
Information Theory
http://www.inf.ed.ac.uk/teaching/courses/it/

Week 1
Introduction to Information Theory

Iain Murray, 2012

School of Informatics, University of Edinburgh

Course structure

Constituents:
— ∼17 lectures

— Tutorials starting in week 3

— 1 assignment (20% marks)

Website:
http://tinyurl.com/itmsc

http://www.inf.ed.ac.uk/teaching/courses/it/

Notes, assignments, tutorial material, news (optional RSS feed)

Prerequisites: some maths, some programming ability

Maths background: This is a theoretical course so some general

mathematical ability is essential. Be very familiar with logarithms,

mathematical notation (such as sums) and some calculus.

Probabilities are used extensively: Random variables;

expectation; Bernoulli, Binomial and Gaussian distributions; joint and

conditional probabilities. There will be some review, but expect to

work hard if you don’t have the background.

Programming background: by the end of the course you are

expected to be able to implement algorithms involving probability

distributions over many variables. However, I am not going to teach

you a programming language. I can discuss programming issues in the

tutorials. I won’t mark code, only its output, so you are free to pick a

language. Pick one that’s quick and easy to use.

The scope of this course is to understand the applicability and

properties of methods. Programming will be exploratory: slow,

high-level but clear code is fine. We will not be writing the final

optimized code to sit on a hard-disk controller!

Resources / Acknowledgements

Recommended course text book

Inexpensive for a hardback textbook
(Stocked in Blackwells, Amazon currently cheaper)

Also free online:
http://www.inference.phy.cam.ac.uk/mackay/itila/

Those preferring a theorem-lemma style book could check out:

Elements of information theory, Cover and Thomas

I made use of course notes by MacKay and from CSC310 at the

University of Toronto (Radford Neal, 2004; Sam Roweis, 2006)



Communicating with noise

Signal

Attenuate

Add noise

Boost

5 cycles

100 cycles

Consider sending an audio signal by amplitude modulation: the

desired speaker-cone position is the height of the signal. The figure

shows an encoding of a pure tone.

A classical problem with this type of communication channel is

attenuation: the amplitude of the signal decays over time. (The

details of this in a real system could be messy.) Assuming we could

regularly boost the signal, we would also amplify any noise that has

been added to the signal. After several cycles of attenuation, noise

addition and amplification, corruption can be severe.

A variety of analogue encodings are possible, but whatever is used, no

‘boosting’ process can ever return a corrupted signal exactly to its

original form. In digital communication the sent message comes from

a discrete set. If the message is corrupted we can ‘round’ to the

nearest discrete message. It is possible, but not guaranteed, we’ll

restore the message to exactly the one sent.

Digital communication

Encoding: amplitude modulation not only choice.

Can re-represent messages to improve signal-to-noise ratio

Digital encodings: signal takes on discrete values

Signal

Corrupted

Recovered

Communication channels

modem → phone line → modem

Galileo → radio waves → Earth

finger tips → nerves → brain

parent cell → daughter cells

computer memory → disk drive → computer memory



The challenge

Real channels are error prone

Physical solutions:

£ £ £
Change the system to reduce probability of error.

Cool system, increase power, . . .

System solution

Send more robust encodings over existing channel

message

↓
encoded message

↓
corrupted encoding

↓
decoded message

But how is reliable communication possible at all?

Repetition codes

Repetition code R3:

hello there → hhheeellllllooo ttthhheeerrreee

↓ (noise added)

hello thfr? ← hhkgeesllllqooc m qttzhhfferrrBme

Possible results of errors:
— Corrected

— Detected

— Undetected

Binary symmetric channel

Binary messages: 0010100111001...

Each 0 or 1 is flipped with probability f=0.1x --�����R10 10 y P (y=0 jx=0) = 1� f ;P (y=1 jx=0) = f ; P (y=0 jx=1) = f ;P (y=1 jx=1) = 1� f:

(1� f)
(1� f)f--���������R10 10

(Figure from MacKay ITILA)

Can repetition codes give reliable communication?



Repetition code performances -enoder t hannelf = 10%- r deoder- ^s

(Figure from MacKay ITILA)

Probability of error per bit ≈ 0.03. What’s good enough?

Consider a single 0 transmitted using R3 as 000

Eight possible messages could be received:

000 100 010 001 110 101 011 111

Majority vote decodes the first four correctly but the next four result

in errors. Fortunately the first four are more probable than the rest!

Probability of 111 is small: f3 = 0.13 = 10−3

Probability of two bit errors is 3f2(1− f) = 0.03× 0.9

Total probability of error is a bit less than 3%

How to reduce probability of error further? Repeat more! (N times)

Probability of bit error = Probability > half of bits are flipped:

pb =

N∑

r=N+1
2

(
N

r

)
fr(1− f)N−r

But transmit symbols N times slower! Rate is 1/N .

Repetition code performance

Binary messages: 0010100111001...

Each 0 or 1 is flipped with probability f=0.1

(Figure from MacKay ITILA)
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What is achievable?

Binary messages: 0010100111001...

Each 0 or 1 is flipped with probability f=0.1

(Figure from MacKay ITILA)
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Course content

Theoretical content
— Shannon’s noisy channel and source coding theorems

— Much of the theory is non-constructive

— However bounds are useful and approachable

Practical coding algorithms
— Reliable communication

— Compression

Tools and related material
— Probabilistic modelling and machine learning

Storage capacity

3 decimal digits allow 103 = 1,000 numbers: 000-999

3 binary digits or bits allow 23 = 8 numbers:

000, 001, 010, 011, 100, 101, 110, 111

8 bits, a ‘byte’, can store one of 28 = 256 characters

Indexing I items requires at least

log10 I decimal digits or log2 I bits

Reminder: b=log2 I ⇒ 2b=I ⇒ b log 2=log I ⇒ b= log I
log 2

Representing data / coding

Example: a 10×50 binary image

Assume image dimensions are known

Pixels could be represented with 1s and 0s

This encoding takes 500 bits (binary digits)

2500 images can be encoded. The universe is ≈ 298 picoseconds old.

Exploit sparseness

As there are fewer black pixels we send just them.

Encode row + start/end column for each run in binary.

Requires (4+6+6)=16 bits per run (can you see why?)

There are 54 black runs ⇒ 54×16 = 864 bits

That’s worse than the 500 bit encoding we started with!

Scan columns instead: 33 runs, (6+4+4)=14 bits each. 462 bits.



Run-length encoding

Common idea: store lengths of runs of pixels

Longest possible run = 500 pixels, need 9 bits for run length

Use 1 bit to store colour of first run (should we?)

Scanning along rows: 109 runs ⇒ 982 bits(!)

Scanning along cols: 67 runs ⇒ 604 bits

Adapting run-length encoding

Store number of bits actually needed for runs in a header.

4+4=8 bits give sizes needed for black and white runs.

Scanning along rows: 501 bits (includes 8+1=9 header bits)

55 white runs up to 52 long, 55×6 = 330 bits

54 black runs up to 7 long, 54×3 = 162 bits

Scanning along cols: 249 bits
34 white runs up to 72 long, 24×7 = 168 bits

33 black runs up to 8 long, 24×3 = 72 bits (3 bits/run if no zero-length runs; we did need the first-run-colour header bit!)

Rectangles

Exploit spatial structure: represent image as 20 rectangles

Version 1:
Each rectangle: (x1, y1, x2, y2), 4+6+4+6 = 20 bits

Total size: 20×20 = 400 bits

Version 2:
Header for max rectangle size: 2+3 = 5 bits

Each rectangle: (x1, y1, w, h), 4+6+3+3 = 16 bits

Total size: 20×16 + 5 = 325 bits

Off-the-shelf solutions?

Established image compressors:
Use PNG: 128 bytes = 1024 bits
Use GIF: 98 bytes = 784 bits
JBIG2: 108 bytes = 864 bits

DjVu: 124 bytes = 992 bits

Unfair: image is tiny, file format overhead: headers, image dims

Smallest possible GIF file is about 35 bytes. Smallest possible PNG file is about 67 bytes.

Not strictly meaningful, but: (98-35)×8 = 504 bits. (128-67)×8 = 488 bits



Store as text

Assume we know the font

Encode six characters in a 64 character alphabet (say)

Total size: 6× log2 64 = 36 bits

“Overfitting”

We can compress the ‘Hi Mom’ image down to 1 bit:

Represent ‘Hi Mom’ image with a single ‘1’

All other files encoded with ‘0’ and a naive encoding of the image.

. . . the actual message is one selected from a set of possible

messages. The system must be designed to operate for each

possible selection, not just the one which will actually be

chosen since this is unknown at the time of design.

— Shannon, 1948

Summary of lecture 1 (slide 1/2)

Digital communication can work reliably over a noisy channel.

We add redundancy to a message, so that we can try to infer what

corruption occurred and undo it.

Repetition codes simply repeat each message symbol N times.

A majority vote at the receiving end removes errors unless more than

half of the repetitions were corrupted. Increasing N reduces the error

rate, but the rate of the code is 1/N : transmission is slower, or more

storage space is used. For the Binary Symmetric Channel the error

probability is:
∑N

r=(N+1)/2

(
N
r

)
fr(1− f)N−r

Amazing claim: it is possible to get arbitrarily small errors at a

fixed rate known as the capacity of the channel. Aside: codes that

approach the capacity send a more complicated message than simple

repetitions. Inferring what corruptions must have occurred (occurred

with overwhelmingly high probability) is more complex than a

majority vote. The algorithms are related to how some groups

perform inference in machine learning.

Summary of lecture 1 (slide 2/2)

First task: represent data optimally when there is no noise

Representing files as (binary) numbers:

C bits (binary digits) can index I = 2C objects.

log I = C log 2, C = log I
log 2 for logs of any base, C = log2 I

In information theory textbooks “log” often means “log2”.

Experiences with the Hi Mom image:

Unless we’re careful, we can expand the file dramatically.

When developing a fancy method, always consider simple baselines.

The bit encodings and header bits I used were inelegant.

We’d like more principled and better ways to proceed. (See later).

Summarizing groups of bits (rectangles, runs, etc.) can lead to fewer

objects to index. Structure in the image allows compression.

Cheating: add whole image as a “word” in our dictionary.

Schemes should work on future data that the receiver hasn’t seen.



Where now

What are the fundamental limits to compression?

Can we avoid all the hackery?

Or at least make it clearer how to proceed?

This course: Shannon’s information theory relates

compression to probabilistic modelling

A simple probabilistic model (predict from three previous neighbouring

pixels) and an arithmetic coder can compress to about 220 bits.

Why is compression possible?

Try to compress all b bit files to <b bits

There are 2b possible files but only (2b−1) codewords

Theorem: if we compress some files we must expand others

(or fail to represent some files unambiguously)

Search for the comp.compression FAQ currently available at:

http://www.faqs.org/faqs/compression-faq/

Which files to compress?

We choose to compress the more probable files

Example: compress 28×28 binary images like this:

At the expense of longer encodings for files like this:

There are 2784 binary images. I think < 2125 are like the digits

Sparse file model

Long binary vector x, mainly zeros

Assume bits drawn independently

Bernoulli distribution, a single “bent coin” flip

P (xi | p) =

{
p if xi=1

(1− p)≡p0 if xi=0

How would we compress a large file for p=0.1?

Idea: encode blocks of N bits at a time



Intuitions:

‘Blocks’ of lengths N=1 give naive encoding: 1 bit / symbol

Blocks of lengths N=2 aren’t going to help

. . .maybe we want long blocks

For large N , some blocks won’t appear in the file, e.g. 11111111111...

The receiver won’t know exactly which blocks will be used

Don’t want a header listing blocks: expensive for large N .

Instead we use our probabilistic model of the source to guide which

blocks will be useful. For N=5 the 6 most probable blocks are:

00000 00001 00010 00100 01000 10000

3 bits can encode these as 0–5 in binary: 000 001 010 011 100 101

Use spare codewords (110 111) followed by 4 more bits to encode

remaining blocks. Expected length of this code = 3 + 4P (need 4 more)

= 3 + 4(1− (1−p)5− 5p(1−p)4) ≈ 3.3 bits ⇒ 3.3/5 ≈ 0.67 bits/symbol

Quick quiz

Q1. Toss a fair coin 20 times. (Block of N=20, p=0.5)

What’s the probability of all heads?

