
Information Theory	Course structure	Maths background: This is a theoretical course so some general mathematical ability is essential. Be very familiar with logarithms,
http://www.inf.ed.ac.uk/teaching/courses/it/	Constituents: — ~17 lectures — Tutorials starting in week 3	mathematical notation (such as sums) and some calculus. Probabilities are used extensively: Random variables; expectation; Bernoulli, Binomial and Gaussian distributions; joint and conditional probabilities. There will be some review, but expect to work hard if you don't have the background.
Week 1 Introduction to Information Theory	— 1 assignment (20% marks) Website: http://tinyurl.com/itmsc http://www.inf.ed.ac.uk/teaching/courses/it/ Notes, assignments, tutorial material, news (optional RSS feed)	Programming background: by the end of the course you are expected to be able to implement algorithms involving probability distributions over many variables. However, I am not going to teach you a programming language. I can discuss programming issues in the tutorials. I won't mark code, only its output, so you are free to pick a language. Pick one that's quick and easy to use.
lain Murray, 2010 School of Informatics, University of Edinburgh	Prerequisites: some maths, some programming ability	The scope of this course is to understand the applicability and properties of methods. Programming will be exploratory: slow, high-level but clear code is fine. We will not be writing the final optimized code to sit on a hard-disk controller!
Resources / Acknowledgements	Communicating with noise	Consider sending an audio signal by <i>amplitude modulation</i> : the desired speaker-cone position is the height of the signal. The figure shows an encoding of a pure tone.
Outgoing Conception Recommended course text book Inspensive for a hardback textbook Inexpensive for a hardback textbook Stocked in Blackwells, Amazon currently cheaper) Also free online: http://www.inference.phy.cam.ac.uk/mackay/itila/ Those preferring a theorem-lemma style book could check out: Elements of information theory, Cover and Thomas I made use of course notes by MacKay and from CSC310 at the University of Toronto (Radford Neal, 2004; Sam Roweis, 2006)	Signal Attenuate Add noise Boost 5 cycles 100 cycles	A classical problem with this type of communication channel is attenuation: the amplitude of the signal decays over time. (The details of this in a real system could be messy.) Assuming we could regularly boost the signal. After several cycles of attenuation, noise addition and amplification, corruption can be severe. A variety of analogue encodings are possible, but whatever is used, no 'boosting' process can ever return a corrupted signal exactly to its original form. In digital communication the sent message comes from a discrete set. If the message is corrupted we can 'round' to the nearest discrete message. It is possible, but not guaranteed, we'll restore the message to exactly the one sent.
Digital communication	Communication channels	System solution
Encoding: amplitude modulation not only choice. Can re-represent messages to improve signal-to-noise ratio Digital encodings: signal takes on discrete values Signal Corrupted	modem \rightarrow phone line \rightarrow modem Galileo \rightarrow radio waves \rightarrow Earth parent cell \rightarrow daughter cells computer memory \rightarrow disk drive \rightarrow computer memory	$\begin{array}{c} {\rm message} \\ \downarrow \\ {\rm encoded\ message} \\ \downarrow \\ {\rm corrupted\ encoding} \\ \downarrow \\ {\rm decoded\ message} \end{array}$
Recovered	Real channels are error prone. Physical solutions: change system to reduce probability of error	Rather than cooling a system, or increasing power, we send more robust encodings over the existing channel But how is reliable communication possible at all?

