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Numerics: log
∑

i exp(xi)

(
N

k

)
blows up for large N, k; we evaluate lN,k = ln

(
N
k

)

Common problem: want to find a sum, like
t∑

k=0

(
N
k

)
Actually we want its log:

ln

t∑
k=0

exp(lN,k) = lmax + ln

t∑
k=0

exp(lN,k − lmax)

To make it work, set lmax = max
k

lN,k. logsumexp functions are frequently used



Distribution over blocks

total number of bits: N (= 1000 in examples here)

probability of a 1: p = P (xi=1)

number of 1’s: k =
∑

i xi

Every block is improbable!

P (x) = pk(1− p)N−k, (at most (1−p)N ≈ 10−45 for p=0.1)

How many 1’s will we see?

P (k) =
(
N
k

)
pk(1− p)N−k

Solid: p=0.1

Dashed: p=0.5
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Central Limit theorem

The sum or mean of independent variables with bounded

mean and variance tends to a Gaussian (normal) distribution.
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N=1e6; hist(sum(rand(3,N),1)); hist(sum(rand(20,N),1));



There are a few forms of the Central Limit Theorem (CLT), we are

just noting a vague statement as we won’t make extensive use of it.

CLT behaviour can occur unreasonably quickly when the

assumptions hold. Some old random-number libraries used to use the

following method for generating a sample from a unit-variance,

zero-mean Gaussian: a) generate 12 samples uniformly between zero

and one; b) add them up and subtract 6. It isn’t that far off!

Data from a natural source will usually not be Gaussian.

The next slide gives examples. Reasons: extreme outliers often occur;

there may be lots of strongly dependent variables underlying the data;

there may be mixtures of small numbers of effects with very different

means or variances.

An example random variable with unbounded mean is given

by the payout of the game in the St. Petersburg Paradox. A fair coin

is tossed repeatedly until it comes up tails. The game pays out 2#heads

pounds. How much would you pay to play? The ‘expected’ payout is

infinite: 1/2×1 + 1/4×2 + 1/8×4 + 1/16×8 + . . . = 1/2 + 1/2 + 1/2 + 1/2 + . . .



Gaussians are not the only fruit

xx = importdata(’Holst - Mars.wav’);

hist(double(xx(:)), 400);
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xx = importdata(’forum.jpg’);

hist(xx(:), 50);



How many 1’s will we see?

How many 1’s will we see? P (k) =
(
N
k

)
pk(1− p)N−k

Gaussian fit (dashed lines):

P (k) ≈ 1√
2πσ2

exp
(
− 1

2σ2
(k−µ)2

)
, µ=Np, σ2 =Np(1−p)

(Binomial mean and variance, MacKay p1)
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The log-probability plot on the previous slide illustrates how one must

be careful with the Central Limit Theorem. Even though the

assumptions hold, convergence of the tails is very slow. (The theory

gives only “convergence in distribution” which makes weak statements

out there.) While k, the number of ones, closely follows a Gaussian

near the mean, we can’t use the Gaussian to make precise statements

about the tails.

All that we will use for now is that the mass in the tails further out

than a few standard deviations (a few σ) will be small. This is correct,

we just can’t guarantee that the probability will be quite as small as if

the whole distribution actually were Gaussian.

Chebyshev’s inequality (MacKay p82, Wikipedia, . . . ) tells us that:

P (|k − µ| ≥ mσ) ≤ 1
m2,

a loose bound which will be good enough for what follows.

The fact that as N →∞ all of the probability mass becomes close to

the mean is referred to as the law of large numbers.



Encode the typical set

Index almost every block we’ll see, with kmin ≤ k ≤ kmax:

kmin = µ−mσ
kmax = µ+mσ

m=4 ought to do it (but set much larger to satisfy Chebyshev’s if you like)

How many different blocks are in our set?

Probabilities:
— Most probable block: Pmax = pkmin(1− p)N−kmin

— Least probable block: Pmin = pkmax(1− p)N−kmax

Probabilities add up to one ⇒ Bound on set size I:

I <
1

Pmin
⇒ log I < −kmax log p− (N−kmax) log(1−p)



Asymptotic possibility

Encoding the set will take
(

1
N log2 I

)
bits/symbol

1

N
log I < − 1

N
(µ+mσ) log p− 1

N
(N−µ−mσ) log(1−p)

= −
(
p+m

√
p(1−p)
N

)
log p−

(
1−p−m

√
p(1−p)
N

)
log(1−p)

As N→∞ for sets of any width m:
1
N log I < H2(p) = −p log p− (1−p) log(1−p) ≈ 0.47 bits

(p=0.1)

Large sparse blocks can be compressed to NH2 bits.