Q2. What’s the probability of ‘TTHTTHHTTTHTTHTHHTTT’?

Q3. What’s the probability of 7 heads and 13 tails?

you’ll be waiting forever A ≈ 10−100

about one in a million B ≈ 10−6

about one in ten C ≈ 10−1

about a half D ≈ 0.5

very probable E ≈ 1− 10−6

don’t know Z ???

Binomial distribution

How many 1’s will be in our block?

Binomial distribution, the sum of N Bernoulli outcomes

k =
∑N

n=1 xn, xn ∼ Bernoulli(p)

⇒ k ∼ Binomial(N,p)

P (k |N, p) =

(
N

k

)
pk(1− p)N−k

=
N !

(N − k)! k!
pk(1− p)N−k

Reviewed by MacKay, p1

Distribution over blocks

total number of bits: N (= 1000 in examples here)

probability of a 1: p = P (xi=1)

number of 1’s: k =
∑

i xi

Every block is improbable!

P (x) = pk(1− p)N−k, (at most (1−p)N ≈ 10−45 for p=0.1)

How many 1’s will we see?

P (k) =
(
N
k

)
pk(1− p)N−k

Solid: p=0.1

Dashed: p=0.5
100 500 1000

0

0.02

0.04

0.06

k = Number of 1’s

P
(k

)



Intuitions: If we sample uniformly at random, the number of 1s is

distributed according to the dashed curve. That bump is where

almost all of the bit-strings of length N=1000 are.

When p=0.1, the blocks with the most zeros are the most probable.

However, there is only one block with zero ones, and not many with

only a few ones. As a result, there isn’t much probability mass on

states with only a few ones. In fact, most of the probability mass is on

blocks with around Np ones, so they are the ones we are likely to see.

The most probable block is not a typical block, and we’d be surprised

to see it!

Evaluating the numbers

(
N

k

)
=

N !

(N−k)! k!
, what happens for N=1000, k=500?

(or N=10,000, k=5,000)

Knee-jerk reaction: try taking logs

Explicit summation: log x! =
∑x

n=2 log n

Library routines: lnx! = ln Γ(x+ 1), e.g. gammaln

Stirling’s approx: lnx! ≈ x lnx− x + 1
2 ln 2πx . . .

Care: Stirling’s series gets less accurate if you add lots terms(!),

but the relative error disappears for large x with just the terms shown.

There is also (now) a convergent version (see Wikipedia).

See also: more specialist routines. Matlab/Octave: binopdf, nchoosek

Philosophical Transactions (1683-1775) Vol. 53, (1763), pp. 269–271.

The Royal Society. http://www.jstor.org/stable/105732

. . .



Familiarity with extreme numbers: when counting sets of

possible strings or images the numbers are enormous. Similarly the

probabilities of any such objects must be tiny, if the probabilities are

to sum to one.

Learn to guess: before computing a number, force yourself to guess

a rough range of where it will be. Guessing improves intuition and

might catch errors.

Numerical experiments: we will derive the asymptotic behaviour

of large block codes. Seeing how finite-sized blocks behave empirically

is also useful. Take the logs of extreme positive numbers when

implementing code.

Bayes and Stirling’s series: approximations of functions can be

useful for analytically work. The images show copies of Bayes’s letter

about Stirling’s series to John Canton, both handwritten and the

original typeset version. Bayes studied at what became the University

of Edinburgh. I’ve included a copy of a class list with his name

(possibly not his signature) second from the end.

Compression for N-bit blocks

Strategy:
— Encode N -bit blocks with ≤ t ones with C1(t) bits.

— Use remaining codewords followed by C2(t) bits

for other blocks.

Set C1(t) and C2(t) to minimum values required.

Set t to minimize average length: C1(t) + P
(
t<
∑N

n=1 xn
)
C2(t)
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Can we do better?

We took a simple, greedy strategy:
Assume one code-length C1, add another C2 bits if that doesn’t work.

First observation for large N :

The first C1 bits index almost every block we will see.
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With high probability we can compress a large-N block into

a fixed number of bits. Empirically ≈ 0.47N for p=0.1.



Can we do better?

We took a simple, greedy strategy:
Assume one code-length C1, add another C2 bits if that doesn’t work.

Second observation for large N :

Trying to use <C1 bits means we always use more bits

At N=106, trying to use 0.95 the optimal C1 initial bits

⇒ P (need more bits) ≈ 1− 10−100

It is very unlikely a file can be compressed into fewer bits.

Summary of lecture 2 (slide 1/2)

If some files are shrunk others must grow:

# files length b bits = 2b

# files <b bits =
∑b−1

c=0 2c = 1 + 2 + 4 + 8 + · · ·+ 2b−1 = 2b − 1

(We’ll see that things are even worse for encoding blocks in a stream.

Consider using bit strings up to length 2 to index symbols:

A=0, B=1, C=00, D=01, E=11

If you receive 111, what was sent? BBB, BE, EB?)

We temporarily focus on sparse binary files:

Encode blocks of N bits, x =00010000001000...000

Assume model: P (x) = pk (1− p)N−k, where k =
∑

i xi =“# 1’s”

Key idea: give short encoding to most probable blocks:

Most probable block has k=0. Next N most probable blocks have k=1

Let’s encode all blocks with k≤ t, for some threshold t.

This set has I1 =
∑t

k=0

(
N
k

)
items. Can index with C1 = dlog2 I1e bits.

Summary of lecture 2 (slide 2/2)

Can make a lossless compression scheme:

Actually transmit C1 = dlog2(I1 + 1)e bits

Spare code word(s) are used to signal C2 more bits should be read,

where C2≤N can index the other blocks with k>t.

Expected/average code length = C1 + P (k > t)C2

Empirical results for large block-lengths N

— The best codes (best t, C1, C2) had code length ≈ 0.47N

— these had tiny P (k > t); it doesn’t matter how we encode k>t

— Setting C1 = 0.95× 0.47N made P (k > t) ≈ 1

≈0.47N bits are sufficient and necessary to encode long blocks

(with our model, p=0.1) almost all the time and on average

No scheme can compress binary variables with p=0.1 into less than

0.47 bits on average, or we could contradict the above result.

Other schemes will be more practical (they’d better be!) and will be

closer to the 0.47N limit for small N .

Information Theory
http://www.inf.ed.ac.uk/teaching/courses/it/

Week 2
Information and Entropy

Iain Murray, 2013

School of Informatics, University of Edinburgh



Central Limit theorem

The sum or mean of independent variables with bounded

mean and variance tends to a Gaussian (normal) distribution.
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N=1e6; hist(sum(rand(3,N),1)); hist(sum(rand(20,N),1));

There are a few forms of the Central Limit Theorem (CLT), we are

just noting a vague statement as we won’t make extensive use of it.

CLT behaviour can occur unreasonably quickly when the

assumptions hold. Some old random-number libraries used to use the

following method for generating a sample from a unit-variance,

zero-mean Gaussian: a) generate 12 samples uniformly between zero

and one; b) add them up and subtract 6. It isn’t that far off!

Data from a natural source will usually not be Gaussian.

The next slide gives examples. Reasons: extreme outliers often occur;

there may be lots of strongly dependent variables underlying the data;

there may be mixtures of small numbers of effects with very different

means or variances.

An example random variable with unbounded mean is given

by the payout of the game in the St. Petersburg Paradox. A fair coin

is tossed repeatedly until it comes up tails. The game pays out 2#heads

pounds. How much would you pay to play? The ‘expected’ payout is

infinite: 1/2×1 + 1/4×2 + 1/8×4 + 1/16×8 + . . . = 1/2 + 1/2 + 1/2 + 1/2 + . . .

Gaussians are not the only fruit

xx = importdata(’Holst - Mars.wav’);

hist(double(xx(:)), 400);
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xx = importdata(’forum.jpg’);

hist(xx(:), 50);

How many 1’s will we see?

How many 1’s will we see? P (k) =
(
N
k

)
pk(1− p)N−k

Gaussian fit (dashed lines):

P (k) ≈ 1√
2πσ2

exp
(
− 1

2σ2
(k−µ)2

)
, µ=Np, σ2 =Np(1−p)

(Binomial mean and variance, MacKay p1)
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The log-probability plot on the previous slide illustrates how one must

be careful with the Central Limit Theorem. Even though the

assumptions hold, convergence of the tails is very slow. (The theory

gives only “convergence in distribution” which makes weak statements

out there.) While k, the number of ones, closely follows a Gaussian

near the mean, we can’t use the Gaussian to make precise statements

about the tails.

All that we will use for now is that the mass in the tails further out

than a few standard deviations (a few σ) will be small. This is correct,

we just can’t guarantee that the probability will be quite as small as if

the whole distribution actually were Gaussian.

Chebyshev’s inequality (MacKay p82, Wikipedia, . . . ) tells us that:

P (|k − µ| ≥ mσ) ≤ 1
m2,

a loose bound which will be good enough for what follows.

The fact that as N →∞ all of the probability mass becomes close to

the mean is referred to as the law of large numbers.

A weighing problem

Find 1 odd ball out of 12

You have a two-pan balance with three outputs:

“left-pan heavier”, “right-pan heavier”, or “pans equal”

How many weighings do you need to find the odd ball and

decide whether it is heavier or lighter?

Unclear? See p66 of MacKay’s book, but do not look at his answer until

you have had a serious attempt to solve it.

Are you sure your answer is right? Can you prove it?

Can you prove it without an extensive search of the solution space?

Weighing problem: bounds

Find 1 odd ball out of 12 with a two-pan balance

There are 24 hypothesis:

ball 1 heavier, ball 1 lighter, ball 2 heavier, . . .

For K weighings, there are at most 3K outcomes:

(left, balance, right), (right, right, left), . . .

32 =9 ⇒ 2 weighings not enough

33 =27 ⇒ 3 weighings might be enough

Analogy: sorting (review?)

How much does it cost to sort n items?

There are 2C outcomes of C binary comparisons

There are n! orderings of the items

To pick out the correct ordering must have:

C log 2 ≥ log n! ⇒ C ≥ O(n log n) (Stirling’s series)

Radix sort is “O(n)”, gets more information from the items



Weighing problem: strategy

Find 1 odd ball out of 12 with a two-pan balance

Probability of an outcome is: # hypotheses compatible with outcome
# hypotheses

Experiment Left Right Balance

1 vs. 1 2/24 2/24 20/24

2 vs. 2 4/24 4/24 16/24

3 vs. 3 6/24 6/24 12/24

4 vs. 4 8/24 8/24 8/24

5 vs. 5 10/24 10/24 4/24

6 vs. 6 12/24 12/24 0/24

Weighing problem: strategy

8 hypotheses remain. Find a second weighing where:

3 hypotheses ⇒ left pan down

3 hypotheses ⇒ right pan down

2 hypotheses ⇒ balance

It turns out we can always identify one hypothesis with a

third weighing (p69 MacKay for details)

Intuition: outcomes with even probability distributions seem

informative — useful to identify the correct hypothesis

Measuring information

As we read a file, or do experiments, we get information

Very probable outcomes are not informative:
⇒ Information is zero if P (x)=1

⇒ Information increases with 1/P (x)

Information of two independent outcomes add

⇒ f
(

1
P (x)P (y)

)
= f

(
1

P (x)

)
+ f

(
1

P (y)

)

Shannon information content: h(x) = log 1
P (x) = − logP (x)

The base of the logarithm scales the information content:

base 2: bits

base e: nats

base 10: bans (used at Bletchley park: MacKay, p265)

log 1
P is the only ‘natural’ measure of information based on

probability alone. Derivation non-examinable.

Assume: f(ab) = f(a) + f(b); f(1) = 0; f smoothly increases

f(a(1 + ε)) = f(a) + f(1 + ε)

Take limit ε→ 0 on both sides:

f(a) + aεf ′(a) = f(a) +
��

��
��*0

f(1) + εf ′(1)

⇒ f ′(a) = f ′(1)
1

a∫ x

1

f ′(a) da = f ′(1)

∫ x

1

1

a
da

f(x) = f ′(1) lnx

Define b = e1/f
′(1), which must be >1 as f is increasing.

f(x) = logb x

We can choose to measure information in any base (>1), as the base

is not determined by our assumptions.