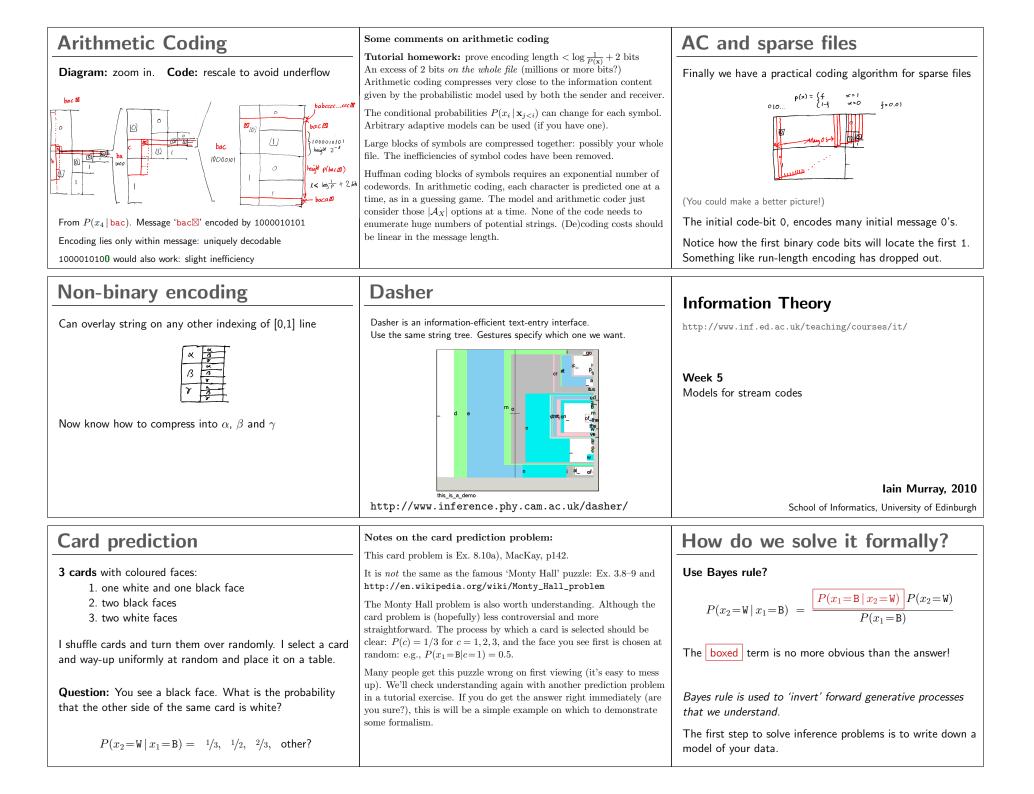
Exploit sparseness	Run-length encoding	Adapting run-length encoding
As there are fewer black pixels we send just them. Encode row + start/end column for each run in binary. Requires $(4+6+6)=16$ bits per run (can you see why?) There are 54 black runs $\Rightarrow 54 \times 16 = 864$ bits	Common idea: store lengths of runs of pixels Longest possible run = 500 pixels, need 9 bits for run length Use 1 bit to store colour of first run (should we?) Scanning along rows: 109 runs \Rightarrow 982 bits (!)	Store number of bits actually needed for runs in a header. 4+4=8 bits give sizes needed for black and white runs. Scanning along rows: 501 bits (includes 8+1=9 header bits) 55 white runs up to 52 long, $55\times 6 = 330$ bits 54 black runs up to 7 long, $54\times 3 = 162$ bits
That's worse than the 500 bit encoding we started with! Scan columns instead: 33 runs, $(6+4+4)=14$ bits each. 462 bits .	Scanning along cols: 67 runs \Rightarrow 604 bits	Scanning along cols: 249 bits 34 white runs up to 72 long, $24\times7 = 168$ bits 33 black runs up to 8 long, $24\times3 = 72$ bits (3 bits/nun if no zero-length num; we did need the first-nun-colour header bit!)
Rectangles	Off-the-shelf solutions?	"Overfitting"
Exploit spatial structure: represent image as 20 rectangles		We can compress the 'Hi Mom' image down to 1 bit: Represent 'Hi Mom' image with a single '1' All other files encoded with '0' and a naive encoding of the image.
Version 1: Each rectangle: (x_1, y_1, x_2, y_2) , 4+6+4+6 = 20 bits Total size: 20×20 = 400 bits Version 2: Header for max rectangle size: 2+3 = 5 bits Each rectangle: (x_1, y_1, w, h) , 4+6+3+3 = 16 bits Total size: 20×16 + 5 = 325 bits	Established image compressors: Use PNG: 128 bytes = 1024 bits Use GIF: 98 bytes = 784 bits Unfair: image is tiny, file format overhead: headers, image dims Smallest possible GIF file is about 35 bytes. Smallest possible PNG file is about 67 bytes. Not strictly meaningful, but: (98-35)×8 = 504 bits. (128-67)×8 = 488 bits	the actual message is one selected from a set of possible messages. The system must be designed to operate for each possible selection, not just the one which will actually be chosen since this is unknown at the time of design. — Shannon, 1948
Summary of lecture 1 (slide 1/2)	Summary of lecture 1 (slide 2/2)	Where now
Digital communication can work reliably over a noisy channel. We add <i>redundancy</i> to a message, so that we can infer what corruption occured and undo it. Repetition codes simply repeat each message symbol N times. A majority vote at the receiving end removes errors unless more than half of the repetitions were corrupted. Increasing N reduces the error rate, but the <i>rate</i> of the code is $1/N$: transmission is slower, or more storage space is used. For the Binary Symmetric Channel the error	First task: represent data optimally when there is no noise Representing files as (binary) numbers: C bits (binary digits) can index $I = 2^C$ objects. $\log I = C \log 2$, $C = \frac{\log I}{\log 2}$ for logs of any base, $C = \log_2 I$ In information theory textbooks "log" often means " \log_2 ".	
