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Noisy channel communication
Input File

↓ compress

x = 00110001

↓ add redundancy

00110001

00110001 → Noisy
Channel

→ 00011001

01110011

1011010000110001

transmitted message decode ↓
often called t or x x̂ = 00110001

decompress ↓
If all errors corrected: Original file

Some notes on the noisy channel setup:

Noisy communication was outlined in lecture 1, then abandoned to

cover compression, representing messages for a noiseless channel.

Why compress, remove all redundancy, just to add it again?

Firstly remember that repetition codes require a lot of repetitions to

get a negligible probability of error. We are going to have to add

better forms of redundancy to get reliable communication at good

rates. Our files won’t necessarily have the right sort of redundancy.

It is often useful to have modular designs. We can design an

encoding/decoding scheme for a noisy channel separately from

modelling data. Then use a compression system to get our file

appropriately distributed over the required alphabet.

It is possible to design a combined system that takes redundant files

and encodes them for a noisy channel. MN codes do this:

http://www.inference.phy.cam.ac.uk/mackay/mncN.pdf

These lectures won’t discuss this option.

Discrete Memoryless Channel, Q

Discrete: Inputs x and Outputs y have discrete (sometimes

binary) alphabets:

x ∈ AX y ∈ AY

Qj|i = P (y=bj |x=ai)

Memoryless: outputs always drawn using fixed Q matrix

We also assume channel is synchronized



Synchronized channels

We know that a sequence of inputs was sent and which

outputs go with them.

Dealing with insertions and deletions is a tricky topic,

an active area of research that we will avoid

Binary Symmetric Channel (BSC)

A natural model channel for binary data:

Alternative view:

noise drawn from p(n) =

{
1− f n = 0

f n = 1

y = (x + n) mod 2 = x XOR n

% Matlab/Octave

y = mod(x+n, 2);

y = bitxor(x, n);

/* C (or Python) */

y = (x+n) % 2;

y = x ^ n;

Binary Erasure Channel (BEC)

An example of a non-binary alphabet:

With this channel corruptions are obvious

Feedback: could ask for retransmission

Care required: negotiation could be corrupted too

Feedback sometimes not an option: hard disk storage

The BEC is not the deletion channel. Here symbols are replaced with a

placeholder, in the deletion channel they are removed entirely and it is

no longer clear at what time symbols were transmitted.

Z channel

Cannot always treat symbols symmetrically

“Ink gets rubbed off, but never added”



Channel Probabilities

Channel definition:

Qj|i = P (y=bj |x=ai)

Assume there’s nothing we can do about Q.

We can choose what to throw at the channel.

Input distribution: pX =



p(x=a1)

...

p(x=aI)




Joint distribution: P (x, y) = P (x)P (y |x)

Output distribution: P (y) =
∑

xP (x, y)

vector notation: pY = QpX

(the usual relationships for any two variables x and y)

A little more detail on channel probabilities:

More detail on why the output distribution can be found by a matrix

multiplication:

pY,j = P (y=bj) =
∑

i

P (y=bj, x=ai)

=
∑

i

P (y=bj |x=ai)P (x=ai)

=
∑

i

Qj|i pX,i

pY = QpX

Care: some texts (but not MacKay) use the transpose of our Q as the

transition matrix, and so use left-multiplication instead.

Channels and Information

Three distributions: P (x), P (y), P (x, y)

Three observers: sender, receiver, omniscient outsider

Average surprise of receiver: H(Y ) =
∑

y P (y) log 1/P (y)

Partial information about sent file and added noise

Average information of file: H(X) =
∑

xP (x) log 1/P (x)

Sender observes all of this, but no information about noise

Omniscient outsider experiences total joint entropy of file

and noise: H(X,Y ) =
∑

x,y P (x, y) log 1/P (x,y)

Joint Entropy

Omniscient outsider gets more information on average than

an observer at one end of the channel: H(X,Y ) ≥ H(X)

Outsider can’t have more information than both ends

combined:

H(X,Y ) ≤ H(X) + H(Y )

with equality only if X and Y are independent

(independence useless for communication!)



Mutual Information (1)

How much too big is H(X) + H(Y ) 6= H(X,Y ) ?

Overlap: I(X;Y ) = H(X) + H(Y )−H(X,Y )

is called the mutual information

It’s the average information content “shared” by the

dependent X and Y ensembles. (more insight to come)

Inference in the channel

The receiver doesn’t know x, but on receiving y can update

the prior P (x) to a posterior:

P (x | y) =
P (x, y)

P (y)
=

P (y |x)P (x)

P (y)

e.g. for BSC with P (x=1) = 0.5, P (x | y) =
{
1− f x = 0

f x = 1

other channels may have less obvious posteriors

Another distribution we can compute the entropy of!