Foundations of probability (very non-examinable)

The main step justifying information resulted from P (a, b) = P (a)P (b)

for independent events. Where did that come from?

There are various formulations of probability. Kolmogorov provided a

measure-theoretic formalization for frequencies of events.

Cox (1946) provided a very readable rationalization for using the

standard rules of probability to express beliefs and to incorporate

knowledge: http://dx.doi.org/10.1119/1.1990764

There’s some (I believe misguided) arguing about the details. A

sensible response to some of these has been given by Van Horn (2003)

http://dx.doi.org/10.1016/S0888-613X(03)00051-3

Ultimately for both information and probability, the main justification

for using them is that they have proven to be hugely useful. While one

can argue forever about choices of axioms, I don’t believe that there

are other compelling formalisms to be had for dealing with

uncertainty and information.

Information content vs. storage

A ‘bit’ is a symbol that takes on two values.

The ‘bit’ is also a unit of information content.

Numbers in 0–63, e.g. 47=101111, need log2 64 = 6 bits

If numbers 0–63 are equally probable, being told the

number has information content − log 1
64 = 6 bits

The binary digits are the answers to six questions:
1: is x ≥ 32?

2: is x mod 32 ≥ 16?

3: is x mod 16 ≥ 8?

4: is x mod 8 ≥ 4?

5: is x mod 4 ≥ 2?

6: is x mod 2 = 1?

Each question has information content − log 1
2 = 1 bit

Fractional information
A dull guessing game: (submarine, MacKay p71)

Q. Is the number 36?
A. a1 = No.

h(a1) = log 1
P (x 6=36) = log 64

63 = 0.0227 bits Remember: log2 x =
lnx

ln 2

Q. Is the number 42?
A. a2 = No.

h(a2) = log 1
P (x 6=42 | x 6=36) = log 63

62 = 0.0231 bits

Q. Is the number 47?
A. a3 = Yes.

h(a3) = log 1
P (x=47 | x 6=42,x6=36) = log 62

1 = 5.9542 bits

Total information: 5.9542 + 0.0231 + 0.0227 = 6 bits

Entropy

Improbable events are very informative, but don’t happen

very often! How much information can we expect?

Discrete sources:
Ensemble: X = (x,AX,PX)

Outcome: x ∈ Ax, p(x=ai) = pi
Alphabet: AX = {a1, a2, . . . , ai, . . . aI}

Probabilities: PX = {p1, p2, . . . , pi, . . . pI}, pi>0,
∑
i pi = 1

Information content:
h(x=ai) = log 1

pi
, h(x) = log 1

P (x)

Entropy:
H(X) =

∑
i pi log 1

pi
= EPX[h(x)]

average information content of source, also “the uncertainty of X”



Binary Entropy

Entropy of Bernoulli variable:

H(X) = H2(p) = p1 log 1
p1

+ p2 log 1
p2

= −p log p− (1−p) log(1−p)
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Plots take logs base 2. We define 0 log 0 = 0

Distribution of Information

Extended Ensemble XN : N independent draws from X

x a length-N vector containing a draw from XN

Bernoulli example: N = 103, p = 0.1, H(X) = 0.47 bits

0 1000 2000 3000

Information Content, h(x) / bits

P
(h

(x
))

The information content of each element, h(xn), is a random variable.

This variable has mean H(X), and some finite variance σ2.

Mean and width of the curve: The total information content of a

block: h(x) =
∑
n h(xn) is another random variable with mean

NH(X), shown in red, and variance Nσ2 or standard deviation
√
Nσ.

(All of the above is true for general extended ensembles, not just

binary streams.)

The range of the plot: The block with maximum information

content is the most surprising, or least probable block. In the

Bernoulli example with p=0.1, ‘1111...111’ is most surprising, with

h(x)=Nh(1)=N log 1
0.1. Similarly the least informative block, is the

most probable. In the example Nh(0)=N log 1
0.9. Remember to take

logs base 2 to obtain an answer in bits. Neither of these blocks will

ever be seen in practice, even though 0000...000 is the most

probable block.

Only blocks with information contents close to the mean are ‘typical’.

Define the typical set, T , to be all blocks with information contents

a few standard deviations away from the mean:

h(x) ∈ [NH−mσ
√
N,NH+mσ

√
N ] for some m > 0.

(Actually a family of typical sets for different choices of m.)

We only need to count the typical set: Chebyshev’s inequality

(see MacKay p82, Wikipedia, . . . ) bounds the probability that we

land outside the typical set.

P (|h(x)−NH| ≥ mσ
√
N) ≤ 1

m2

We can pick m so that the typical set is so large that the probability

of landing outside it is negligible. Then we can compress almost every

file we see into a number of bits that can index the typical set.

How big is the typical set? Number of elements: |T |
Probability of landing in set ≤ 1

Probability of landing in set ≥ |T |pmin, where pmin = minx∈T p(x)

Therefore, |T | < 1
pmin



Block with smallest probability pmin has information NH +mσ
√
N .

pmin = 2−NH−mσ
√
N

|T | < 2NH+mσ
√
N

Number of bits to index typical set is NH +mσ
√
N .

Dividing by the block length, N we see we need:

H +mσ/
√
N bits/symbol, → H as N →∞

For any choice m, in the limit of large blocks, we can encode

the typical set (and for large enough m, any file we will see

in practice) with H(X) bits/symbol.

Can we do better?

Motivation: The above result put a loose bound on the probability of

being outside T , so we might have made it bigger than necessary.

Then we put a loose bound on the number of items, so we assumed it

was even bigger than that. Maybe we could use many fewer bits per

symbol than we calculated? (Amazingly, the answer is that we can’t.)

We assume there is a smaller useful set S, which we could encode with

only (1−ε)H bits/symbol. For example, if ε=0.01 we would be trying

to get a 1% saving in the number of bits for strings in this set.

The size of S is |S| = 2N(1−ε)H

Some of S will overlap with T , and some might be outside. But we

know that the total probability outside of T is negligible (for large m).

The probability mass of elements inside T is less than |S|pmax, where

pmax is the probability of the largest probability element of T .

pmax = 2−NH+mσ
√
N

p(x ∈ S) ≤ |S|pmax + tail mass outside T

p(x ∈ S) ≤ 2N(−εH+mσ/
√
N) + tail mass outside T

As N →∞ the probability of getting a block in S tends to zero for

any m. The smaller set is useless.

At least H bits/symbol are required to encode an extended ensemble.

On average, no compressor can use fewer than H bits per

symbol (applied to length-N blocks, it wouldn’t be using enough bits)

Where now?

A block of variables can be compressed into
H(X) bits/symbol, but no less

Where do we get the probabilities from?

How do we actually compress the files?
We can’t explicitly list 2NH items!

Can we avoid using enormous blocks?

Numerics note: log
∑

i exp(xi)

(
N

k

)
blows up for large N, k; we evaluate lN,k = ln

(
N
k

)

Common problem: want to find a sum, like
t∑

k=0

(
N
k

)

Actually we want its log:

ln

t∑

k=0

exp(lN,k) = lmax + ln

t∑

k=0

exp(lN,k − lmax)

To make it work, set lmax = max
k

lN,k. logsumexp functions are frequently used



I needed this trick when numerically exploring block codes:

For a range of t we needed to sum up: a) the number of strings with

k = 0..t; and b) the probability mass associated with those strings.

The log of the number of strings says how many bits, C1 was needed

to index them. If the probability mass is close to one, that will also be

close to the expected length needed to encode random strings.

For both sums we need the log of the sum of some terms, where each

term is available in log form. The next slide demonstrates this for

problem a), but the technique readily applies to problem b) too.

The bumps are very well behaved: to what extent can we assume

they are Gaussian due to central limit arguments?

Information Theory
http://www.inf.ed.ac.uk/teaching/courses/it/

Week 3
Symbol codes

Iain Murray, 2012

School of Informatics, University of Edinburgh

(Binary) Symbol Codes

For strings of symbols from alphabet e.g.,

xi ∈ AX = {A,C,G, T}

Binary codeword assigned to each symbol

CGTAGATTACAGG

↓
10111110011101101100100111111

A 0

C 10

G 111

T 110

Codewords are concatenated without punctuation

Uniquely decodable

We’d like to make all codewords short

But some codes are not uniquely decodable

CGTAGATTACAGG

↓
111111001110110110010111111

↓
CGTAGATTACAGG

CCCCCCAACCCACCACCAACACCCCCC

CCGCAACCCATCCAACAGCCC

GGAAGATTACAGG

???

A 0

C 1

G 111

T 110



Instantaneous/Prefix Codes

Attach symbols to leaves of a binary tree

Codeword gives path to get to leaf

1

0

0

1

1 =A

00 =D

011 =B

010 =C

1

0

“Prefix code” because

no codeword is a prefix

of another

Decoding: follow tree while reading stream until hit leaf

Symbol is instantly identified. Return to root of tree.

Non-instantaneous Codes

The last code was instantaneously decodable:

We knew as soon as we’d finished receiving a symbol

101100000101100

↓ A 1

B 10

C 000

D 100

This code is uniquely decodable,

but not instantaneous or pleasant!

Expected length/symbol, L̄

Code lengths: {`i} = {`1, `2, . . . , `I}

Average, L̄ =
∑

i

pi `i

Compare to Entropy:

H(X) =
∑

i

pi log
1

pi

If `i=log 1
pi

or pi=2−`i we compress to the entropy

An optimal symbol code

An example code with:

L̄ =
∑

i

pi `i = H(X) =
∑

i

pi log
1

pi

x p(x) codeword

A 1/2 0

B 1/4 10

C 1/8 110

D 1/8 111



Entropy: decomposability

Flip a coin:
Heads → A

Tails → flip again:
Heads → B

Tails → C

AX = {A, B, C}
PX = {0.5, 0.25, 0.25}

H(X) = 0.5 log 1
0.5 + 0.25 log 1

0.25 + 0.25 log 1
0.25 = 1.5 bits

Or: H(X) = H2(0.5) + 0.5H2(0.5) = 1.5 bits

Shannon’s 1948 paper §6. MacKay §2.5, p33

Why look at the decomposability of Entropy?

Mundane, but useful: it can make your algebra a lot neater.

Decomposing computations on graphs is ubiquitous in computer

science.

Philosophical: we expect that the expected amount of information

from a source should be the same if the same basic facts are

represented in different ways and/or reported in a different order.

Shannon’s 1948 paper used the desired decomposability of entropy to

derive what form it must take, section 6. This is similar to how we

intuited the information content from simple assumptions.

Limit on code lengths

Imagine coding under an implicit distribution:

qi =
1

Z
2−`i, Z =

∑

i

2−`i.

H =
∑

i

qi log
1

qi
=
∑

i

qi (`i + logZ) = L̄+ logZ

⇒ logZ≤0, Z≤1

Kraft–McMillan Inequality
∑

i

2−`i ≤ 1 (if uniquely-decodable)

Proof without invoking entropy bound: p95 of MacKay, or p116 Cover & Thomas 2nd Ed. 1111
1110
1101
1100
1011
1010
1001
1000
0111
0110
0101
0100
0011
0010
0001
0000

111

110

101

100

011

010

001

000

11
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Kraft Inequality

If height of budget is 1, codeword has height = 2−`i

Pick codes of required lengths in order from shortest–largest

Choose heighest codeword of required length beneath

previously-chosen code (There won’t be a gap because of sorting)

Can always pick codewords if total height,
∑

i 2
−`i ≤ 1

Kraft–McMillan Inequality
∑

i

2−`i ≤ 1 (instantaneous

code possible)

Corollary: there’s probably no point using a non-instantaneous code.

Can always make complete code
∑

i 2−`i =1: slide last codeword left.

Summary of Lecture 5

Symbol codes assign each symbol in an alphabet a codeword.

(We only considered binary symbol codes, which have binary codewords.)

Messages are sent by concatenating codewords with no punctuation.

Uniquely decodable: the original message is unambiguous

Instantaneously decodable: the original symbol can always be

determined as soon as the last bit of its codeword is received.