probability is: $\sum_{r=(N+1)/2}^{N} {N \choose r} f^r (1-f)^{N-r}$ Amazing claim: it is possible to get arbitrarily small errors at a fixed rate known as the <i>capacity</i> of the channel. <i>Aside:</i> codes that reach the capacity send a more complicated message than simple	Experiences with the Hi Mom image: Unless we're careful we can expand the file dramatically When developing a fancy method always have simple baselines in mind We'd also like some more principled ways to proceed.	What are the fundamental limits to compression? Can we avoid all the hackery? Or at least make it clearer how to proceed? This course: Shannon's information theory relates
repetitions. Inferring what corruptions must have occurred (occurred with overwhelmingly high probability) is more complex than a majority vote. The algorithms are related to how some groups perform inference in machine learning.	Summarizing groups of bits (rectangles, runs, etc.) can lead to fewer objects to index. Structure in the image allows compression. Cheating: add whole image as a "word" in our dictionary. Schemes should work on future data that the receiver hasn't seen.	compression to <i>probabilistic modelling</i> A simple probabilistic model (predict from three previous neighbouring pixels) and an <i>arithmetic coder</i> can compress to about 220 bits .

Why is compression possible?	Which files to compress?	Sparse file model
Try to compress <i>all b</i> bit files to $< b$ bits There are 2^b possible files but only (2^b-1) codewords Theorem: if we compress some files we must expand others (or fail to represent some files unambiguously) Search for the comp.compression FAQ currently available at: http://www.faqs.org/faqs/compression-faq/	We choose to compress the more probable files Example: compress 28×28 binary images like this: $\boxed{7}$ $\boxed{6}$ $\boxed{4}$ $\boxed{6}$ At the expense of longer encodings for files like this: $\boxed{6}$ $\boxed{6}$ There are 2^{784} binary images. I think $< 2^{125}$ are like the digits	Long binary vector x, mainly zeros Assume bits drawn independently Bernoulli distribution, a single "bent coin" flip $P(x_i p) = \begin{cases} p & \text{if } x_i = 1\\ (1-p) \equiv p_0 & \text{if } x_i = 0 \end{cases}$ How would we compress a large file for $p = 0.1$? Idea: encode blocks of N bits at a time
Intuitions: 'Blocks' of lengths $N=1$ give naive encoding: 1 bit / symbol Blocks of lengths $N=2$ aren't going to help maybe we want long blocks For large N, some blocks won't appear in the file, e.g. 11111111111 The receiver won't know exactly which blocks will be used Don't want a header listing blocks: expensive for large N. Instead we use our probabilistic model of the source to guide which blocks will be useful. For $N=5$ the 6 most probable blocks are: 00000 00001 00010 00100 01000 10000 3 bits can encode these as 0–5 in binary: 000 001 010 011 100 101 Use spare codewords (110 111) followed by 4 more bits to encode remaining blocks. Expected length of this code = $3 + 4 P(\text{need 4 more})$ = $3 + 4(1 - (1-p)^5 - 5p(1-p)^4) \approx 3.3$ bits $\Rightarrow 3.3/5 \approx 0.67$ bits/symbol	Quick quizQ1. Toss a fair coin 20 times. (Block of $N=20, p=0.5$) What's the probability of all heads?Q2. What's the probability of 'TTHTTHHTTTHTHHTTT'?Q3. What's the probability of 7 heads and 13 tails?you'll be waiting forever about one in a million about one in ten C $\approx 10^{-100}$ about one in ten C $\approx 10^{-1}$ about a half D ≈ 0.5 very probable E $\approx 1 - 10^{-6}$ don't know Z ???	Binomial distribution How many 1's will be in our block? Binomial distribution , the sum of N Bernoulli outcomes $k = \sum_{n=1}^{N} x_n$, $x_n \sim \text{Bernoulli}(p)$ $\Rightarrow k \sim \text{Binomial}(N, p)$ $P(k \mid N, p) = {N \choose k} p^k (1-p)^{N-k}$ $= \frac{N!}{(N-k)! k!} p^k (1-p)^{N-k}$ Reviewed by MacKay, p1
