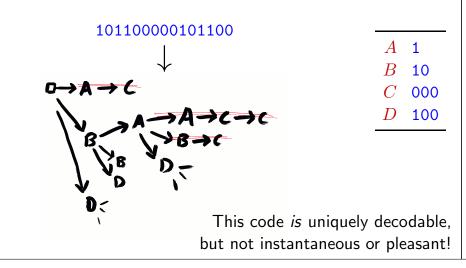

Information Theory	(Binary) Symbol Codes
http://www.inf.ed.ac.uk/teaching/courses/it/	For strings of symbols from alphabet e.g., $x_i \in \mathcal{A}_X = \{A, C, G, T\}$
Week 3 Symbol codes	Binary codeword assigned to each symbol A 0 $CGTAGATTACAGG$ C 10 \downarrow G 11110111110011101100100111111 T 110
Iain Murray, 2010 School of Informatics, University of Edinburgh	Codewords are concatentated without punctuation
Uniquely decodable	Instantaneous/Prefix Codes
We'd like to make all codewords short But some codes are not uniquely decodable	Attach symbols to leaves of a binary tree Codeword gives path to get to leaf

CGTAGATTACAGG $A \circ$ C 1 *G* 111 111111001110110110010111111 *T* 110 CGTAGATTACAGG CCCCCCAACCCACCACCAACACCCCCC CCGCAACCCATCCAACAGCCC GGAAGATTACAGG ???



"Prefix code" because no codeword is a prefix of another

Decoding: follow tree while reading stream until hit leaf Symbol is *instantly* identified. Return to root of tree.

Non-instantaneous Codes

The last code was **instantaneously decodable**: We knew as soon as we'd finished receiving a symbol

Expected length/symbol, \overline{L}

Code lengths: $\{\ell_i\} = \{\ell_1, \ell_2, \dots, \ell_I\}$

Average,
$$ar{L} = \sum_i p_i \, \ell_i$$

Compare to Entropy:

$$H(X) = \sum_{i} p_i \log \frac{1}{p_i}$$

If $\ell_i = \log \frac{1}{p_i}$ or $p_i = 2^{-\ell_i}$ we compress to the entropy

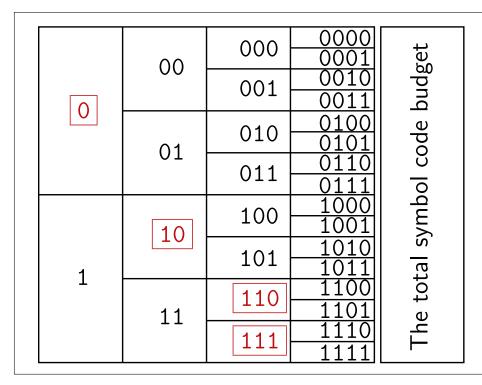
An optimal symbol code

An example code with:

$$\bar{L} = \sum_{i} p_i \ell_i = H(X) = \sum_{i} p_i \log \frac{1}{p_i}$$

x	p(x)	codeword
A	1/2	0
B	1/4	10
C	1/8	110
D	1/8	111

Limit on code lengths


Imagine coding under an implicit distribution:

$$q_i = \frac{1}{Z} 2^{-\ell_i}, \quad Z = \sum_i 2^{-\ell_i}.$$

$$H = \sum_{i} q_i \log \frac{1}{q_i} = \sum_{i} q_i \left(\ell_i + \log Z\right) = \bar{L} + \log Z$$
$$\Rightarrow \log Z \le 0, \quad Z \le 1$$

Kraft–McMillan Inequality $\sum_{i} 2^{-\ell_i} \leq 1$ (if uniquely-decodable)

Proof without invoking entropy bound: p95 of MacKay, or p116 Cover & Thomas 2nd Ed.

Kraft Inequality

If height of budget is 1, codeword has height = $2^{-\ell_i}$

Pick codes of required lengths in order from shortest-largest

Choose heighest codeword of required length beneath previously-chosen code (There won't be a gap because of sorting)

Can always pick codewords if total height, $\sum_i 2^{-\ell_i} \leq 1$

Kraft–McMillan Inequality $\sum_{i} 2^{-\ell_i} \leq 1$

(instantaneous code possible)

Corollary: there's probably no point using a non-instantaneous code. Can always make **complete code** $\sum_i 2^{-\ell_i} = 1$: slide last codeword left.