Codeword lengths must satisfy
∑

i 2−`i ≤ 1 for unique decodability

Instantaneous prefix codes can always be found
(
if
∑

i 2−`i ≤ 1
)

Complete codes have
∑

i 2−`i=1, as realized by prefix codes made

from binary trees with a codeword at every leaf.

If (big if) symbols are drawn i.i.d. with probabilities {pi}, and
`i=log 1

pi
, then a prefix code exists that offers optimal compression.

Next lecture: how to form the best symbol code when {log 1
pi
} are

not integers.

Performance of symbol codes

Simple idea: set `i =
⌈
log 1

pi

⌉

These codelengths satisfy the Kraft inequality:
∑

i

2−`i =
∑

i

2−dlog 1/pie ≤
∑

i

pi = 1

Expected length, L̄:

L̄ =
∑

i

pi`i =
∑

i

pidlog 1/pie <
∑

i

pi (log 1/pi + 1)

L̄ < H(p) + 1

Symbol codes can compress to within 1 bit/symbol of
the entropy.

Optimal symbol codes

Encode independent symbols with known probabilities:

E.g., AX = {A,B,C,D,E}
PX = {0.3, 0.25, 0.2, 0.15, 0.1}

We can do better than `i =
⌈
log 1

pi

⌉

The Huffman algorithm gives an optimal symbol code.

Proof: MacKay Exercise 5.16 (with solution).

Cover and Thomas has another version.



Huffman algorithm

Merge least probable Can merge C with B or (D,E)

→

P (D or E) = 0.25

→

Continue merging least probable, until root represents all events P =1

Huffman algorithm

Given a tree, label branches with 1s and 0s to get code

Code-lengths are close to the information content

(not just rounded up, some are shorter)

H(X) ≈ 2.23 bits. Expected length = 2.25 bits.
Wow! Despite limitations we will discuss, Huffman codes can be very good. You’ll find them inside many systems
(e.g., bzip2, jpeg, mp3), although all these schemes do clever stuff to come up with a good symbol representation.

Huffman decoding

Huffman codes are easily and uniquely decodable because

they are prefix codes

Reminder on decoding a prefix code stream:
— Start at root of tree

— Follow a branch after reading each bit of the stream

— Emit a symbol upon reaching a leaf of the tree

— Return to the root after emitting a symbol. . .

An input stream can only give one symbol sequence, the

one that was encoded

Building prefix trees ‘top-down’

Heuristic: if you’re ever building a tree, consider

top-down vs. bottom-up (and maybe middle-out)

Weighing problem strategy:
Use questions with nearly uniform

distribution over the answers.

How well would this work on the

ensemble to the right?

x P (x)

A1 0.24

A2 0.01

B1 0.24

B2 0.01

C1 0.24

C2 0.01

D1 0.24

D2 0.01

H(X) = 2.24 bits (just over log 4 = 2). Fixed-length encoding: 3 bits



Top-down performing badly

Probabilities for answers to first two questions is (1/2, 1/2)

Greedy strategy ⇒ very uneven distribution at end

Compare to Huffman

Expected length 2.36 bits/symbol

(Symbols reordered for display purposes only)

Relative Entropy / KL

Implicit probabilities: qi = 2−`i

(
∑

i qi = 1 because Huffman codes are complete)

Extra cost for using “wrong” probability distribution:

∆L =
∑

i

pi`i −H(X)

=
∑

i

pi log 1/qi −
∑

i

pi log 1/pi

=
∑

i

pi log
pi
qi

= DKL(p || q)

DKL(p || q) is the Relative Entropy also known as the
Kullback–Leibler divergence or KL-divergence

Gibbs’ inequality

An important result:

DKL(p || q) ≥ 0

with equality only if p = q

“If we encode with the wrong distribution we will do worse

than the fundamental limit given by the entropy”

A simple direct proof can be shown using convexity.

(Jensen’s inequality)



Convexity

f(λx1 + (1−λ)x2) ≤ λf(x1) + (1−λ)f(x2)

x1 x2x� = �x1 + (1� �)x2f(x�)�f(x1) + (1� �)f(x2)

Strictly convex functions:
Equality only if λ is 0 or 1, or if x1 =x2

(non-strictly convex functions contain straight line segments)

Convex vs. Concave

For (strictly) concave functions reverse the inequality

A (con)cave

Photo credit:
Kevin Krejci on Flickr

Summary of Lecture 6

The Huffman Algorithm gives optimal symbol codes:

Merging event adds to code length for children, so

Huffman always merges least probable events first

A complete code implies negative log probabilities: qi = 2−`i.

If the symbols are generated with these probabilities, the symbol code

compresses to the entropy. Otherwise the number of extra

bits/symbol is given by the Relative Entropy or KL-divergence:

DKL(p || q) =
∑

i pi log pi
qi

Gibbs’ inequality says DKL(p || q) ≥ 0 with equality only when the

distributions are equal.

Convexity and Concavity are useful properties when proving

several inequalities in Information Theory. Next time: the basis of

these proofs is Jensen’s inequality, which can be used to prove

Gibbs’ inequality.

Information Theory
http://www.inf.ed.ac.uk/teaching/courses/it/

Week 4
Compressing streams
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Jensen’s inequality

For convex functions: E[f(x)] ≥ f(E[x])

Centre of gravity at
(
E[x],E[f(x)]

)
, which is above

(
E[x], f(E[x])

)

Strictly convex functions:
Equality only if P (x) puts all mass on one value

Remembering Jensen’s

The inequality is reversed for concave functions.

Which way around is the inequality?

I draw a picture in the margin.

Alternatively, try ‘proof by example’:

f(x) = x2 is a convex function

var[X] = E[x2]− E[x]2 ≥ 0

So Jensen’s must be: E[f(x)] ≥ f(E[x]) for convex f .

Jensen’s: Entropy & Perplexity

Set u(x)=
1

p(x)
, p(u(x))=p(x)

E[u] = E[ 1
p(x)] = |A| (Tutorial 1 question)

H(X) = E[log u(x)] ≤ logE[u]

H(X) ≤ log |A|

Equality, maximum Entropy, for constant u ⇒ uniform p(x)

2H(X) = “Perplexity” = “Effective number of choices”

Maximum effective number of choices is |A|

Proving Gibbs’ inequality

Idea: use Jensen’s inequality

For the idea to work, the proof must look like this:

DKL(p || q) =
∑

i

pi log
pi
qi

= E[f(u)] ≥ f
(
E[u]

)

Define ui = qi
pi

, with p(ui) = pi, giving E[u] = 1

Identify f(x) ≡ log 1/x = − log x, a convex function

Substituting gives: DKL(p || q) ≥ 0



Huffman code worst case

Previously saw: simple simple code `i = dlog 1/pie
Always compresses with E[length] < H(X)+1

Huffman code can be this bad too:

For PX={1−ε, ε}, H(x)→ 0 as ε→ 0

Encoding symbols independently means E[length] = 1.

Relative encoding length: E[length]/H(X)→∞ (!)

Question: can we fix the problem by encoding blocks?
H(X) is log(effective number of choices)

With many typical symbols the “+1” looks small

Reminder on Relative Entropy and symbol codes:

The Relative Entropy (AKA Kullback–Leibler or KL divergence) gives

the expected extra number of bits per symbol needed to encode a

source when a complete symbol code uses implicit probabilities

qi = 2−`i instead of the true probabilities pi.

We have been assuming symbols are generated i.i.d. with

known probabilities pi.

Where would we get the probabilities pi from if, say, we were

compressing text? A simple idea is to read in a large text file and

record the empirical fraction of times each character is used. Using

these probabilities the next slide (from MacKay’s book) gives a

Huffman code for English text.

The Huffman code uses 4.15 bits/symbol, whereas H(X) = 4.11 bits.

Encoding blocks might close the narrow gap.

More importantly English characters are not drawn
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(Mackay, p100)

Bigram statistics

Previous slide: AX = {a− z, }, H(X) = 4.11 bits

Question: I decide to encode bigrams of English text:

AX′ = {aa, ab, . . . , az, a , . . . , }
What is H(X ′) for this new ensemble?

A ∼ 2 bits

B ∼ 4 bits

C ∼ 7 bits

D ∼ 8 bits

E ∼ 16 bits

Z ?



Answering the previous vague question

We didn’t completely define the ensemble: what are the probabilities?

We could draw characters independently using pi’s found before.

Then a bigram is just two draws from X, often written X2.

H(X2) = 2H(X) = 8.22 bits

We could draw pairs of adjacent characters from English text.

When predicting such a pair, how many effective choices do we have?

More than when we had AX = {a–z, }: we have to pick the first

character and another character. But the second choice is easier.

We expect H(X) < H(X ′) < 2H(X). Maybe 7 bits?

Looking at a large text file the actual answer is about 7.6 bits.

This is ≈ 3.8 bits/character — better compression than before.

Shannon (1948) estimated about 2 bits/character for English text.

Shannon (1951) estimated about 1 bits/character for English text

Compression performance results from the quality of a probabilistic

model and the compressor that uses it.

Human predictions

Ask people to guess letters in a newspaper headline:

k·i·d·s· ·m·a·k·e· ·n·u·t·r·i·t·i·o·u·s· ·s·n·a·c·k·s
11·4·2·1·1·4·2·4·1·1·15·5·1·2·1·1·1·1·2·1·1·16·7·1·1·1·1
Numbers show # guess required by 2010 class

⇒ “effective number of choices” or entropy varies hugely

We need to be able to use a different probability

distribution for every context

Sometimes many letters in a row can be predicted at

minimal cost: need to be able to use < 1 bit/character.

(MacKay Chapter 6 describes how numbers like those above could be

used to encode strings.)

Predictions Cliché Predictions



A more boring prediction game

“I have a binary string with bits that were drawn i.i.d..

Predict away!”

What fraction of people, f , guess next bit is ‘1’?

Bit: 1 1 1 1 1 1 1 1

f : ≈ 1/2 ≈ 1/2 ≈ 1/2 ≈ 2/3 . . . . . . . . . ≈1

The source was genuinely i.i.d.: each bit was independent of

past bits.

We, not knowing the underlying flip probability, learn from

experience. Our predictions depend on the past. So should

our compression systems.

Arithmetic Coding

For better diagrams and more detail, see MacKay Ch. 6

Consider all possible strings in alphabetical order

(If infinities scare you, all strings up to some maximum length)

Example: AX = {a, b, c,�}
Where ‘�’ is a special End-of-File marker.

�
a�, aa�, · · · , ab�, · · · , ac�, · · ·
b�, ba�, · · · , bb�, · · · , bc�, · · ·
c�, ca�, · · · , cb�, · · · , cc�, · · · , cccccc. . . cc�

Arithmetic Coding

We give all the strings a binary codeword

Huffman merged leaves — but we have too many to do that

Create a tree of strings ‘top-down’:

Could keep splitting into really short blocks of height P(string)

Arithmetic Coding

Both string tree and binary codewords index intervals ∈ [0, 1]

⇒ Encode bacabab�
with 0111...01

Navigate string tree to find interval on real line.

Use ‘binary symbol code budget’ diagram1 to find binary

codeword that lies entirely within this interval.

1week 3 notes, or MacKay Fig 5.1 p96



Arithmetic Coding

Overlay string tree on binary symbol code tree

From P (x1) distribution can’t begin to encode ‘b’ yet

Look at P (x2 |x1=b) can’t start encoding ’ba’ either

Look at P (x3 | ba). Message for ‘bac’ begins 1000

Arithmetic Coding

Diagram: zoom in. Code: rescale to avoid underflow

From P (x4 | bac). Message ‘bac�’ encoded by 1000010101

Encoding lies only within message: uniquely decodable

1000010110 would also work: slight inefficiency

Tutorial homework: prove encoding length < log 1
P (x) + 2 bits

An excess of 2 bits on the whole file (millions or more bits?)

Arithmetic coding compresses very close to the information content

given by the probabilistic model used by both the sender and receiver.

The conditional probabilities P (xi |xj<i) can change for each symbol.

Arbitrary adaptive models can be used (if you have one).

Large blocks of symbols are compressed together: possibly your whole

file. The inefficiencies of symbol codes have been removed.

Huffman coding blocks of symbols requires an exponential number of

codewords. In arithmetic coding, each character is predicted one at a

time, as in a guessing game. The model and arithmetic coder just

consider those |AX| options at a time. None of the code needs to

enumerate huge numbers of potential strings. (De)coding costs should

be linear in the message length.

