NP-complete, by the following reduction from 3SAT: Let $\phi = \bigwedge_{1 \leq i \leq k} (x_{i1} \lor x_{i2} \lor x_{i3})$ be an instance of 3SAT, so each x_{ij} is a literal. Construct a graph thus: each x_{ij} is a vertex. Make an edge between x_{ij} and $x_{i'j'}$ just in case $i \neq i'$ and $x_{i'j'}$ is not the negation of x_{ij}. (I.e., we connect literals in different clauses just when they are not inconsistent with each other.) Since the vertices in one clause are disconnected, finding a k-clique amounts to finding one literal for each clause, such that they are all consistent – and so represent a satisfying assignment. Conversely, any satisfying assignment generates a k-clique.

P ≠ NP

We have said that NP-COMPLETE problems are effectively exponential. But do we know this? Is it possible that we’re just stupid, and there’s a PTIME algorithm for SAT? We don’t know.

It is possible that $NP = P$. If you find a polynomial algorithm for SAT or any other NP-complete problem . . . hire bodyguards, because most web/banking security depends on such problems being hard. Solving the problem is worth a million US dollars: it is one of the seven problems chosen by the Clay Institute for their Millennium Prizes. Many of the results in complexity theory are therefore conditional: ‘if $P \neq NP$, then very difficult theorem’. E.g. if $P \neq NP$, then there are problems that are neither P nor NP-complete. There are very few candidates: best known is the Graph Isomorphism Problem.
Handling NP

As far as we know, NP problems are just hard: need exponential search, so $O(poly(n) \cdot 2^n)$. So how do we solve them in practice? Huge industry ...

Randomized algorithms are often useful. Allow algorithms to toss a coin. Surprisingly one can get randomized algorithms that solve e.g. 3SAT in time $O(poly(n) \cdot 1.33^n)$ (Why is this useful? $2^{100} \approx 10^{31}$, while $1.33^{100} \approx 10^{12}$) Catch: (really) small probability of error!

In many special classes (e.g. sparse graphs, or almost-complete graphs), heuristics lead to fast results.

See http://satcompetition.org/ for the state of the art.

Beyond NP

So what do we know about hard problems?

As noted earlier, ExpTime is strictly harder than P or NP: a polynomially bounded machine simply doesn’t have time or memory to explore 2^n steps.

Formal proof via the Time Hierarchy Theorem.

Similarly 2-ExpTime \supseteq ExpTime.

Also applies to N versions.

The polynomial hierarchy

Recall the notion of oracle. Suppose we have an oracle for NP problems. What then can we compute?

The polynomial hierarchy is defined thus:

- Let $\Delta^0_P = \Sigma^0_P = \Pi^0_P = P$.
- Let $\Delta^P_{p+1} = P^{\Sigma^P_{p+1}}$, $\Sigma^P_{p+1} = NP^{\Sigma^P_{p+1}}$, $\Pi^P_{p+1} = co-NP^{\Sigma^P_{p+1}}$.

where $co-X$ is problems whose negation is in X.

So $\Sigma^P_1 = NP^P = NP$, and $\Sigma^P_2 = NP^{NP}$. Why is NP^{NP} not just NP?

This hierarchy could collapse at any level – generalization of $P = NP$.

We don’t know.

The whole hierarchy is inside $PSpace$.

Space-bounded machines

An RM/TM is $f(n)$-space-bounded if it may use only f (input size) space.

For TMs, space means cells on tape; for RMs, number of bits in registers.

$PSpace$ is the class of problems solvable by polynomially-space-bounded machines.

The following are obvious (Exercise: why?):

- $PSpace \supseteq PTime$
- $PSpace \supseteq NPTime$
- $PSpace \subseteq ExpTime$