
Introduction to Theoretical Computer Science
Coursework 2

Questions have varying numbers of marks. They are not necessarily of equal difficulty,
but I expect the entire coursework to take around 10–15 hours.
You are strongly recommended to do these exercises as the material is taught. The

exercises are designed to prompt the reading you should be doing after the lectures!
Submission boxes can be found on Learn. Formats other than PDF will not be

accepted, and will count as a non-submission.
You are welcome to typeset your answers, but you do not have to. Manucripts should

be scanned if possible, otherwise photographed carefully – you must submit work sized
for A4 paper.

1 Partial functions

When we defined computable functions, we were talking about standard mathematical
functions, which are by definition total.
A partial function f : N ⇀ N is a function N → N ∪ {⊥}, or equivalently a function

that may be undefined on some values (we write f(n) = ⊥, or sometimes f(n)↑).
A partial function f is computable iff there is a register machine which, given n in R0,

halts with f(n) in R0 whenever f(n) ̸= ⊥.

(a) Let Ĥ : N× N ⇀ N be the partial function given by

Ĥ(m,n) =


0 if m is not the code of any RM program P

1 if m = ⌜P⌝ for some P , and P halts on input n

⊥ otherwise

Show that Ĥ is computable. Deduce that it is undecidable whether a computable
partial function is total. [4 ]

(b) It is (easily) decidable whether a number n is the code ⌜P⌝ of a machine. Therefore
we can computably list machines in some order P0, P1, . . . , where ⌜P0⌝ is the first
valid code of a program, and so on.

Consider the partial function d : N ⇀ N given by

d(n) =

{
Pn(n) + 1 if Pn returns a result on input n

⊥ otherwise

Is d computable? Justify your answer. [2 ]

(c) Now suppose that f is a total function which agrees with d (i.e. f(n) = d(n))
wherever d is defined. Show that f is not computable. [4 ]

1



2 P, NP

(a) (Revision of big-O notation.) Which of the following are true:
n2 = O(n lg n); n lg n = O(n2); 3n = O(2n); 3n = 2O(n). [1 ]

(b) Suppose that X, Y are both decision problems over the same domain, and both in
P. Show that X ∪ Y , X ∩ Y and ¬X are also in P. [2 ]

(c) Suppose that L1, L2 are languages of strings over some finite alphabet, whose
decision problems are in NP. Let L = L1L2 = {x1x2 | x1 ∈ L1 and x2 ∈ L2 }.
Show that L ∈ NP. [2 ]

3 Reductions for NP-completeness

(a) EXACT-3SAT is a special case of 3SAT where every clause must have exactly
three literals. Prove that EXACT-3SAT is NP-complete. [3 ]

(b) If x1, . . . , xn are variable over the integers, then a 3-product is an expression
±(a1 − xi)(a2 − xj)(a3 − xk), where a1, a2, a3 are 0 or 1.

3PRODEQNS is the problem where an instance is variables x1, . . . , xn and a finite
number of 3-products over those variables, and the query is: is there an assignment
of (integer) values to the variables such that all the 3-products evaluate to zero?

Give a polynomial reduction from EXACT-3SAT to 3PRODEQNS. (Hint: because
the as are all in { 0, 1 }, it is enough to consider assignments where the xs are all
in { 0, 1 }.) [4 ]

(c) The independent set problem INDSET is the following: given a graph G and an
integer k, does G have a set I of k vertices such that no two vertices are joined by
an edge?

Show that INDSET is NP-complete. (Hint: We know CLIQUE is NP-complete.)
[4 ]

4 Untyped and simply typed lambda-calculus

(a) Evaluate the following expression as far as possible, showing your working. (Be
careful with different variables having the same name; if you are in doubt about
how to handle them, α-convert them to be different before you reduce.) After you
have evaluated as far as possible in our standard call-by-name strategy, you may
also wish to do some internal β-reductions to ‘optimize’ the result.

(λm.λn.λf.λx.mf(nfx))(λf.λx.fx)(λf.λx.f(fx))

Does this suggest anything to you? [4 ]

2



(b) Consider the following expression Y ′ given by

Y ′ def
= λF.(λX.XX)(λX.F (XX))

Show that Y ′G = G(Y G) (where Y is the combinator from lectures).

Show that Y ′ reduces to Y by an internal β-reduction. [3 ]

(c) Give a formal derivation for the type of the simply typed expression

λf :nat → nat.λx:nat.f(fx)

[4 ]

(d) Consider the original untyped expression from part (a). Assign simple types to
the variables so as to make the expression well typed. (Hint: start by giving the
variables x the base type o.) [3 ]

3