Model probabilities P (x) might need to be rounded to values Q(x)

that can be represented consistently by the encoder and decoder. This

approximation introduces the usual average overhead: DKL(P ||Q).

AC and sparse files

Finally we have a practical coding algorithm for sparse files

(You could make a better picture!)

The initial code-bit 0, encodes many initial message 0’s.

Notice how the first binary code bits will locate the first 1.

Something like run-length encoding has dropped out.



Non-binary encoding

Can overlay string on any other indexing of [0,1] line

Now know how to compress into α, β and γ

Dasher

Dasher is an information-efficient text-entry interface.

Use the same string tree. Gestures specify which one we want.

http://www.inference.phy.cam.ac.uk/dasher/

Information Theory
http://www.inf.ed.ac.uk/teaching/courses/it/

Week 5
Models for stream codes

Iain Murray, 2013

School of Informatics, University of Edinburgh

Card prediction

3 cards with coloured faces:

1. one white and one black face

2. two black faces

3. two white faces

I shuffle cards and turn them over randomly. I select a card

and way-up uniformly at random and place it on a table.

Question: You see a black face. What is the probability

that the other side of the same card is white?

P (x2 =W |x1 =B) = 1/3, 1/2, 2/3, other?



Notes on the card prediction problem:

This card problem is Ex. 8.10a), MacKay, p142.

It is not the same as the famous ‘Monty Hall’ puzzle: Ex. 3.8–9 and

http://en.wikipedia.org/wiki/Monty_Hall_problem

The Monty Hall problem is also worth understanding. Although the

card problem is (hopefully) less controversial and more

straightforward. The process by which a card is selected should be

clear: P (c) = 1/3 for c = 1, 2, 3, and the face you see first is chosen at

random: e.g., P (x1 =B|c=1) = 0.5.

Many people get this puzzle wrong on first viewing (it’s easy to mess

up). We’ll check understanding again with another prediction problem

in a tutorial exercise. If you do get the answer right immediately (are

you sure?), this is will be a simple example on which to demonstrate

some formalism.

How do we solve it formally?

Use Bayes rule?

P (x2 =W |x1 =B) =
P (x1 =B |x2 =W) P (x2 =W)

P (x1 =B)

The boxed term is no more obvious than the answer!

Bayes rule is used to ‘invert’ forward generative processes

that we understand.

The first step to solve inference problems is to write down a

model of your data.

The card game model

Cards: 1) B|W, 2) B|B, 3) W|W

P (c) =

{
1/3 c = 1, 2, 3

0 otherwise.

P (x1 =B | c) =





1/2 c = 1

1 c = 2

0 c = 3

Bayes rule can ‘invert’ this to tell us P (c |x1 =B);

infer the generative process for the data we have.

Inferring the card

Cards: 1) B|W, 2) B|B, 3) W|W

P (c |x1 =B) =
P (x1 =B | c)P (c)

P (x1 =B)

∝





1/2 · 1/3 = 1/6 c = 1

1 · 1/3 = 1/3 c = 2

0 c = 3

=

{
1/3 c = 1

2/3 c = 2

Q “But aren’t there two options given a black face, so it’s 50–50?”

A There are two options, but the likelihood for one of them is 2× bigger



Predicting the next outcome

For this problem we can spot the answer, for more complex

problems we want a formal means to proceed.

P (x2 |x1 =B)?

Need to introduce c to use expressions we know:

P (x2 |x1 =B) =
∑

c∈1,2,3

P (x2, c |x1 =B)

=
∑

c∈1,2,3

P (x2 |x1 =B, c)P (c |x1 =B)

Predictions we would make if we knew the card, weighted

by the posterior probability of that card. P (x2 =W | x1 =B) = 1/3

Strategy for solving inference and prediction problems:

When interested in something y, we often find we can’t immediately

write down mathematical expressions for P (y |data).

So we introduce stuff, z, that helps us define the problem:

P (y |data) =
∑
z P (y, z |data)

by using the sum rule. And then split it up:

P (y |data) =
∑
z P (y | z,data)P (z |data)

using the product rule. If knowing extra stuff z we can predict y, we

are set: weight all such predictions by the posterior probability of the

stuff (P (z |data), found with Bayes rule).

Sometimes the extra stuff summarizes everything we need to know to

make a prediction:

P (y | z,data) = P (y | z)
although not in the card game above.

Not convinced?

Not everyone believes the answer to the card game question.

Sometimes probabilities are counter-intuitive. I’d encourage you to

write simulations of these games if you are at all uncertain. Here is an

Octave/Matlab simulator I wrote for the card game question:

cards = [1 1;

0 0;

1 0];

num cards = size(cards, 1);

N = 0; % Number of times first face is black

kk = 0; % Out of those, how many times the other side is white

for trial = 1:1e6

card = ceil(num cards * rand());

face = 1 + (rand < 0.5);

other face = (face==1) + 1;

x1 = cards(card, face);

x2 = cards(card, other face);

if x1 == 0

N = N + 1;

kk = kk + (x2 == 1);

end

end

approx probability = kk / N

Sparse files

x = 000010000100000001000...000

We are interested in predicting the (N+1)th bit.

Generative model:

P (x | f) =
∏

i

P (xi | f) =
∏

i

fxi(1− f)1−xi

= fk(1− f)N−k, k =
∑

i

xi = “# 1s”

Can ‘invert’, find p(f |x) with Bayes rule



Inferring f=P (xi=1)

Cannot do inference without using beliefs

A possible expression of uncertainty: p(f) = 1, f ∈ [0, 1]

Bayes rule:

p(f |x) ∝ P (x | f) p(f)

∝ fk(1− f)N−k

= Beta(f ; k+1, N−k+1)

Beta distribution:

Beta(f ;α, β) = 1
B(α,β)f

α−1(1− f)β−1 = Γ(α+β)
Γ(α)Γ(β)f

α−1(1− f)β−1

Mean: α/(α+ β)

The Beta(α, β) distribution is a standard probability distribution

over a variable f ∈ [0, 1] with parameters α and β.

The dependence of the probability density on f is summarized by:

Beta(f ;α, β) ∝ f (α−1)(1− f)(β−1).

The 1/B(α, β) = Γ(α+ β)/(Γ(α)Γ(β)) term, which is

(α+ β − 1)!/((α− 1)!(β − 1)!) for integer α and β, makes the

distribution normalized (integrate to one). Here, it’s just some

constant with respect to the parameter f .

For comparison, perhaps you are more familiar with a Gaussian

(or Normal), N (µ, σ2), a probability distribution over a variable

x ∈ [−∞,∞], with parameters µ and σ2.

The dependence of the probability density on x is summarized by

N (x;µ, σ2) ∝ exp(−0.5(x− µ)2/σ2).

We divide this expression by
∫

exp(−0.5(x− µ)2/σ2) dx =
√

2πσ2

to make the distribution normalized.

We found that our posterior beliefs, given observations, are

proportional to fk(1− f)N−k and we know f ∈ [0, 1]. Given the form

of the f dependence, the posterior distribution must be a Beta

distribution. We obtain the parameters α and β by comparing the

powers of f and (1−f) in the posterior and in the definition of the

Beta distribution. Comparing terms and reading off the answer is

easier than doing integration to normalize the distribution from

scratch, as in equations 3.11 and 3.12 of MacKay, p52.

Again for comparison: if you were trying to infer a real-valued

parameter y ∈ [−∞,∞], and wrote down a posterior:

p(y |D) ∝ p(D | y) p(y) and found p(y |D) ∝ exp(−ay2 + by) for some

constants a and b, you could state that p(y |D) = exp(−ay2 + by)/Z,

and derive that the constant must be Z =
∫

exp(−ay2 + by)dy = . . ..

Alternatively, you could realize that a quadratic form inside an exp is

a Gaussian distribution. Now you just have identify its parameters.

As N (y;µ, σ2) ∝ exp(−0.5(y − µ)2/σ2) ∝ exp(−0.5y2/σ2 + (µ/σ2)y),

we can identify the parameters of the posterior: σ2 = 1/(2a) and

µ = bσ2 = b/(2a).

References on inferring a probability

The ‘bent coin’ is discussed in MacKay §3.2, p51

See also Ex. 3.15, p59, which has an extensive worked solution.

The MacKay section mentions that this problem is the one studied by

Thomas Bayes, published in 1763. This is true, although the problem

was described in terms of a game played on a Billiard table.

The Bayes paper has historical interest, but without modern

mathematical notation takes some time to read. Several versions can

be found around the web. The original version has old-style

typesetting. The paper was retypeset, but with the original long

arguments, for Biometrica in 1958:

http://dx.doi.org/10.1093/biomet/45.3-4.296



Prediction

Prediction rule from marginalization and product rules:

P (xN+1 |x) =

∫
P (xN+1 | f, x ) · p(f |x) df

The boxed dependence can be omitted here.

P (xN+1 =1 |x) =

∫
f · p(f |x) df = Ep(f |x)[f ] =

k + 1

N + 2
.

Laplace’s law of succession

P (xN+1 =1 |x) =
k + 1

N + 2

Maximum Likelihood (ML): f̂ = argmaxf P (x | f) = k
N .

ML estimate is unbiased : E[f̂ ] = f .

Laplace’s rule is like using the ML estimate, but imagining

we saw a 0 and a 1 before starting to read in x.

Laplace’s rule biases probabilities towards 1/2.

ML estimate assigns zero probability to unseen symbols.

Encoding zero-probability symbols needs ∞ bits.

New prior / prediction rule

Could use a Beta prior distribution:

p(f) = Beta(f ; n1, n0)

p(f |x) ∝ fk+n1−1 (1− f)N−k+n0−1

= Beta(f ; k+n1, N−k+n0)

P (xN+1 =1 |x) = Ep(f |x)[f ] =
k + n1

N + n0 + n1

Think of n1 and n0 as previously observed counts

(n1 =n0 =1 gives uniform prior and Laplace’s rule)

Large pseudo-counts

Beta(20,10) distribution:

0 0.2 0.4 0.6 0.8 1
0

2

4

6

f
p

(f
)

Mean: 2/3

This prior says f close to 0 and 1 are very improbable

We’d need � 30 observations to change our mind

(to over-rule the prior, or pseudo-observations)



Fractional pseudo-counts

Beta(0.2,0.2) distribution:

0 0.2 0.4 0.6 0.8 1
0

10

20

f

p
(f

)

Mean: 1/2 — notice prior says more than a guess of f=1/2

f is probably close to 0 or 1 but we don’t know which yet

One observation will rapidly change the posterior

Fractional pseudo-counts

Beta(1.2,0.2) distribution:

0 0.2 0.4 0.6 0.8 1
0

20

40

f

p
(f

)

Posterior from previous prior and observing a single 1

Larger alphabets

i.i.d. symbol model:

P (x |p) =
∏

i

pkii , where ki =
∑

n

I(xn = ai)

The ki are counts for each symbol.

Dirichlet prior, generalization of Beta:

p(p |α) = Dirichlet(p; α) =
δ(1−∑i pi)

B(α)

∏

i

pαi−1
i

Dirichlet predictions (Lidstone’s law):

P (xN+1 =ai |x) =
ki + αi

N +
∑

j αj
Counts ki are added to pseudo-counts αi. All αi=1 gives Laplace’s rule.

More notes on the Dirichlet distribution

The thing to remember is that a Dirichlet is proportional to
∏
i p
αi−1
i

The posterior p(p |x,α) ∝ P (x |p) p(p |α) will then be Dirichlet with

the αi’s increased by the observed counts.

Details (for completeness): B(α) is the Beta function
∏
i Γ(αi)

Γ(
∑
i αi)

.

I left the 0 ≤ pi ≤ 1 constraints implicit. The δ(1−∑i pi) term

constrains the distribution to the ‘simplex’, the region of a

hyper-plane where
∑
i pi = 1. But I can’t omit this Dirac-delta,

because it is infinite when evaluated at a valid probability vector(!).

The density over just the first (I−1) parameters is finite, obtained by

integrating out the last parameter:

p(pj<I−1) =

∫
p(p |α) dpI =

1

B(α)

(
1−∑I−1

i=1 pi
)αI−1

I−1∏

i=1

pαi−1
i

There are no infinities, and the relation to the Beta distribution is

now clearer, but the expression isn’t as symmetric.



