
Information Theory
http://www.inf.ed.ac.uk/teaching/courses/it/

Week 2
Information and Entropy

Iain Murray, 2013

School of Informatics, University of Edinburgh

Central Limit theorem

The sum or mean of independent variables with bounded

mean and variance tends to a Gaussian (normal) distribution.

0 1 2 3

0

1

2

3

4

5
x 10

4

sum of 3 uniforms

0 10 20

0

2

4

6

8
x 10

4

sum of 20 uniforms

N=1e6; hist(sum(rand(3,N),1)); hist(sum(rand(20,N),1));

There are a few forms of the Central Limit Theorem (CLT), we are

just noting a vague statement as we won’t make extensive use of it.

CLT behaviour can occur unreasonably quickly when the

assumptions hold. Some old random-number libraries used to use the

following method for generating a sample from a unit-variance,

zero-mean Gaussian: a) generate 12 samples uniformly between zero

and one; b) add them up and subtract 6. It isn’t that far off!

Data from a natural source will usually not be Gaussian.

The next slide gives examples. Reasons: extreme outliers often occur;

there may be lots of strongly dependent variables underlying the data;

there may be mixtures of small numbers of effects with very different

means or variances.

An example random variable with unbounded mean is given

by the payout of the game in the St. Petersburg Paradox. A fair coin

is tossed repeatedly until it comes up tails. The game pays out 2#heads

pounds. How much would you pay to play? The ‘expected’ payout is

infinite: 1/2×1 + 1/4×2 + 1/8×4 + 1/16×8 + . . . = 1/2 + 1/2 + 1/2 + 1/2 + . . .

Gaussians are not the only fruit

xx = importdata(’Holst - Mars.wav’);

hist(double(xx(:)), 400);

−1 0 1
0

0.5

1

1.5

2

2.5
x 10

6

0 100 200 300
0

1

2

3

4

5

6
x 10

4

xx = importdata(’forum.jpg’);

hist(xx(:), 50);

How many 1’s will we see?

How many 1’s will we see? P (k) =
(
N
k

)
pk(1− p)N−k

Gaussian fit (dashed lines):

P (k) ≈ 1√
2πσ2

exp
(
− 1

2σ2
(k−µ)2

)
, µ=Np, σ2 =Np(1−p)

(Binomial mean and variance, MacKay p1)

100 500 1000
0

0.02

0.04

0.06

k = Number of 1’s

P
(k

)

100 500 1000
−2000

−1000

0

k = Number of 1’s

lo
g

1
0
 P

(k
)

The log-probability plot on the previous slide illustrates how one must

be careful with the Central Limit Theorem. Even though the

assumptions hold, convergence of the tails is very slow. (The theory

gives only “convergence in distribution” which makes weak statements

out there.) While k, the number of ones, closely follows a Gaussian

near the mean, we can’t use the Gaussian to make precise statements

about the tails.

All that we will use for now is that the mass in the tails further out

than a few standard deviations (a few σ) will be small. This is correct,

we just can’t guarantee that the probability will be quite as small as if

the whole distribution actually were Gaussian.

Chebyshev’s inequality (MacKay p82, Wikipedia, . . .) tells us that:

P (|k − µ| ≥ mσ) ≤ 1
m2,

a loose bound which will be good enough for what follows.

The fact that as N →∞ all of the probability mass becomes close to

the mean is referred to as the law of large numbers.

A weighing problem

Find 1 odd ball out of 12

You have a two-pan balance with three outputs:

“left-pan heavier”, “right-pan heavier”, or “pans equal”

How many weighings do you need to find the odd ball and

decide whether it is heavier or lighter?

Unclear? See p66 of MacKay’s book, but do not look at his answer until

you have had a serious attempt to solve it.

Are you sure your answer is right? Can you prove it?

Can you prove it without an extensive search of the solution space?

Weighing problem: bounds

Find 1 odd ball out of 12 with a two-pan balance

There are 24 hypothesis:

ball 1 heavier, ball 1 lighter, ball 2 heavier, . . .

For K weighings, there are at most 3K outcomes:

(left, balance, right), (right, right, left), . . .

32 =9 ⇒ 2 weighings not enough

33 =27 ⇒ 3 weighings might be enough

Analogy: sorting (review?)

How much does it cost to sort n items?

