Information Theory	Jensen's inequality	Remembering Jensen's
http://www.inf.ed.ac.uk/teaching/courses/it/	For convex functions: $\mathbb{E}[f(x)] \ge f(\mathbb{E}[x])$	The inequality is reversed for concave functions.
Week 4 Compressing streams	Centre of gravity	Which way around is the inequality? I draw a picture in the margin. Alternatively, try 'proof by example':
lain Murray, 2014	Centre of gravity at $(\mathbb{E}[x], \mathbb{E}[f(x)])$, which is above $(\mathbb{E}[x], f(\mathbb{E}[x]))$ Strictly convex functions:	$f(x) = x^2$ is a convex function $\operatorname{var}[X] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 \ge 0$
School of Informatics, University of Edinburgh	Equality only if $P(x)$ puts all mass on one value	So Jensen's must be: $\mathbb{E}[f(x)] \ge f(\mathbb{E}[x])$ for convex f .
Jensen's: Entropy & Perplexity	Proving Gibbs' inequality	Huffman code worst case
Set $u(x) = \frac{1}{p(x)}$, $p(u(x)) = p(x)$ $\mathbb{E}[u] = \mathbb{E}[\frac{1}{p(x)}] = \mathcal{A} $ (Tutorial 1 question)	Idea: use Jensen's inequality For the idea to work, the proof must look like this: $D_{\mathrm{KL}}(p \mid\mid q) = \sum p_i \log \frac{p_i}{q} = \mathbb{E}[f(u)] \ge f(\mathbb{E}[u])$	Previously saw: simple simple code $\ell_i = \lceil \log 1/p_i \rceil$ Always compresses with $\mathbb{E}[\text{length}] < H(X)+1$ Huffman code can be this bad too:
$H(X) = \mathbb{E}[\log u(x)] \le \log \mathbb{E}[u]$		For $\mathcal{P}_X = \{1 - \epsilon, \epsilon\}, H(x) \to 0 \text{ as } \epsilon \to 0$
$\begin{array}{l} H(X) \leq \log \mathcal{A} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Define $u_i = \frac{q_i}{p_i}$, with $p(u_i) = p_i$, giving $\mathbb{E}[u] = 1$ Identify $f(x) \equiv \log 1/x = -\log x$, a convex function	Encoding symbols independently means $\mathbb{E}[\text{length}] = 1$. Relative encoding length: $\mathbb{E}[\text{length}]/H(X) \to \infty$ (!)
$2^{H(X)}$ = "Perplexity" = "Effective number of choices" Maximum effective number of choices is $ \mathcal{A} $	Substituting gives: $D_{\mathrm{KL}}(p q)\geq 0$	Question: can we fix the problem by encoding blocks? $H(X)$ is $\log(\text{effective number of choices})$ With many typical symbols the "+1" looks small
Reminder on Relative Entropy and symbol codes: The Relative Entropy (AKA Kullback–Leibler or KL divergence) gives the expected extra number of bits per symbol needed to encode a source when a complete symbol code uses implicit probabilities $q_i = 2^{-\ell_i}$ instead of the true probabilities p_i . We have been assuming symbols are generated i.i.d. with known probabilities p_i . Where would we get the probabilities p_i from if, say, we were compressing text? A simple idea is to read in a large text file and record the empirical fraction of times each character is used. Using these probabilities the next slide (from MacKay's book) gives a Huffman code for English text. The Huffman code uses 4.15 bits/symbol, whereas $H(X) = 4.11$ bits. Encoding blocks might close the narrow gap. More importantly English characters are not drawn independently encoding blocks could be a better model.	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Bigram statistics Previous slide: $A_X = \{a - z, _\}, H(X) = 4.11 \text{ bits}$ Question: I decide to encode bigrams of English text: $A_{X'} = \{aa, ab,, az, a,, _\}$ What is $H(X')$ for this new ensemble? A ~ 2 bits B ~ 4 bits C ~ 7 bits D ~ 8 bits E ~ 16 bits Z ?