Reflection on Compression

Take any complete compressor.

If “incomplete” imagine an improved “complete” version.

Complete codes:
∑

x 2−`(x) = 1, x is whole input file

Interpretation: implicit Q(x) = 2−`(bx)

If we believed files were drawn from P (x) 6= Q(x) we would

expect to do D(P ||Q)>0 bits better by using P (x).

Compression is the modelling of probabilities of files.

If we think our compressor should ‘adapt’, we are making a

statement about the structure of our beliefs, P (x).

Structure

For any distribution:

P (x) = P (x1)

N∏

n=2

P (xn |x<n)

For i.i.d. symbols: P (xn=ai |p) = pi

P (xn |x<n) =

∫
P (xn |p) p(p |x<n) dp

P (xn=ai |x<n) = Ep(p |x<n)[pi]

we saw: easy-to-compute from counts with a Dirichlet prior.

i.i.d. assumption is often terrible: want different structure.

Even then, do we need to specify priors (like the Dirichlet)?

Why not just fit p?

Run over file → counts k

Set pi = ki
N , (Maximum Likelihood, and obvious, estimator)

Save (p,x), p in a header, x encoded using p

Simple? Prior-assumption-free?

Fitting cannot be optimal

When fitting, we never save a file (p,x) where

pi 6=
ki(x)

N

Informally: we are encoding p twice

More formally: the code is incomplete

However, gzip and arithmetic coders are incomplete too,

but they are still useful!

In some situations the fitting approach is very close to optimal



Fitting isn’t that easy!

Setting pi = ki
N is easy. How do we encode the header?

Optimal scheme depends on p(p); need a prior!

What precision to send parameters?
Trade-off between header and message size.

Interesting models will have many parameters.

Putting them in a header could dominate the message.

Having both ends learn the parameters while {en,de}coding

the file avoids needing a header.

For more (non-examinable) detail on these issues see MacKay p352–353

Richer models

Images are not bags of i.i.d. pixels

Text is not a bag of i.i.d. characters/words

(although many “Topic Models” get away with it!)

Less restrictive assumption than:

P (xn |x<n) =

∫
P (xn |p) p(p |x<n) dp

is

P (xn |x<n) =

∫
P (xn |pC(x<n)) p(pC(x<n) |x<n) dpC(x<n)

Probabilities depend on the local context, C:

— Surrounding pixels, already {en,de}coded

— Past few characters of text

Image contexts

P (xi=Black |C) =
kB|C + α

NC + α|A| =
2 + α

7 + 2α

There are 2p contexts of size p binary pixels

Many more counts/parameters than i.i.d. model

A good image model?

The context model isn’t far off what several real image

compression systems do for binary images.

With arithmetic coding we go from 500 to 220 bits

A better image model might do better

If we knew it was text and the font we’d need fewer bits!



Context size

How big to make the context?

kids make nutr ?

Context length:
0: i.i.d. bag of characters

1: bigrams, give vowels higher probability

>1: predict using possible words

�1: use understanding of sentences?

Ideally we’d use really long contexts, as humans do.

Problem with large contexts

For simple counting methods, statistics are poor:

p(xn = ai |x<n) =
ki|C + α

NC + α|A|

k·|C will be zero for most symbols in long contexts

Predictions become uniform ⇒ no compression.

What broke? We believe some contexts are related:

kids make nutr ?

kids like nutr ?

while the Dirichlet prior says they’re unrelated

Prediction by Partial Match (PPM)

One way of smoothing predictions from several contexts:

Model: draw using fractions observed at context

Escape to shorter context with some probability (variant-dependent)

Prediction by Partial Match (PPM)

P (l | Hello there? He) = 1
2 + 1

2

(
1
4 + 1

4

(
2
16 + 1

16
1
|A|
))

P (! | Hello there? He) = 1
2

1
4

1
16

1
|A|

P ( | Hello there? He) = 1
2

(
1
4

(
2
16 + 1

16
1
|A|
))



Prediction by Partial Match comments

First PPM paper: Clearly and Witten (1984). Many variants since.

The best PPM variant’s text compression is now highly competitive.

Although it is clearly possible to come up with better models of text.

The ideas are common to methods with several other names.

PPM is a name used a lot in text compression for the combination of

this type of model with arithmetic coding.

Other prediction methods and more advanced models

Better methods that smooth counts from different contexts:

http://research.microsoft.com/pubs/64808/tr-10-98.pdf

I covered Beta and Dirichlet priors to demonstrate that prediction

rules can be derived from models. There isn’t time in this course to

take this idea further, but state-of-the-art predictions can result from

Bayesian inference in more complicated hierarchical models:

http://homepages.inf.ed.ac.uk/sgwater/papers/nips05.pdf

http://www.aclweb.org/anthology/P/P06/P06-1124.pdf

Information Theory
http://www.inf.ed.ac.uk/teaching/courses/it/

Week 6
Communication channels and Information

Iain Murray, 2012

School of Informatics, University of Edinburgh

Noisy channel communication
Input File

↓ compress

x = 00110001

↓ add redundancy

00110001

00110001 → Noisy
Channel

→ 00011001

01110011

1011010000110001

transmitted message decode ↓
often called t or x x̂ = 00110001

decompress ↓
If all errors corrected: Original file

Some notes on the noisy channel setup:

Noisy communication was outlined in lecture 1, then abandoned to

cover compression, representing messages for a noiseless channel.

Why compress, remove all redundancy, just to add it again?

Firstly remember that repetition codes require a lot of repetitions to

get a negligible probability of error. We are going to have to add

better forms of redundancy to get reliable communication at good

rates. Our files won’t necessarily have the right sort of redundancy.

It is often useful to have modular designs. We can design an

encoding/decoding scheme for a noisy channel separately from

modelling data. Then use a compression system to get our file

appropriately distributed over the required alphabet.

It is possible to design a combined system that takes redundant files

and encodes them for a noisy channel. MN codes do this:

http://www.inference.phy.cam.ac.uk/mackay/mncN.pdf

These lectures won’t discuss this option.



Discrete Memoryless Channel, Q

Discrete: Inputs x and Outputs y have discrete (sometimes

binary) alphabets:

x ∈ AX y ∈ AY

Qj|i = P (y=bj |x=ai)

Memoryless: outputs always drawn using fixed Q matrix

We also assume channel is synchronized

Synchronized channels

We know that a sequence of inputs was sent and which

outputs go with them.

Dealing with insertions and deletions is a tricky topic,

an active area of research that we will avoid

Binary Symmetric Channel (BSC)

A natural model channel for binary data:

Alternative view:

noise drawn from p(n) =

{
1− f n = 0

f n = 1

y = (x + n) mod 2 = x XOR n

% Matlab/Octave

y = mod(x+n, 2);

y = bitxor(x, n);

/* C (or Python) */

y = (x+n) % 2;

y = x ^ n;

Binary Erasure Channel (BEC)

An example of a non-binary alphabet:

With this channel corruptions are obvious

Feedback: could ask for retransmission

Care required: negotiation could be corrupted too

Feedback sometimes not an option: hard disk storage

The BEC is not the deletion channel. Here symbols are replaced with a

placeholder, in the deletion channel they are removed entirely and it is

no longer clear at what time symbols were transmitted.



Z channel

Cannot always treat symbols symmetrically

“Ink gets rubbed off, but never added”

Channel Probabilities

Channel definition:

Qj|i = P (y=bj |x=ai)

Assume there’s nothing we can do about Q.

We can choose what to throw at the channel.

Input distribution: pX =



p(x=a1)

...

p(x=aI)




Joint distribution: P (x, y) = P (x)P (y |x)

Output distribution: P (y) =
∑

xP (x, y)

vector notation: pY = QpX

(the usual relationships for any two variables x and y)

A little more detail on channel probabilities:

More detail on why the output distribution can be found by a matrix

multiplication:

pY,j = P (y=bj) =
∑

i

P (y=bj, x=ai)

=
∑

i

P (y=bj |x=ai)P (x=ai)

=
∑

i

Qj|i pX,i

pY = QpX

Care: some texts (but not MacKay) use the transpose of our Q as the

transition matrix, and so use left-multiplication instead.

Channels and Information

Three distributions: P (x), P (y), P (x, y)

Three observers: sender, receiver, omniscient outsider

Average surprise of receiver: H(Y ) =
∑

y P (y) log 1/P (y)

Partial information about sent file and added noise

Average information of file: H(X) =
∑

xP (x) log 1/P (x)

Sender observes all of this, but no information about noise

Omniscient outsider experiences total joint entropy of file

and noise: H(X,Y ) =
∑

x,y P (x, y) log 1/P (x,y)



Joint Entropy

Omniscient outsider gets more information on average than

an observer at one end of the channel: H(X,Y ) ≥ H(X)

Outsider can’t have more information than both ends

combined:

H(X,Y ) ≤ H(X) + H(Y )

with equality only if X and Y are independent

(independence useless for communication!)

Mutual Information (1)

How much too big is H(X) + H(Y ) 6= H(X,Y ) ?

Overlap: I(X;Y ) = H(X) + H(Y )−H(X,Y )

is called the mutual information

It’s the average information content “shared” by the

dependent X and Y ensembles. (more insight to come)

Inference in the channel

The receiver doesn’t know x, but on receiving y can update

the prior P (x) to a posterior:

P (x | y) =
P (x, y)

P (y)
=

P (y |x)P (x)

P (y)

e.g. for BSC with P (x=1) = 0.5, P (x | y) =
{
1− f x = 0

f x = 1

other channels may have less obvious posteriors

Another distribution we can compute the entropy of!

Conditional Entropy (1)

We can condition every part of an expression on the setting

of an arbitrary variable:

H(X | y) =
∑

x

P (x | y) log 1/P (x | y)

Average information available from seeing x, given that we

already know y.

On average this is written:

H(X |Y ) =
∑

y

P (y)H(X | y) =
∑

x,y

P (x, y) log 1/P (x | y)



Conditional Entropy (2)

Similarly

H(Y |X) =
∑

x,y

P (x, y) log 1/P (y |x)

is the average uncertainty about the output that the sender

has, given that she knows what she sent over the channel.

Intuitively this should be less than the average surprise that

the receiver will experience, H(Y ).

Conditional Entropy (3)

The chain rule for entropy:

H(X,Y ) = H(X) + H(Y |X) = H(Y ) + H(X |Y )

“The average coding cost of a pair is the same regardless of

whether you treat them as a joint event, or code one and

then the other.”

Proof:

H(X,Y ) =
∑

x

∑

y

p(x) p(y |x)

[
log

1

p(x)
+ log

1

p(y |x)

]

=
∑

x

p(x) log
1

p(x)
��

��
��

��
��

��*1∑

y

p(y |x) +
∑

x

∑

y

p(x, y) log
1

p(y |x)

Mutual Information (2)

The receiver thinks: I(X;Y ) = H(X)−H(X |Y )

The mutual information is, on average, the information

content of the input minus the part that is still uncertain

after seeing the output. That is, the average information

that we can get about the input over the channel.

I(X;Y ) = H(Y )−H(Y |X) is often easier to calculate

The Capacity

Where are we going?

I(X;Y ) depends on the channel and input distribution pX

The Capacity: C(Q) = maxpX
I(X;Y )

C gives the maximum average amount of information we

can get in one use of the channel.

We will see that reliable communication is possible at

C bits per channel use.



Lots of new definitions

When dealing with extended ensembles, independent identical copies

of an ensemble, entropies were easy: H(XK) = KH(X).

Dealing with channels forces us to extend our notions of information

to collections of dependent variables. For every joint, conditional and

marginal probability we have a different entropy and we’ll want to

understand their relationships.

Unfortunately this meant seeing a lot of definitions at once.

They are summarized on pp138–139 of MacKay. And also in the

following tables.

The probabilities associated with a channel

Very little of this is special to channels, it’s mostly results for any pair

of dependent random variables.