Evaluating the numbers $\binom{N}{k} = \frac{N!}{(N-k)! k!}, \text{ what happens for } N = 1000, k = 500?_{(\text{or } N = 10,000, k = 5,000)}$ Knee-jerk reaction: try taking logs Explicit summation: $\log x! = \sum_{n=2}^{x} \log n$ Library routines: $\ln x! = \ln \Gamma(x+1), \text{e.g. gammaln}$ Stirling's approx: $\ln x! \approx x \ln x - x + \frac{1}{2} \ln 2\pi x \dots$ Care: Stirling's series gets <i>less</i> accurate if you add lots terms(!), but it is pretty good for large x with just the terms shown. See also: more specialist routines. Matlab/Octave: binopdf, nchoosek	Philosophical Transactions (1683-1775) Vol. 53, (1763), pp. 269–271. The Royal Society. http://www.jstor.org/stable/105732 XLIII. A Letter from the late Reverend Mr. Thomas Bayes, F. R. S. to John Canton, M. A. and F. R. S. SIR, Read Nov. 24, T F the following obfervations do not ^{1763.} I F the following obfervations do not eftern it as a favour, if you would pleafe to commu- nicate them to the Royal Society. It has been afferted by fome eminent mathemati- cians, that the fum of the logarithms of the num- bers 1.2.3.4. &cc. to z, is equal to $\frac{1}{1280}c_1 + \frac{1}{1680c_2} + \frac{1}{11882} + \&cc.$ if c denote the circumference of a circle whofe radius is unity. And it is true that this exprefion will very nearly approach to the value of that fum when z is large, and you take in only a proper number of the first terms of the forgoing feries: but the whole feries can never properly ex- prefs	Compression for <i>N</i> -bit blocks Strategy: - Encode <i>N</i> -bit blocks with $\leq t$ ones with $C_1(t)$ bits. - Use remaining codewords followed by $C_2(t)$ bits for other blocks. Set $C_1(t)$ and $C_2(t)$ to minimum values required. Set <i>t</i> to minimize average length: $C_1(t) + P(t < \sum_{n=1}^{N} x_n) C_2(t)$ $\int_{0}^{t} \int_{0}^{t} \int$

Can we do better?	Can we do better?	Summary of lecture 2 (slide 1/2)
We took a simple, greedy strategy: Assume one code-length C_1 , add another C_2 bits if that doesn't work. First observation for large N : The first C_1 bits index almost every block we will see. $ \underbrace{\left[\underbrace{g_{0}}_{0} \underbrace{g_{0}}_{0}$	We took a simple, greedy strategy: Assume one code-length C_1 , add another C_2 bits if that doesn't work. Second observation for large N : Trying to use $< C_1$ bits means we always use more bits At $N = 10^6$, trying to use 0.95 the optimal C_1 initial bits $\Rightarrow P(\text{need more bits}) \approx 1 - 10^{-100}$ It is very unlikely a file can be compressed into fewer bits.	If some files are shrunk others must grow: # files length b bits = 2^{b} # files $< b$ bits = $\sum_{c=0}^{b-1} 2^{c} = 1 + 2 + 4 + 8 + \dots + 2^{b-1} = 2^{b} - 1$ (We'll see that things are even worse for encoding blocks in a stream. Consider using bit strings up to length 2 to index symbols: A=0, B=1, C=00, D=01, E=11 If you receive 111, what was sent? BBB, BE, EB?) We temporarily focus on sparse binary files: Encode blocks of N bits, $\mathbf{x} = 00010000001000\dots000$ Assume model: $P(\mathbf{x}) = p^{k} (1-p)^{N-k}$, where $k = \sum_{i} x_{i} = "\# 1$'s" Key idea: give short encoding to most probable blocks: Most probable block has $k=0$. Next N most probable blocks have $k=1$ Let's encode all blocks with $k \le t$, for some threshold t. This set has $I_{1} = \sum_{k=0}^{t} {N \choose k}$ items. Can index with $C_{1} = \lceil \log_{2} I_{1} \rceil$ bits.