Answering the previous vague question	Human predictions	Predictions
We didn't completely define the ensemble: what are the probabilities? We could draw characters independently using p_i 's found before. Then a bigram is just two draws from X, often written X^2 . $H(X^2) = 2H(X) = 8.22$ bits We could draw pairs of adjacent characters from English text. When predicting such a pair, how many effective choices do we have? More than when we had $\mathcal{A}_X = \{\mathbf{a}-\mathbf{z}, -\}$: we have to pick the first character and another character. But the second choice is easier. We expect $H(X) < H(X') < 2H(X)$. Maybe 7 bits? Looking at a large text file the actual answer is about 7.6 bits. This is ≈ 3.8 bits/character — better compression than before. Shannon (1948) estimated about 2 bits/character for English text. Shannon (1951) estimated about 1 bits/character for English text. Compression performance results from the quality of a probabilistic model and the compressor that uses it.	Ask people to guess letters in a newspaper headline: $k \cdot i \cdot d \cdot s \cdot _m \cdot a \cdot k \cdot e \cdot _m \cdot u \cdot t \cdot r \cdot i \cdot t \cdot i \cdot o \cdot u \cdot s \cdot _s \cdot n \cdot a \cdot c \cdot k \cdot s$ $_{11} \cdot 4 \cdot 2 \cdot 1 \cdot 1 \cdot 4 \cdot 2 \cdot 4 \cdot 1 \cdot 1_{16} \cdot 5 \cdot 1 \cdot 2 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 2 \cdot 1 \cdot 1_{16} \cdot 7 \cdot 1 \cdot 1 \cdot 1 \cdot 1$ Numbers show $\#$ guess required by 2010 class \Rightarrow "effective number of choices" or entropy varies <i>hugely</i> We need to be able to use a different probability distribution for every context Sometimes many letters in a row can be predicted at minimal cost: need to be able to use < 1 bit/character. (MacKay Chapter 6 describes how numbers like those above could be used to encode strings.)	nutritious s Advanced Search Language Tools nutritious soups Advanced Search Language Tools nutritious soups nutritious soups nutritious soup recipes nutritious salads nutritious snacks for children m nutritious school lunches nutritious solad recipes nutritious sol dar lecipes nutritious solt foods Google Search I'm Feeling Lucky
Cliché Predictions	A more boring prediction game	Product rule / Chain rule
kids make n Atomced Search kids make nutritious snacks Atomced Search Google Search Im Feeling Lucky Advertising Programmes Business Solutions About Google Go to Google com	"I have a binary string with bits that were drawn i.i.d Predict away!" What fraction of people, f , guess next bit is '1'? Bit: 1 1 1 1 1 1 1 1 $f: \approx 1/2 \approx 1/2 \approx 1/2 \approx 2/3 \ldots \ldots \approx 1$ The source was genuinely i.i.d.: each bit was independent of past bits. We, not knowing the underlying flip probability, learn from experience. Our predictions depend on the past. So should our compression systems.	P(A, B H) = P(A H) P(B A, H) = P(B H) P(A B, H) = $P(A H) P(B H)$ iff independent $P(A, B, C, D, E) = P(A) \underbrace{P(B, C, D, E A)}_{P(B A)} \underbrace{P(C, D, E A, B)}_{P(C, D, E A, B, C)}$ $P(C A, B) \underbrace{P(D, E A, B, C)}_{P(D A, B, C) P(E A, B, C, D)}$ $P(\mathbf{x}) = P(x_1) \prod_{d=2}^{D} P(x_d \mathbf{x}_{$
Revision of the product rule: An identity like $P(A, B) = P(A) P(A B)$, is true for any variables or collections of variables A and B . You can be explicit about the current situation, by conditioning every term on any other collection of variables: $P(A, B H) = P(A H) P(B A, H)$. You can also swap A and B throughout, as these are arbitrary labels. The second block of equations shows repeated application of the product rule. Each time different groups of variables are chosen to be the 'A', 'B' and 'H' in the identity above. The multivariate distribution is factored into a product of one-dimensional probability distributions (highlighted in blue). The final line shows the same idea, applied to a D -dimensional vector $\mathbf{x} = [x_1, x_2, \dots x_D]^{T}$. This equation is true for the distribution of any vector. In some probabilistic models we choose to drop some of the high-dimensional dependencies $\mathbf{x}_{ in each term. For example, if \mathbf{x}contains a time series and we believe only recent history affects whatwill happen next.$	Arithmetic Coding For better diagrams and more detail, see MacKay Ch. 6 Consider all possible strings in alphabetical order (If infinities scare you, all strings up to some maximum length) Example: $A_X = \{a, b, c, \boxtimes\}$ Where '\Box' is a special End-of-File marker. $B_{A, aa} = \{a, b, c, B_{A, b}, \dots, ac_{A, b}, \dots, b_{A, b}, \dots, bb_{A, b}, \dots, bc_{A, b}, \dots$	Arithmetic CodingWe give all the strings a binary codewordHuffman merged leaves — but we have too many to do thatCreate a tree of strings 'top-down':

AC and sparse files	Non-binary encoding	Dasher
Finally we have a practical coding algorithm for sparse files $p(x) = \begin{cases} f & x = 1 \\ 1 - f & x = 0 \\ y = 0 \\ $	Can overlay string on any other indexing of [0,1] line $ \frac{\kappa}{\beta} \frac{\kappa}{\beta} \frac{\kappa}{\beta} \frac{\beta}{\beta} \frac{\beta}{\beta} \frac{\beta}{\beta} \frac{\beta}{\beta} $ Now know how to compress into α , β and γ	Dasher is an information-efficient text-entry interface. Use the same string tree. Gestures specify which one we want.
		w w
The initial code-bit 0, encodes many initial message 0's.		n i ^{al_} of
Notice how the first binary code bits will locate the first 1. Something like run-length encoding has dropped out.		this_is_a_demo http://www.inference.phy.cam.ac.uk/dasher/