Conditional Entropy (1)

We can condition every part of an expression on the setting

of an arbitrary variable:

H(X | y) =
∑

x

P (x | y) log 1/P (x | y)

Average information available from seeing x, given that we

already know y.

On average this is written:

H(X |Y ) =
∑

y

P (y)H(X | y) =
∑

x,y

P (x, y) log 1/P (x | y)

Conditional Entropy (2)

Similarly

H(Y |X) =
∑

x,y

P (x, y) log 1/P (y |x)

is the average uncertainty about the output that the sender

has, given that she knows what she sent over the channel.

Intuitively this should be less than the average surprise that

the receiver will experience, H(Y ).



Conditional Entropy (3)

The chain rule for entropy:

H(X,Y ) = H(X) + H(Y |X) = H(Y ) + H(X |Y )

“The average coding cost of a pair is the same regardless of

whether you treat them as a joint event, or code one and

then the other.”

Proof:

H(X,Y ) =
∑

x

∑

y

p(x) p(y |x)

[
log

1

p(x)
+ log

1

p(y |x)

]

=
∑

x

p(x) log
1

p(x)
��

��
��

��
��

��*1∑

y

p(y |x) +
∑

x

∑

y

p(x, y) log
1

p(y |x)

Mutual Information (2)

The receiver thinks: I(X;Y ) = H(X)−H(X |Y )

The mutual information is, on average, the information

content of the input minus the part that is still uncertain

after seeing the output. That is, the average information

that we can get about the input over the channel.

I(X;Y ) = H(Y )−H(Y |X) is often easier to calculate

The Capacity

Where are we going?

I(X;Y ) depends on the channel and input distribution pX

The Capacity: C(Q) = maxpX
I(X;Y )

C gives the maximum average amount of information we

can get in one use of the channel.

We will see that reliable communication is possible at

C bits per channel use.

Lots of new definitions

When dealing with extended ensembles, independent identical copies

of an ensemble, entropies were easy: H(XK) = KH(X).

Dealing with channels forces us to extend our notions of information

to collections of dependent variables. For every joint, conditional and

marginal probability we have a different entropy and we’ll want to

understand their relationships.

Unfortunately this meant seeing a lot of definitions at once.

They are summarized on pp138–139 of MacKay. And also in the

following tables.



The probabilities associated with a channel

Very little of this is special to channels, it’s mostly results for any pair

of dependent random variables.

Distribution Where from? Interpretation / Name

P (x) We choose Input distribution

P (y |x) Q, channel definition Channel noise model
Sender’s beliefs about output

P (x, y) p(y |x) p(x) Omniscient outside observer’s
joint distribution

P (y)
∑

x p(x, y) = QpX (Marginal) output distribution

P (x | y) p(y |x) p(x)/p(y) Receiver’s beliefs about input.
“Inference”

Corresponding information measures

H(X)
∑

x p(x) log 1/p(x) Ave. info. content of source

Sender’s ave. surprise on seeing x

H(Y )
∑

y p(y) log 1/p(y) Ave. info. content of output

Partial info. about x and noise

Ave. surprise of receiver

H(X,Y )
∑

x,y p(x, y) log 1/p(x,y) Ave. info. content of (x, y)

or “source and noise”.

Ave. surprise of outsider

H(X | y)
∑

x p(x | y) log 1/p(x | y) Uncertainty after seeing output

H(X |Y )
∑

x,y p(x, y) log 1/p(x | y) Average, Ep(y)[H(X | y)]

H(Y |X)
∑

x,y p(x, y) log 1/p(y | x) Sender’s ave. uncertainty about y

I(X;Y ) H(X)+H(Y )−H(X,Y ) ‘Overlap’ in ave. info. contents

H(X)−H(X |Y ) Ave. uncertainty reduction by y

Ave info. about x over channel.

H(Y )−H(Y |X) Often easier to calculate

And review the diagram relating all these quantities!

Ternary confusion channel

Assume pX = [1/3, 1/3, 1/3]. What is I(X;Y )?

H(X)−H(X |Y ) = H(Y )−H(Y |X) = 1−1/3 = 2/3

Optimal input distribution: pX = [1/2, 0, 1/2]

For which I(X;Y ) = 1, the capacity of the channel.