Distribution Where from? Interpretation / Name

P (x) We choose Input distribution

P (y |x) Q, channel definition Channel noise model
Sender’s beliefs about output

P (x, y) p(y |x) p(x) Omniscient outside observer’s
joint distribution

P (y)
∑

x p(x, y) = QpX (Marginal) output distribution

P (x | y) p(y |x) p(x)/p(y) Receiver’s beliefs about input.
“Inference”

Corresponding information measures

H(X)
∑

x p(x) log 1/p(x) Ave. info. content of source

Sender’s ave. surprise on seeing x

H(Y )
∑

y p(y) log 1/p(y) Ave. info. content of output

Partial info. about x and noise

Ave. surprise of receiver

H(X,Y )
∑

x,y p(x, y) log 1/p(x,y) Ave. info. content of (x, y)

or “source and noise”.

Ave. surprise of outsider

H(X | y)
∑

x p(x | y) log 1/p(x | y) Uncertainty after seeing output

H(X |Y )
∑

x,y p(x, y) log 1/p(x | y) Average, Ep(y)[H(X | y)]

H(Y |X)
∑

x,y p(x, y) log 1/p(y | x) Sender’s ave. uncertainty about y

I(X;Y ) H(X)+H(Y )−H(X,Y ) ‘Overlap’ in ave. info. contents

H(X)−H(X |Y ) Ave. uncertainty reduction by y

Ave info. about x over channel.

H(Y )−H(Y |X) Often easier to calculate

And review the diagram relating all these quantities!

Ternary confusion channel

Assume pX = [1/3, 1/3, 1/3]. What is I(X;Y )?

H(X)−H(X |Y ) = H(Y )−H(Y |X) = 1−1/3 = 2/3

Optimal input distribution: pX = [1/2, 0, 1/2]

For which I(X;Y ) = 1, the capacity of the channel.
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Mutual Information revisited

Verify for yourself: I(X;Y ) = DKL(p(x, y) || p(x) p(y))

Mutual information is non-negative:

H(X)−H(X |Y ) = I(X;Y ) ≥ 0, Proof: Gibbs’ inequality

Conditioning cannot increase uncertainty on average

Concavity of Entropy

Consider H(X) ≥ H(X |C) for the special case:

p(c) =

{
λ c = 1

1− λ c = 2

p(x | c=1) = p1(x), p(x | c=2) = p2(x)

p(x) = λp1(x) + (1−λ)p2(x)

which implies the entropy is concave:

H(λp1 + (1−λ)p2) ≥ λH(p1) + (1−λ)H(p2)

Concavity of I(X;Y)

I(X;Y ) = H(Y )−H(Y |X)

= H(QpX)− p>XH(Y |x)

First term concave in pX (concave function of linear transform)

Second term linear in pX

Mutual Information is concave in input distribution

It turns out that I(X;Y ) is convex in the channel

paramters Q. Reference: Cover and Thomas §2.7.



Noisy typewriter

See the fictitious noisy typewriter model, MacKay p148

For Uniform input distribution: pX = [1/27, 1/27, . . . 1/27]>

H(X) = log(27)

p(x | y=B) =





1/3 x = A

1/3 x = B

1/3 x = C

0 otherwise.

⇒ H(X | y=B) = log 3

H(X |Y ) = Ep(y)[H(X | y)] = log 3

I(X;Y ) = H(X)−H(X |Y ) = log 27/3 = log2 9 bits

Noisy Typewriter Capacity:

In fact, the capacity: C = maxpX
I(X;Y ) = log2 9 bits

Proof: any asymmetric input distribution can be shifted by any

number of characters to get new distributions with the same mutual

information (by symmetry). Because I(X;Y ) is concave, any convex

combination of these distributions will have performance as good or

better. The uniform distribution is the average of all the shifted

distributions, so can be no worse than any asymmetric distribution.

Under the uniform input distribution, the receiver infers 9 bits of

information about the input. Shannon’s theory will tell us that this is

the fastest rate that we can communicate information without error.

For this channel there is a simple way of achieving error-less

communication at this rate: only use 9 of the inputs as on the next

slide. Confirm that the mutual information for this input distribution

is also log2 9 bits.

Non-confusable inputs
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MacKay, p153

The challenge

Most channels aren’t as easy-to-use as the typewriter.

How to communicate without error with messier channels?

Idea: use N th extension of channel:

Treat N uses as one use of channel with

Input ∈ ANX
Output ∈ ANY

For large N a subset of inputs can be non-confusable with

high-probability.



Extensions of the BSC

(f = 0.15)
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Extensions of the Z channel

(f = 0.15)
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Do the 4th extensions look like the noisy typewriter?

I think they look like a mess! For the BSC the least confusable inputs

are 0000 and 1111 – a simple repetition code. For the Z-channel one

might use more inputs if one has a moderate tolerance to error.

(Might guess this: the Z-channel has higher capacity.)

To get really non-confusable inputs need to extend to larger N . Large

blocks are hard to visualize. The cartoon on the previous slide is part

of how the noisy channel theorem is proved.

We know from source-coding that only some large blocks under a

given distribution are “typical”. For a given input, only certain

outputs are typical (e.g., all the blocks that are within a few bit-flips

from the input). If we select only a tiny subset of inputs, codewords,

whose typical output sets only weakly overlap. Using these nearly

non-confusable inputs will be like using the noisy typewriter.

That will be the idea. But as with compression, dealing with large

blocks can be impractical. So first we’re going to look at some simple,

practical error correcting codes.



ISBNs — checksum example

On the back of Bishop’s Pattern Recognition book: (early printings)

ISBN: 0-387-31073-8

Group-Publisher-Title-Check

The check digit: x10 = x1 + 2x2 + 3x3 + · · ·+ 9x9 mod 11

Matlab/Octave: mod((1:9)*[0 3 8 7 3 1 0 7 3]’, 11)

Numpy: dot([0,3,8,7,3,1,0,7,3], r [1:10]) % 11

Questions:
— Why is the check digit there?

—
∑9

i=1 xi mod 10 would detect any single-digit error.

— Why is each digit pre-multiplied by i?

— Why do mod 11, which means we sometimes need X?

Some people often type in ISBNs. It’s good to tell them of mistakes

without needing a database lookup to an archive of all books.

Not only are all single-digit errors detected, but also transposition of

two adjacent digits.

The back of the MacKay textbook cannot be checked using the given

formula. In recent years books started to get 13-digit ISBN’s. These

have a different check-sum, performed modulo-10, which doesn’t

provide the same level of protection.

Check digits are such a good idea, they’re found on many long

numbers that people have to type in, or are unreliable to read:

— Product codes (UPC, EAN, . . . )

— Government issued IDs for Tax, Health, etc., the world over.

— Standard magnetic swipe cards.

— Airline tickets.

— Postal barcodes.

[7,4] Hamming Codes

Sends K=4 source bits

With N=7 uses of the channel

Can detect and correct any single-bit error in block.

My explanation in the lecture and on the board followed

that in the MacKay book, p8, quite closely.

You should understand how this block code works.

To think about: how can we make a code (other than a

repetition code) that can correct more than one error?

[N,K] Block codes

[7,4] Hamming code was an example of a block code

We use S = 2K codewords (hopefully hard-to-confuse)

Rate: # bits sent per channel use:

R =
log2S

N
=
K

N

Example, repetition code R3:

N=3, S=2 codewords: 000 and 111. R = 1/3.

Example, [7, 4] Hamming code: R = 4/7.

Some texts (not MacKay) use (log|AX| S)/N , the relative rate

compared to a uniform distribution on the non-extended channel.

I don’t use this definition.



Noisy channel coding theorem

Consider a channel with capacity C = maxpX
I(X;Y )

[E.g.’s, Tutorial 5: BSC, C = 1−H2(f); BEC C = 1−f ]

No feed back channel

For any desired error probability ε > 0, e.g. 10−15, 10−30. . .

For any rate R < C

1) There is a block code (N might be big) with error < ε

and rate K/N ≥ R.

2) If we transmit at a rate R>C then there is a non-zero

error probability that we cannot go beneath.

The minimum error probability for R>C is found by “rate distortion theory”, mentioned in the final lecture, but not part of
this course. More detail §10.4, pp167–168, of MacKay. Much more in Cover and Thomas.

Capacity as an upper limit

It is easy to see that errorless transmission above capacity is

impossible for the BSC and the BEC. It would imply we can compress

any file to less than its information content.

BSC: Take a message with information content K +NH2(f) bits.

Take the first K bits and create a block of length N using an error

correction code for the BSC. Encode the remaining bits into N binary

symbols with probability of a one being f . Add together the two

blocks modulo 2. If the error correcting code can identify the

‘message’ and ‘noise’ bits, we have compressed K +NH2(f) bits into

N binary symbols. Therefore, N > K+NH2(f) ⇒ K/N < 1−H2(f).

That is, R < C for errorless communication.

BEC: we typically receive N(1−f) bits, the others having been

erased. If the block of N bits contained a message of K bits, and is

recoverable, then K < N(1−f), or we have compressed the message to

less than K bits. Therefore K/N < (1−f), or R < C.

Linear [N,K] codes

Hamming code example of linear code: t = G>s mod 2

Transmitted vector takes on one of 2K codewords

Codewords satisfy M=N−K constraints: Ht = 0 mod 2

Dimensions:

t N × 1

G> N ×K
s K × 1

H M ×N

For the BEC, choosing constraints H at random makes

communication approach capacity for large N !

Required constraints

There are E ≈ Nf erasures in a block

Need E independent constraints to fill in erasures

H matrix provides M=N−K constraints.

But they won’t all be independent.

Example: two Hamming code parity checks are:

t1 + t2 + t3 + t5 = 0 and t2 + t3 + t4 + t6 = 0

We could specify ‘another’ constraint:

t1 + t4 + t5 + t6 = 0

But this is the sum (mod 2) of the first two, and provides

no extra checking.



H constraints

Q. Why would we choose H with redundant rows?

A. We don’t know ahead of time which bits will be erased. Only at

decoding time do we set up the M equations in the E unknowns.

For H filled with {0, 1} uniformly at random, we expect to

get E independent constraints with only M = E+2 rows.

Recall E ≈ Nf . For large N , if f < M/N there will be

enough constraints with high probability.

Errorless communication possible if

f < (N−K)/N = 1−R or if R < 1−f , i.e., R < C.

A large random linear code achieves capacity.

Details on finding independent constraints:

Imagine that while checking parity conditions, a row of H at a time,

you have seen n independent constraints so far.

P (Next row of H useful) = 1− 2n/2E = 1− 2n−E

There are 2E possible equations in the unknowns, but 2n of those are

combinations of the n constraints we’ve already seen.

Expect number of wasted rows before we see E constraints:

E−1∑

n=0

(
1

1− 2n−E
− 1

)
=

E−1∑

n=0

1

2E−n − 1
= 1 + 1/3 + 1/7 + . . .

< 1 + 1/2 + 1/4 + · · · < 2

(The sum is actually about 1.6)

Packet erasure channel

Split a video file into K = 10, 000 packets and transmit

Some might be lost (dropped by switch, fail checksum, . . . )

Assume receiver knows the identity of received packets:

— Transmission and reception could be synchronized

— Or large packets could have unique ID in header

If packets are 1 bit, this is the BEC.

Digital fountain methods provide cheap, easy-to-implement

codes for erasure channels. They are rateless: no need to

specify M , just keep getting packets. When slightly more

than K have been received, the file can be decoded.

Digital fountain (LT) code

Packets are sprayed out continuously

Receiver grabs any K ′ > K of them (e.g., K ′ ≈ 1.05K)

Receiver knows packet IDs n, and encoding rule

Encoding packet n:

Sample dn pseudo-randomly from a degree distribution µ(d)

Pick dn pseudo-random source packets

Bitwise add them mod 2 and transmit result.

Decoding:

1. Find a check packet with dn = 1

Use that to set corresponding source packet

Subtract known packet from all checks

Degrees of some check packets reduce by 1. GoTo 1.



LT code decoding
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Soliton degree distribution

Ideal wave of decoding always has one d=1 node to remove

“Ideal soliton” does this in expectation:

ρ(d) =

{
1/K d = 1

1/d(d−1) d = 2, 3, . . . ,K

(Ex. 50.2 explains how to show this.)

A robustified version, µ(d), ensures decoding doesn’t stop

and all packets get connected. Still get R→ C for large K.

A Soliton wave was first observed in 19 C Scotland on the Union Canal.

