
Introduction to Theoretical Computer Science
Coursework 1

due 12:00 on Friday 27th October 2023

All questions except for question 3 are written questions. If you wish, you may typeset
your answers, but you may also submit clean scans of manuscript. The mechanism for
electronic submission will be announced by a week before the hand-in date.
This coursework is formative, and no marks will be assigned.

1 Regular languages

Recall that in lectures we showed that the class of regular languages was closed under
union, sequential composition, and Kleene closure.

(a) The complement of a language L, written L, is every string not in L, i.e. Σ∗ \ L.
Show that the regular languages are closed under complement.

(b) Hence or otherwise, show that the regular languages are closed under intersection.
The intersection of two languages L1 ∩ L2 is the set of all strings that are in both
L1 and L2, that is {w | w ∈ L1 ∧ w ∈ L2}.

(c) An all-NFA is a variant of an NFA where a string w is only accepted if all states
reached on word w are final, i.e. δ∗(q0, w) ⊆ F . Show that there is an all-NFA
that recognises a language if and only if it is regular.

(d) Prove that L = {0n1m2m−n | m ≥ n ≥ 0} is not regular. You may use any
of the three methods used in lectures: the Pumping Lemma, the Myhill-Nerode
theorem, or using (or proving) closure properties of the regular languages to reduce
the problem to a known non-regular language. As an extension exercise, you may
wish to try multiple methods.

1

2 Context-free languages

Consider the CFG G:
S → aS | aSbS | ε

(a) Informally characterise L(G).

(b) Show that it is ambiguous by finding a string for which you can construct two
parse trees and two leftmost derivations.

(c) Find an unambiguous grammar for L(G).

(d) Give a push-down automaton that recognises L(G).

(e) Some w ∈ {a, b}∗ have unique parse trees in G. What are those strings w? Give
an efficent test to tell whether w has this property. The test “try all parse trees
to see how many yield w” is not adequately efficient.

2

3 Implementing Register Machines

This question has two parts:

(a) Implement a simulator for register machines. You may use the language of your
choice, provided that the specification is met. A scripting language such as Perl
or Python will probably be quickest.

(b) Write a Register Machine program to compute squares.

The remainder of this text gives the necessary information for the two parts.

3.1 Program behaviour specification

The executable program should be called rmsim. When executed, it should read a
machine specification (as below) on standard input, and then print the final register
contents. Optionally, if given the -t command-line flag, it should print a trace of the
execution of the machine. PLEASE NOTE: you must submit an executable program
called rmsim. Before submitting, check that the following command:
echo registers 1 | ./rmsim

gives the output
registers 1

3.2 Input syntax

In the following BNF-style specification, literal characters are in ‘typewriter’ in quotes,
SP means a sequence of one or more space or tab characters, NL means a newline
character (i.e. ASCII linefeed), number means a sequence of digits, and identifier means a
sequence of letters and digits starting with a letter. The input is case-sensitive. (), ?, ∗,+
have their usual regexp meanings.

input := regSpec NL program

regSpec := ‘registers’ (SP number)∗
program := (labInst NL)∗
labInst := (label SP? ‘:’)? SP? inst

label := identifier

inst := ‘inc’ SP register

| ‘decjz’ SP register SP label

register := ‘r’ number

In addition, to allow comments in programs, your program should ignore completely
any line beginning with #.

Question continues

3

3.3 Input semantics

The registers line gives the initial values of the registers, in order from register zero
up. Any other registers used by the program should be initialized with zero.
The remaining lines are the program, with lines implicitly numbered from zero. The

optional identifier: at the start of a line is a line label. It is an error to define the same
label twice, or for a program to use an undefined label, except for the special identifier
HALT, which causes a halt if branched to. The instructions are as in the lectures, where
rn means register n. (Errors may be detected at ‘compile time’, or at ‘run time’, as you
prefer.)

3.4 Output syntax

The output should say
registers

followed (on the same line) by the space-separated values of the registers, from register
zero up to the highest register used (including any (implicitly zero) intervening registers
that are not used or mentioned).
Your program should produce no other output to standard output (unless -t is given);

you are free to print anything you like to standard error.
The syntax of the tracing output is not defined; use whatever you think looks most

useful.

3.5 Example

The following input

registers 10 5

loop: decjz r1 HALT

decjz r0 HALT

decjz r2 loop

should produce the output
registers 5 0 0

3.6 A program

Once you are happy with your simulator, write an RM program to compute the
square of a number. Write the program in the file square.r. This program should not
contain an initial registers line; it should expect to find its input x in r0, and it should
leave the answer x2 in r0.

3.7 Submission

For this question, you should tar up your program executable (an executable or script
that runs on DICE), and your program source (if not using a script), together with

4

a README file if you have any comments you wish to make (including compilation in-
structions if you are not using an interpreted language), and your square.r into a file
rmsim.tar, and submit this file. The mechanism for submission will be announced by
a week before the hand-in date.

3.8 Optional extension

If you enjoy this sort of thing, and have time to spare, design and implement a macro
facility along the lines of the one we used informally in lectures. Discuss any design
decisions that we skated over in lectures.

5

In these questions, your answers should give convincing proofs at a high level, such as
used on the lecture slides; you do not have to give detailed formal encodings of machines.

4 Reductions for undecidability

In lectures, we considered the Halting Problem H, the Looping Problem L, and the
Uniform Halting Problem UH . Now we consider the Universal Looping problem UL:
given a machine M , does M loop on all inputs R?

(a) Show, by reduction from L, that UL is undecidable.

(b) Show, by constructing a suitable machine, that UL is co-semi-decidable. (Hint:
interleaving.)

We often (always?) want to know whether a program, or even just a function/method
in a program, correctly implements its specification. Can we write programs to find this
out?
Recall that we say a machine computes a function f if, when started with n in R0, it

halts with f(n) in R0.
Take f to be the factorial function f(n) = n!.
Let the decision problem Fac be the (codes of) the register machines that compute f .

(c) Construct a reduction from H to Fac, and so show that Fac is undecidable.

Hint: you need to start with an arbitrary program, for which we want to know
whether it halts, and end up with an ‘is it a factorial function?’ problem. Probably
you won’t much care what the arbitrary program actually computes . . .

Thus we can’t write programs to check that other programs do anything interesting at
all! (There was nothing very special about the factorial function.) Remember to show
that your reduction is a reduction, according to the definition in lectures.

6