There are 2C outcomes of C binary comparisons

There are n! orderings of the items

To pick out the correct ordering must have:

C log 2 ≥ log n! ⇒ C ≥ O(n log n) (Stirling’s series)

Radix sort is “O(n)”, gets more information from the items

Weighing problem: strategy

Find 1 odd ball out of 12 with a two-pan balance

Probability of an outcome is: # hypotheses compatible with outcome
hypotheses

Experiment Left Right Balance

1 vs. 1 2/24 2/24 20/24

2 vs. 2 4/24 4/24 16/24

3 vs. 3 6/24 6/24 12/24

4 vs. 4 8/24 8/24 8/24

5 vs. 5 10/24 10/24 4/24

6 vs. 6 12/24 12/24 0/24

Weighing problem: strategy

8 hypotheses remain. Find a second weighing where:

3 hypotheses ⇒ left pan down

3 hypotheses ⇒ right pan down

2 hypotheses ⇒ balance

It turns out we can always identify one hypothesis with a

third weighing (p69 MacKay for details)

Intuition: outcomes with even probability distributions seem

informative — useful to identify the correct hypothesis

Measuring information

As we read a file, or do experiments, we get information

Very probable outcomes are not informative:
⇒ Information is zero if P (x)=1

⇒ Information increases with 1/P (x)

Information of two independent outcomes add

⇒ f
(

1
P (x)P (y)

)
= f

(
1

P (x)

)
+ f

(
1

P (y)

)

Shannon information content: h(x) = log 1
P (x) = − logP (x)

The base of the logarithm scales the information content:

base 2: bits

base e: nats

base 10: bans (used at Bletchley park: MacKay, p265)

log 1
P is the only ‘natural’ measure of information based on

probability alone. Derivation non-examinable.

Assume: f(ab) = f(a) + f(b); f(1) = 0; f smoothly increases

f(a(1 + ε)) = f(a) + f(1 + ε)

Take limit ε→ 0 on both sides:

f(a) + aεf ′(a) = f(a) +
��

��
��*0

f(1) + εf ′(1)

⇒ f ′(a) = f ′(1)
1

a∫ x

1

f ′(a) da = f ′(1)

∫ x

1

1

a
da

f(x) = f ′(1) lnx

Define b = e1/f
′(1), which must be >1 as f is increasing.

f(x) = logb x

We can choose to measure information in any base (>1), as the base

is not determined by our assumptions.

Foundations of probability (very non-examinable)

The main step justifying information resulted from P (a, b) = P (a)P (b)

for independent events. Where did that come from?

There are various formulations of probability. Kolmogorov provided a

measure-theoretic formalization for frequencies of events.

Cox (1946) provided a very readable rationalization for using the

standard rules of probability to express beliefs and to incorporate

knowledge: http://dx.doi.org/10.1119/1.1990764

There’s some (I believe misguided) arguing about the details. A

sensible response to some of these has been given by Van Horn (2003)

http://dx.doi.org/10.1016/S0888-613X(03)00051-3

Ultimately for both information and probability, the main justification

for using them is that they have proven to be hugely useful. While one

can argue forever about choices of axioms, I don’t believe that there

are other compelling formalisms to be had for dealing with

uncertainty and information.

Information content vs. storage

A ‘bit’ is a symbol that takes on two values.

The ‘bit’ is also a unit of information content.

Numbers in 0–63, e.g. 47=101111, need log2 64 = 6 bits

If numbers 0–63 are equally probable, being told the

number has information content − log 1
64 = 6 bits

The binary digits are the answers to six questions:
1: is x ≥ 32?

2: is x mod 32 ≥ 16?

3: is x mod 16 ≥ 8?

4: is x mod 8 ≥ 4?

5: is x mod 4 ≥ 2?

6: is x mod 2 = 1?

Each question has information content − log 1
2 = 1 bit

Fractional information
A dull guessing game: (submarine, MacKay p71)

Q. Is the number 36?
A. a1 = No.

h(a1) = log 1
P (x 6=36) = log 64

63 = 0.0227 bits Remember: log2 x =
lnx

ln 2

Q. Is the number 42?
A. a2 = No.

h(a2) = log 1
P (x 6=42 | x 6=36) = log 63

62 = 0.0231 bits

Q. Is the number 47?
A. a3 = Yes.

h(a3) = log 1
P (x=47 | x 6=42,x6=36) = log 62

1 = 5.9542 bits

Total information: 5.9542 + 0.0231 + 0.0227 = 6 bits

Entropy

Improbable events are very informative, but don’t happen

very often! How much information can we expect?

Discrete sources:
Ensemble: X = (x,AX,PX)

Outcome: x ∈ Ax, p(x=ai) = pi
Alphabet: AX = {a1, a2, . . . , ai, . . . aI}

Probabilities: PX = {p1, p2, . . . , pi, . . . pI}, pi>0,
∑
i pi = 1

Information content:
h(x=ai) = log 1

pi
, h(x) = log 1

P (x)

Entropy:
H(X) =

∑
i pi log 1

pi
= EPX[h(x)]

average information content of source, also “the uncertainty of X”

Binary Entropy

Entropy of Bernoulli variable:

H(X) = H2(p) = p1 log 1
p1

+ p2 log 1
p2

= −p log p− (1−p) log(1−p)

0 0.5 1
0

2

4

6

8

lo
g
 1

/p
p

0 0.5 1
0

0.5

1

p
 l
o
g
 1

/p

p

0 0.5 1
0

0.5

1

H
2
(p

)

p

Plots take logs base 2. We define 0 log 0 = 0

Distribution of Information

Extended Ensemble XN : N independent draws from X

x a length-N vector containing a draw from XN

Bernoulli example: N = 103, p = 0.1, H(X) = 0.47 bits

0 1000 2000 3000

Information Content, h(x) / bits

P
(h

(x
))

The information content of each element, h(xn), is a random variable.