Asymptotic impossibility

Large blocks almost always fall in our typical set, TN,m
Idea: try indexing a set S with N(H2−ε) bits

P (x ∈ S) = P (x ∈ S ∩ TN,m) + P (x ∈ S ∩ TN,m))

≤ 2N(H2−ε)Pmax + “tail probability”[
logPmax = −N

(
H2 +O

(
1√
N

))
, derivation similar to last slide

]
P (x ∈ S) ≤ 2−N(ε+O(1/

√
N)) + “tail probability”

The probability of landing in any set indexed by fewer than

H2 bits/symbol becomes tiny as N →∞



A weighing problem

Find 1 odd ball out of 12

You have a two-pan balance with three outputs:

“left-pan heavier”, “right-pan heavier”, or “pans equal”

How many weighings do you need to find the odd ball and

decide whether it is heavier or lighter?

Unclear? See p66 of MacKay’s book, but do not look at his answer until

you have had a serious attempt to solve it.

Are you sure your answer is right? Can you prove it?

Can you prove it without an extensive search of the solution space?



Weighing problem: bounds

Find 1 odd ball out of 12 with a two-pan balance

There are 24 hypothesis:

ball 1 heavier, ball 1 lighter, ball 2 heavier, . . .

For K weighings, there are at most 3K outcomes:

(left, balance, right), (right, right, left), . . .

32 =9 ⇒ 2 weighings not enough

33 =27 ⇒ 3 weighings might be enough



Weighing problem: strategy

Find 1 odd ball out of 12 with a two-pan balance

Probability of an outcome is: # hypotheses compatible with outcome
# hypotheses

Experiment Left Right Balance

1 vs. 1 2/24 2/24 20/24

2 vs. 2 4/24 4/24 16/24

3 vs. 3 6/24 6/24 12/24

4 vs. 4 8/24 8/24 8/24

5 vs. 5 10/24 10/24 4/24

6 vs. 6 12/24 12/24 0/24



Weighing problem: strategy

8 hypotheses remain. Find a second weighing where:

3 hypotheses ⇒ left pan down

3 hypotheses ⇒ right pan down

2 hypotheses ⇒ balance

It turns out we can always identify one hypothesis with a

third weighing (p69 MacKay for details)

Intuition: outcomes with even probability distributions seem

informative — useful to identify the correct hypothesis



Sorting (review?)

How much does it cost to sort n items?

There are 2C outcomes of C binary comparisons

There are n! orderings of the items

To pick out the correct ordering must have:

C log 2 ≥ log n! ⇒ C ≥ O(n log n) (Stirling’s series)

Radix sort is “O(n)”, gets more information from the items



Measuring information

As we read a file, or do experiments, we get information

Very probable outcomes are not informative:
⇒ Information is zero if P (x)=1

⇒ Information increases with 1/P (x)

Information of two independent outcomes add

⇒ f
(

1
P (x)P (y)

)
= f

(
1

P (x)

)
+ f

(
1

P (y)

)
Shannon information content: h(x) = log 1

P (x) = − logP (x)

The base of the logarithm scales the information content:

base 2: bits

base e: nats

base 10: bans (used at Bletchley park: MacKay, p265)



log 1
P is the only natural measure of information based on

probability alone (matching certain assumptions)

Assume: f(ab) = f(a) + f(b); f(1) = 0; f smoothly increases

f(a(1 + ε)) = f(a) + f(1 + ε)

Take limit ε→ 0 on both sides:

f(a) + aεf ′(a) = f(a) +
��

��
��*0

f(1) + εf ′(1)

⇒ f ′(a) = f ′(1)
1

a∫ x

1

f ′(a) da = f ′(1)

∫ x

1

1

a
da

f(x) = f ′(1) lnx

Define b = e1/f
′(1), which must be >1 as f is increasing.

f(x) = logb x

We can choose to measure information in any base (>1), as the base

is not determined by our assumptions.



Foundations of probability (very much an aside)

The main step justifying information resulted from P (a, b) = P (a)P (b)

for independent events. Where did that come from?