Performance of symbol codes

Simple idea: set $\ell_i = \left\lceil \log \frac{1}{p_i} \right\rceil$

These codelengths satisfy the Kraft inequality:

$$\sum_{i} 2^{-\ell_i} = \sum_{i} 2^{-\lceil \log 1/p_i \rceil} \le \sum_{i} p_i = 1$$

Expected length, \overline{L} :

$$\bar{L} = \sum_{i} p_i \ell_i = \sum_{i} p_i \lceil \log 1/p_i \rceil < \sum_{i} p_i (\log 1/p_i + 1)$$
$$\bar{L} < H(\mathbf{p}) + 1$$

Symbol codes can compress to within 1 bit/symbol of the entropy.

Summary of Lecture 5

Symbol codes assign each symbol in an alphabet a codeword. (We only considered binary symbol codes, which have binary codewords.) Messages are sent by concatenating codewords with no punctuation.

Uniquely decodable: the original message is unambiguous

Instantaneously decodable: the original symbol can always be determined as soon as the last bit of its codeword is received.

Codeword lengths must satisfy $\sum_{i} 2^{-\ell_i} \leq 1$ for unique decodability

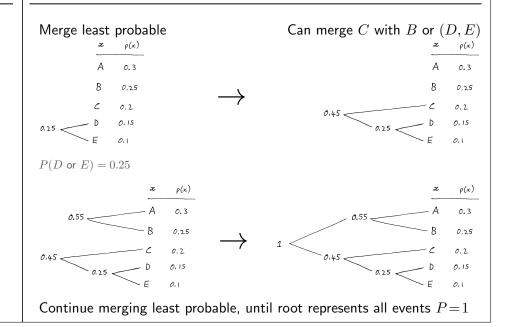
Instantaneous prefix codes can always be found (if $\sum_{i} 2^{-\ell_i} \leq 1$)

Complete codes have $\sum_i 2^{-\ell_i} = 1$, as realized by prefix codes made from binary trees with a codeword at every leaf.

If (big if) symbols are drawn i.i.d. with probabilities $\{p_i\}$, and $\ell_i = \log \frac{1}{p_i}$, then a prefix code exists that offers optimal compression.

Next lecture: how to form the best symbol code when $\{\log \frac{1}{p_i}\}$ are not integers.

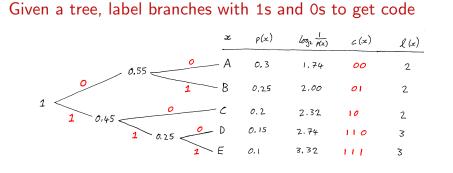
Optimal symbol codes


Encode independent symbols with known probabilities:

E.g., $\mathcal{A}_X = \{A, B, C, D, E\}$ $\mathcal{P}_X = \{0.3, 0.25, 0.2, 0.15, 0.1\}$

We can do better than $\ell_i = \left[\log \frac{1}{p_i} \right]$

The Huffman algorithm gives an optimal symbol code.


Huffman algorithm

Cover and Thomas has another version.

Proof: MacKay Exercise 5.16 (with solution).

Huffman algorithm

Code-lengths are close to the information content

(not just rounded up, some are shorter)

$H(X) \approx 2.23$ bits. Expected length = 2.25 bits.

Wow! Despite limitations we will discuss, Huffman codes can be very good. You'll find them inside many systems (e.g., bzip2, jpeg, mp3), although all these schemes do clever stuff to come up with a good symbol representation.

Huffman decoding

Huffman codes are easily and uniquely decodable because they are prefix codes

Reminder on decoding a prefix code stream:

- Start at root of tree
- Follow a branch after reading each bit of the stream
- Emit a symbol upon reaching a leaf of the tree
- Return to the root after emitting a symbol. . .

An input stream can only give one symbol sequence, the one that was encoded

Building prefix trees 'top-down'		Top-down performing badly
		$x \rho(x) c(x) f(x)$
Heuristic: if you're ever building a tree, consider top-down vs. bottom-up (and maybe middle-out)	x P(x)	" a" A. 0.24 000 3
	$A_1 0.24$	A! $A_2!$ A_2
	$A_2 0.01$	"A or B?" 0 B1 0.24 010 3
Weighing problem strategy:	$B_1 0.24$	$^{\circ}$
Use questions with nearly uniform	$B_2 0.01$	<u> </u>
distribution over the answers.	$C_1 0.24$	"C or $D?$ " "C?" C_{e} 0.01 101 3
How well would this work on the	$C_2 0.01$	$L_{or} U!$ $P_{a} = 0.24 110^{-3}$
	$D_1 0.24$	$"p?" \qquad p_2 \qquad 0.01 \qquad 111 \qquad 3$
ensemble to the right?	$D_2 0.01$	
J		Probabilities for answers to first two questions is $(1/2, 1/2)$
$H(X) = 2.24$ bits (just over $\log 4 = 2$). Fixed-length encoding: 3 bits		Greedy strategy \Rightarrow very uneven distribution at end