Number of packets to catch

10000 10500 11000 11500 12000

10000 10500 11000 11500 12000

10000 10500 11000 11500 12000

K=10, 000 source packets

Numbers of transmitted

packets required for

decoding on random

trials for three different

packet distributions.

MacKay, p593

Reed–Solomon codes (sketch mention)

Widely used: e.g. CDs, DVDs, Digital TV

k message symbols → coefficients of degree k−1 polynomial

Evaluate polynomial at > k points and send

Some points can be erased:

Can recover polynomial with any k points.

To make workable, polynomials are defined on Galois fields.

Reed–Solomon codes can be used to correct bit-flips as well as erasures:

like identifying outliers when doing regression.
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Typical sets revisited

Week 2: looked at k =
∑

i xi, xi ∼ Bernoulli(f)

Saw number of 1’s is almost always in narrow range around

expected number. Indexing this ‘typical set’ was the cost of

compression.

Typical sets: general alphabets

More generally look at Ĥ = 1
N

∑
i log 1

P (xi)
, xi ∼ P

Define typical set: x ∈ TN,β if
∣∣∣ 1
N log 1

P (x) −H(X)
∣∣∣ < β

For any β, P (x ∈ TN,β) > 1−δ, for any δ if N big enough

See MacKay, Ch. 4

Source Coding Theorem

(MacKay, p82–3 for details)

Min probability in TN,β is 2−N(H(X)+β)

Therefore typical set has size ≤ 2N(H(X)+β)

For large N can set β small

Index almost all strings with log2 2NH(X) = NH(X) bits

We now extend ideas of typical sets to joint ensembles of

inputs and outputs of noisy channels. . .



Jointly typical sequences

For n = 1 . . . N : xn ∼ pX

Send x over extended channel: yn ∼ Q·|xn

Jointly typical:

(x,y) ∈ JN,β if
∣∣∣ 1
N log 1

P (x,y) −H(X,Y )
∣∣∣ < β

There are ≤ 2N(H(X,Y )+β) jointly typical sequences

Chance of being jointly typical

(x,y) from channel are jointly typical with prob 1−δ
(x′,y′) generated independently are rarely jointly typical

P (x′,y′ ∈ JN,β) =
∑

(x,y)∈JN,β

P (x)P (y)

≤ |JN,β| 2−N(H(X)−β) 2−N(H(Y )−β)

≤ 2N(H(X,Y )−H(X)−H(Y )+3β)

≤ 2−N(I(X;Y )−3β)

≤ 2−N(C−3β), for optimal pX

Random typical set code

Randomly choose S = 2NR
′

codewords {x(s)}
Decode y→ ŝ if (y,x(ŝ)) ∈ JN,β
and no other (y,x(s′)) ∈ JN,β

Error rate averaged over codes

Set rate R′ < C−3β. For large N prob. confusion < δ

Total error probability on average < 2δ



Error for a particular code

We randomly drew all the codewords for each symbol sent.

Block error rate averaged over all codes:

〈pB〉 ≡
∑

C
P (ŝ 6= s | C)P (C) < 2δ

Some codes will have error rates more/less than this

There exists a code with block error:

pB(C) ≡ P (ŝ 6= s | C) < 2δ

Worst case codewords

Maximal block error: pBM(C) ≡ maxsP (ŝ 6= s | s, C)
could be close to 1.

pBM < 4δ for expurgated code.

Now have 2NR
′−1 codewords, rate = R′ − 1/N .

Noisy channel coding theorem

For N large enough, can shrink β’s and δ’s close to zero.

For large N a code exists with rate close to C with error

close to zero. (As close as you like for large enough N .)

In the ‘week 7’ notes we showed that it is impossible to

transmit at rates greater than the capacity, without

non-negligible probability of error for particular channels.

This is also true in general.

Code distance

Distance, d ≡ mins,s′
∣∣x(s) − x(s′)

∣∣

E.g., d=3 for the [7, 4] Hamming code

Can always correct b(d− 1)/2c errors

Distance of random codes?
∣∣x(s) − x(s′)

∣∣ ≈ N
2 for large N

Not guaranteed to correct errors in ≥ N
4 bits

With BSC get ≈ Nf errors, and proof works for f > 1
4



Distance isn’t everything

Distance can sometimes be a useful measure of a code

However, good codes have codewords that aren’t separated

by twice the number of errors we want to correct

In high-dimensions the overlapping volume is tiny.

Shannon-limit approaching codes for the BSC correct

almost all patterns with Nf errors, even though they can’t

strictly correct all such patterns.

Low Density Parity Check codes

LDPC codes originally discovered by Gallagher (1961)

Sparse graph codes like LDPC not used until 1990s.

Prior over codewords P (t) ∝ I(Ht=0)

Posterior over codewords P (t | r) ∝ P (t)Q(r | t)

Why Low Density Parity Check (LDPC) codes?

For some channels, the noisy channel coding theorem can be reproved

for randomly generated linear codes. However, not all ways of

generating low-density codes, with each variable only involved in a few

parity checks and vice-versa, are very good.

For some sequences of low-density codes, the Shannon limit is

approached for large block-lengths.

For both uniformly random linear codes, or random LDPC codes, the

results are for optimal decoding: t̂ = argmaxtP (t | r). This is a hard

combinatorial optimization problem in general. The reason to use

low-density codes is that we have good approximate solvers: use the

sum-product algorithm (AKA “loopy belief propagation”) — decode if

the thresholded beliefs give a setting of t that satisfies all parity

checks.

Sum-Product algorithm

Example with three received bits and one parity check

p336 MacKay, p399 Bishop “Pattern recognition and machine learning”



Sum-Product algorithm notes:

Beliefs are combined by element-wise multiplying

Two types of messages: variable→ factor and factor→ variable

Messages combine beliefs from all neighbours except recipient

Variable→ factor:

qn→m(xn) =
∏

m′∈M(n)\m
rm′→n(xn)

Factor→ variable:

rm→n(xn) =
∑

xm\n

(
fm(xm)

∏

n′∈N (m)\n
qn′→m(xn′)

)

Example rp→a in diagram, with sum over (b, c) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}
rp→a(0) = 1×0.1×0.1 + 0 + 0 + 1×0.9×0.9 = 0.82

rp→a(1) = 0 + 1×0.1×0.9 + 1×0.9×0.1 + 0 = 0.18

More Sum-Product algorithm notes:

Messages can be renormalized, e.g. to sum to 1, at any time.

I did this for the outgoing message from a to an imaginary factor

downstream. This message gives the relative beliefs about about the

settings of a given the graph we can see:

bn(xn) =
∏

m′∈M(n)

rm′→n(xn)

The settings with maximum belief are taken and, if they satisfy the

parity checks, used as the decoded codeword.

The beliefs are the correct posterior marginals if the factor graph is a

tree. Empirically the decoding algorithm works well on low-density

graphs that aren’t trees. Loopy belief propagation is also sometimes

used in computer vision and machine learning, however, it will not

give accurate or useful answers on all inference/optimization problems!

We haven’t covered efficient implementation which uses Fourier

transform tricks to compute the sum quickly.

Information Theory
http://www.inf.ed.ac.uk/teaching/courses/it/

Week 9
Hashes and lossy memories

Iain Murray, 2012

School of Informatics, University of Edinburgh

Course overview

Source coding / compression:
— Losslessly representing information compactly

— Good probabilistic models → better compression

Noisy channel coding / error correcting codes:
— Add redundancy to transmit without error

— Large pseudo-random blocks approach theory limits

— Decoding requires large-scale inference (cf Machine learning)

Other topics in information theory
— Cryptography: not covered here

— Over capacity: using fewer bits than info. content

— Rate distortion theory

— Hashing



Rate distortion theory (taster)

Q. How do we store N bits of information with N/3 binary

symbols (or N uses of a channel with C = 1/3)?

A. We can’t without a non-negligible probability of error.

But what if we were forced to try?

Idea 1:
— Drop 2N/3 bits on the floor

— Transmit N/3 reliably

— Let the receiver guess the remaining bits

Expected number of errors: 2N/3 · 1/2 = N/3

Can we do better?

Reversing a block code

Swap roles of encoder and decoder for [N,K] block code

E.g., Repetition code R3

Put message through decoder first, transmit, then encode

110111010001000 → 11000 → 111111000000000

111 and 000 sent without error. Other six blocks lead to

one error. Error rate = 6/8 · 1/3 = 1/4, which is < 1/3

Slightly more on MacKay p167–8, much more in Cover and Thomas.

Rate distortion theory plays little role in practical lossy compression

systems for (e.g.) images. It’s a challenge to find practical coding

schemes that respect perceptual measures of distortion.

Hashing

Hashes reduce large amounts of data into small values

(obviously the info. content of a source is not preserved in general)

Computers, humans and other animals can do amazing

things, very quickly, based on tiny amounts of information.

Understanding how to use hashes can make progress in

cognitive science and practical information systems.

Some of this is long-established computer science

A surprising amount is fertile research ground

Hashing motivational examples:

Many animals can do amazing things. While:

http://www.google.com/technology/pigeonrank.html was a hoax.

The paper on the next slide and others like it are not.

It isn’t just pigeons. Amazingly humans can do this stuff too. Paul

Speller demonstrated that humans can remember to distinguish

similar pictures of pigeons over many minutes(!). http://www.

webarchive.org.uk/wayback/archive/20100223122414/http:

//www.oneandother.co.uk/participants/PaulSpeller

How can we build systems that rapidly recall arbitrary labels attached

to large numbers of rich but noisy media sources? YouTube has

recently done this on a very large scale for copyright enforcement.

Some web browsers rapidly prove that a website isn’t on a malware

black-list without needing to access an external server, or needing an

explicit list of all black-listed sites. (False positives can be checked

with a request to an external server.)



Remembering images

Remembering images ‘Safe browsing’



Information retrieval

Wheel of Fortune, Nov 2010

Information retrieval

Information retrieval Hash functions

A common view:

file → b bit string (maybe like random bits)

hash
functionkeys

John Smith

Lisa Smith

Sam Doe

Sandra Dee

hashes

00

01

02

03

04

05

:

15

Many uses: e.g., integrity checking, security,

communication with feedback (rsync), indexing for

information retrieval



Hash Tables
hash

functionkeys

John Smith

Lisa Smith

Sam Doe

Sandra Dee

hashes

00

01

02

03

04

05

:

15

Hash indexes table of pointers

to data

When hash table is empty at

index, can immediately return

‘Not found’

Need to resolve conflicts. Ways include:

— List of data at each location. Check each item in list.

— Put pointer to data in next available location.

Deletions need ‘tombstones’, rehash when table is full

— ‘Cuckoo hashing’: use > 1 hash and recursively move

pointers out of the way to alternative locations.

Bloom Filters

Hash files multiple times (e.g., 3)

Set (or leave) bits equal to 1 at hash locations

0 1 0 1 1 1 0 0 0 0 0 1 0 1 0 0 1 0

{x, y, z}

w

Immediately know haven’t seen w: ≥ 1 bits are zero

Notes on Bloom filters

Probability of false negative is zero

Probability of false positive depends on number of memory bits, M ,

and number of hash functions, K.

For fixed large M the optimal K (ignoring computation cost) turns

out to be the one that sets ≈ 1/2 of the bits to be on. This makes

sense: the memory is less informative if sparse.

Other things we’ve learned are useful too. One way to get a low false

positive rate is to make K small but M huge. This would have a huge

memory cost. . . except we could compress the sparse bit-vector. This

can potentially perform better than a standard Bloom filter (but the

details will be more complicated).

Google Chrome uses (or at least used to use) a Bloom filter with

K=4 for its safe web-browsing feature.

Hashing in Machine Learning

A couple of example research papers

Semantic Hashing (Salakhutdinov & Hinton, 2009)

— Hash bits are “latent variables” underlying data

— ‘Semantically’ close files → close hashes

— Very fast retrieval of ‘related’ objects

Feature Hashing for Large Scale Multitask Learning,

(Weinberger et al., 2009)

— ‘Hash’ large feature vectors without (much) loss in

(spam) classification performance.

— Exploit multiple hash functions to give millions of

users personalized spam filters at only about twice the

cost (time and storage) of a single global filter(!).


