Information Theory — Tutorial 4

Iain Murray

October 21, 2013

1. Review: are there any previous tutorial exercises, or parts of the notes, that you would have trouble explaining to another MSc student? If so, please ask specific questions on NB, attached to the relevant tutorial answers, or notes. Ideally do this task before the day of your tutorial so we can discuss any good questions.
2. Inference and prediction: Solve MacKay Ex 3.1 (p47) and work out the probability that the next outcome is a 1 , given the sequence that you have observed. If you needed to look at the answer or otherwise needed help, also do Ex 3.2.
3. Past exam question: A set of positive values $\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$ has arithmetic mean A, and geometric mean G, where by definition:

$$
A=\frac{1}{N} \sum_{n=1}^{N} x_{n}, \quad \text { and } \quad G=\exp \left(\frac{1}{N} \sum_{n=1}^{N} \log _{e} x_{n}\right) .
$$

Prove that, for all sets of positive values, either $G \leq A$ or $G \geq A$. State for which sets the geometric mean is equal to the arithmetic mean.
Hint: you may wish to rewrite the geometric mean as a function of an expectation.
If you have trouble getting started, solve MacKay Ex 2.25 (p37), which we already looked at in class.
4. More inference and prediction: MacKay Ex. 3.12 and Ex. 3.14, p58.