-ixed-iength encoun

o(1)

0.24

0.24

0,24

0.24

0.01

0.01

0.01

0.01

 $\mathcal{L}(\mathbf{x})$

00

01

10

110

11100

11101

11110

1111

) (×)

2

Ζ

2

3

5

5

5

5

Compare to Huffman

0,28

Expected length 2.36 bits/symbol

(Symbols reordered for display purposes only)

Implicit probabilities: $q_i = 2^{-\ell_i}$ $(\sum_i q_i = 1$ because Huffman codes are complete)

Extra cost for using "wrong" probability distribution:

$$\Delta L = \sum_{i} p_i \ell_i - H(X)$$

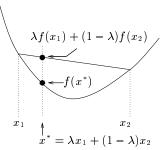
= $\sum_{i} p_i \log \frac{1}{q_i} - \sum_{i} p_i \log \frac{1}{p_i}$
= $\sum_{i} p_i \log \frac{p_i}{q_i} = D_{\mathrm{KL}}(p \parallel q)$

 $D_{\rm KL}(p || q)$ is the **Relative Entropy** also known as the Kullback-Leibler divergence or KL-divergence

Gibbs' inequality

An important result:

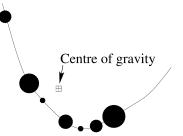
 $D_{\mathrm{KL}}(p \,||\, q) \ge 0$


with equality only if p = q

"If we encode with the wrong distribution we will do worse than the fundamental limit given by the entropy"

A simple direct proof can be shown using convexity. (Jensen's inequality)

Convexity


$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

Strictly convex functions: Equality only if λ is 0 or 1, or if $x_1 = x_2$ (non-strictly convex functions contain straight line segments)

Jensen's inequality

For convex functions: $\mathbb{E}[f(x)] \ge f(\mathbb{E}[x])$

Centre of gravity at $(\mathbb{E}[x], \mathbb{E}[f(x)])$, which is above $(\mathbb{E}[x], f(\mathbb{E}[x]))$

Strictly convex functions: Equality only if P(x) puts all mass on one value

Remembering Jensen's

Which way around is the inequality?

 $f(x) = x^2$ is a convex function

$$\operatorname{var}[X] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 \ge 0$$

So we know Jensen's must be: $\mathbb{E}[f(x)] \ge f(\mathbb{E}[x])$

(Or sketch a little picture in the margin)

Convex vs. Concave

For (strictly) concave functions reverse the inequalities

For concave functions: $\mathbb{E}[f(x)] \leq f(\mathbb{E}[x])$

A (con)cave

Photo credit: Kevin Krejci on Flickr

Jensen's: Entropy & Perplexity

Set
$$u(x) = \frac{1}{p(x)}$$
, $p(u(x)) = p(x)$

$$\mathbb{E}[u] = \mathbb{E}[\frac{1}{p(x)}] = |\mathcal{A}|$$
(Tutorial 1 question)
$$H(X) = \mathbb{E}[\log u(x)] \le \log \mathbb{E}[u]$$

$H(X) \le \log |\mathcal{A}|$

Equality, maximum Entropy, for constant $u \Rightarrow$ uniform p(x)

 $2^{H(X)}$ = "Perplexity" = "Effective number of choices" Maximum effective number of choices is $|\mathcal{A}|$

Summary of Lecture 6

The **Huffman Algorithm** gives optimal symbol codes: Merging event adds to code length for children, so Huffman always merges least probable events first

A complete code implies negative log probabilities: $q_i = 2^{-\ell_i}$. If the symbols are generated with these probabilities, the symbol code compresses to the entropy. Otherwise the number of extra bits/symbol is given by the **Relative Entropy** or **KL-divergence**: $D_{\text{KL}}(p || q) = \sum_i p_i \log \frac{p_i}{q_i}$

Gibbs' inequality says $D_{\text{KL}}(p || q) \ge 0$ with equality only when the distributions are equal.

Jensen's inequality is a useful means to prove several inequalities in Information Theory including (it will turn out) Gibbs' inequality.