There are various formulations of probability. Kolmogorov provided a

measure-theoretic formalization for frequencies of events.

Cox (1946) provided a very readable rationalization for using the

standard rules of probability to express beliefs and to incorporate

knowledge: http://dx.doi.org/10.1119/1.1990764

There’s some (I believe misguided) arguing about the details. A

sensible response to some of these has been given by Van Horn (2003)

http://dx.doi.org/10.1016/S0888-613X(03)00051-3

Ultimately for both information and probability, the main justification

for using them is that they have proven to be hugely useful. While one

can argue forever about choices of axioms, I don’t believe that there

are other compelling formalisms to be had for dealing with

uncertainty and information.



Information content vs. storage

A ‘bit’ is a symbol that takes on two values.

The ‘bit’ is also a unit of information content.

Numbers in 0–63, e.g. 47=101111, need log2 64 = 6 bits

If numbers 0–63 are equally probable, being told the

number has information content − log 1
64 = 6 bits

The binary digits are the answers to six questions:
1: is x ≥ 32?

2: is x mod 32 ≥ 16?

3: is x mod 16 ≥ 8?

4: is x mod 8 ≥ 4?

5: is x mod 4 ≥ 2?

6: is x mod 2 = 1?

Each question has information content − log 1
2 = 1 bit



Fractional information
A dull guessing game: (submarine, MacKay p71)

Q. Is the number 36?
A. a1 = No.

h(a1) = log 1
P (x 6=36) = log 64

63 = 0.0227 bits Remember: log2 x =
lnx

ln 2

Q. Is the number 42?
A. a2 = No.

h(a2) = log 1
P (x 6=42 | x 6=36) = log 63

62 = 0.0231 bits

Q. Is the number 47?
A. a3 = Yes.

h(a3) = log 1
P (x=47 | x 6=42,x6=36) = log 62

1 = 5.9542 bits

Total information: 5.9542 + 0.0231 + 0.0227 = 6 bits



Entropy

Improbable events are very informative, but don’t happen

very often! How much information can we expect?

Discrete sources:
Ensemble: X = (x,AX,PX)

Outcome: x ∈ Ax, p(x=ai) = pi
Alphabet: AX = {a1, a2, . . . , ai, . . . aI}

Probabilities: PX = {p1, p2, . . . , pi, . . . pI}, pi>0,
∑

i pi = 1

Information content:
h(x=ai) = log 1

pi
, h(x) = log 1

P (x)

Entropy:
H(X) =

∑
i pi log 1

pi
= EPX[h(x)]

average information content of source, also “the uncertainty of X”



Binary Entropy

Entropy of Bernoulli variable:

H2(X) = p1 log 1
p1

+ p2 log 1
p2

= −p log p− (1−p) log(1−p)
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Plots take logs base 2. We define 0 log 0 = 0



Entropy: decomposability

Flip a coin:
Heads → A

Tails → flip again:
Heads → B

Tails → C

AX = {A, B, C}
PX = {0.5, 0.25, 0.25}

H(X) = 0.5 log 1
0.5 + 0.25 log 1

0.25 + 0.25 log 1
0.25 = 1.5 bits

Or: H(X) = H2(0.5) + 0.5H2(0.5) = 1.5 bits

Shannon’s 1948 paper §6. MacKay §2.5, p33



Why look at the decomposability of Entropy?

Mundane, but useful: it can make your algebra a lot neater.

Philosophical: we expect that the expected amount of information

from a source should be the same if the same basic facts are

represented in different ways and/or reported in a different order.

Shannon’s paper used the desired decomposability of entropy to derive

what form it must take. This is similar to how we intuited the

information content from simple assumptions.

Maybe you will believe the following argument: any discrete variable

could be represented as a set of binary choices. Each choice, s, cannot

be compressed into less than H2(ps) bits on average. Adding these up

weighted by how often they are made gives the entropy of the original

variable. So the entropy gives the limit to compressibility in general. If

not convincing, we will review the full proof later (MacKay §4.2–4.6).



Where now?

Bernoulli vars. compress to H2(X) bits/symbol and no less

The entropy H(X) is the compression limit on average

for arbitrary random symbols. (We will gather more evidence for this later)

Where do we get the probabilities from?

How do we actually compress the files?
We can’t explicitly list 2NH items!

Can we avoid using enormous blocks?