This variable has mean H(X), and some finite variance σ2.

Mean and width of the curve: The total information content of a

block: h(x) =
∑
n h(xn) is another random variable with mean

NH(X), shown in red, and variance Nσ2 or standard deviation
√
Nσ.

(All of the above is true for general extended ensembles, not just

binary streams.)

The range of the plot: The block with maximum information

content is the most surprising, or least probable block. In the

Bernoulli example with p=0.1, ‘1111...111’ is most surprising, with

h(x)=Nh(1)=N log 1
0.1. Similarly the least informative block, is the

most probable. In the example Nh(0)=N log 1
0.9. Remember to take

logs base 2 to obtain an answer in bits. Neither of these blocks will

ever be seen in practice, even though 0000...000 is the most

probable block.

Only blocks with information contents close to the mean are ‘typical’.

Define the typical set, T , to be all blocks with information contents

a few standard deviations away from the mean:

h(x) ∈ [NH−mσ
√
N,NH+mσ

√
N] for some m > 0.

(Actually a family of typical sets for different choices of m.)

We only need to count the typical set: Chebyshev’s inequality

(see MacKay p82, Wikipedia, . . .) bounds the probability that we

land outside the typical set.

P (|h(x)−NH| ≥ mσ
√
N) ≤ 1

m2

We can pick m so that the typical set is so large that the probability

of landing outside it is negligible. Then we can compress almost every

file we see into a number of bits that can index the typical set.

How big is the typical set? Number of elements: |T |
Probability of landing in set ≤ 1

Probability of landing in set ≥ |T |pmin, where pmin = minx∈T p(x)

Therefore, |T | < 1
pmin

Block with smallest probability pmin has information NH +mσ
√
N .

pmin = 2−NH−mσ
√
N

|T | < 2NH+mσ
√
N

Number of bits to index typical set is NH +mσ
√
N .

Dividing by the block length, N we see we need:

H +mσ/
√
N bits/symbol, → H as N →∞

For any choice m, in the limit of large blocks, we can encode

the typical set (and for large enough m, any file we will see

in practice) with H(X) bits/symbol.

Can we do better?

Motivation: The above result put a loose bound on the probability of

being outside T , so we might have made it bigger than necessary.

Then we put a loose bound on the number of items, so we assumed it

was even bigger than that. Maybe we could use many fewer bits per

symbol than we calculated? (Amazingly, the answer is that we can’t.)

We assume there is a smaller useful set S, which we could encode with

only (1−ε)H bits/symbol. For example, if ε=0.01 we would be trying

to get a 1% saving in the number of bits for strings in this set.

The size of S is |S| = 2N(1−ε)H

Some of S will overlap with T , and some might be outside. But we

know that the total probability outside of T is negligible (for large m).

The probability mass of elements inside T is less than |S|pmax, where

pmax is the probability of the largest probability element of T .

pmax = 2−NH+mσ
√
N

p(x ∈ S) ≤ |S|pmax + tail mass outside T

p(x ∈ S) ≤ 2N(−εH+mσ/
√
N) + tail mass outside T

As N →∞ the probability of getting a block in S tends to zero for

any m. The smaller set is useless.

At least H bits/symbol are required to encode an extended ensemble.

On average, no compressor can use fewer than H bits per

symbol (applied to length-N blocks, it wouldn’t be using enough bits)

Where now?

A block of variables can be compressed into
H(X) bits/symbol, but no less

Where do we get the probabilities from?

How do we actually compress the files?
We can’t explicitly list 2NH items!

Can we avoid using enormous blocks?

Numerics note: log
∑

i exp(xi)

(
N

k

)
blows up for large N, k; we evaluate lN,k = ln

(
N
k

)

Common problem: want to find a sum, like
t∑

k=0

(
N
k

)

Actually we want its log:

ln

t∑

k=0

exp(lN,k) = lmax + ln

t∑

k=0

exp(lN,k − lmax)

To make it work, set lmax = max
k

lN,k. logsumexp functions are frequently used

I needed this trick when numerically exploring block codes:

For a range of t we needed to sum up: a) the number of strings with

k = 0..t; and b) the probability mass associated with those strings.

The log of the number of strings says how many bits, C1 was needed

to index them. If the probability mass is close to one, that will also be

close to the expected length needed to encode random strings.

For both sums we need the log of the sum of some terms, where each

term is available in log form. The next slide demonstrates this for

problem a), but the technique readily applies to problem b) too.

The bumps are very well behaved: to what extent can we assume

they are Gaussian due to central limit arguments?