Summary of lecture 2 (slide 2/2) Can make a lossless compression scheme:	H/W: a weighing problem	Information Theory
Actually transmit $C_1 = \lceil \log_2(I_1 + 1) \rceil$ bits Spare code word(s) are used to signal C_2 more bits should be read, where $C_2 \leq N$ can index the other blocks with $k > t$. Expected/average code length $= C_1 + P(k > t) C_2$ Empirical results for large block-lengths N — The best codes (best t, C_1, C_2) had code length $\approx 0.47N$ — these had tiny $P(k > t)$; it doesn't matter how we encode $k > t$ — Setting $C_1 = 0.95 \times 0.47N$ made $P(k > t) \approx 1$ $\approx 0.47N$ bits are sufficient and necessary to encode long blocks (with our model, $p=0.1$) almost all the time and on average	Find 1 odd ball out of 12You have a two-pan balance with three outputs: "left-pan heavier", "right-pan heavier", or "pans equal"How many weighings do you need to find the odd ball and decide whether it is heavier or lighter?	<pre>http://www.inf.ed.ac.uk/teaching/courses/it/ Week 2 Information and Entropy</pre>
No scheme can compress binary variables with $p=0.1$ into less than 0.47 bits on average, or we could condradict the above result. Other schemes will be more practical (they'd better be!) and will be closer to the 0.47N limit for small N.	Unclear? See p66 of MacKay's book, but do not look at his answer until you have had a serious attempt to solve it. Are you sure your answer is right? Can you prove it? Can you prove it without an extensive search of the solution space?	lain Murray, 2010 School of Informatics, University of Edinburgh
Numerics: $\log \sum_{i} \exp(x_i)$	Distribution over blocks	Central Limit theorem
$\binom{N}{k}$ blows up for large N,k ; we evaluate $l_{N,k} = \ln \binom{N}{k}$	total number of bits: $N (= 1000 \text{ in examples here})$ probability of a 1: $p = P(x_i = 1)$ number of 1's: $k = \sum_i x_i$	The sum or mean of independent variables with bounded mean and variance tends to a Gaussian (normal) distribution.
Common problem: want to find a sum, like $\sum_{k=0}^{t} \binom{N}{k}$ Actually we want its log: $\ln \sum_{k=0}^{t} \exp(l_{N,k}) = l_{\max} + \ln \sum_{k=0}^{t} \exp(l_{N,k} - l_{\max})$ To make it work, set $l_{\max} = \max_{k} l_{N,k}$. logsumesp functions are frequently used	Every block is improbable! $P(\mathbf{x}) = p^k (1-p)^{N-k}$, (at most $(1-p)^N \approx 10^{-45}$ for $p=0.1$) How many 1's will we see? $P(k) = \binom{N}{k} p^k (1-p)^{N-k}$ Solid: $p=0.1$ Dashed: $p=0.5$	4 1 1 2 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 1 2 1 2 1 1 2 1 1 1 2 1 1 1 1 2 1 1 1 1 1 1 1 1 1 1

Gaussians are not the only fruit	How many 1's will we see?
xx = importdata('HolstMars.wav'); hist(double(xx(:)), 400); xx = importdata('forum.jpg'); hist(xx(:), 50);	How many 1's will we see? $P(k) = {N \choose k} p^k (1-p)^{N-k}$ Gaussian fit (dashed lines): $P(k) \approx \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(k-\mu)^2\right), \mu = Np, \sigma^2 = Np(1-p)$ (Binomial mean and variance, MacKay p1) 0.06 $\sum_{k=\text{Number of 1's}}^{0.04} \sum_{k=\text{Number of 1's}}^{0} \sum_{k=Number of $
Encode the <i>typical set</i>	Asymptotic possibility
Index almost every block we'll see, with $k_{\min} \le k \le k_{\max}$: $k_{\min} = \mu - m\sigma$ $k_{\max} = \mu + m\sigma$ m=4 ought to do it (but set much larger to satisfy Chebyshev's if you like) How many different blocks are in our set? Probabilities: — Most probable block: $P_{\max} = p^{k_{\min}}(1-p)^{N-k_{\min}}$ — Least probable block: $P_{\min} = p^{k_{\max}}(1-p)^{N-k_{\max}}$ Probabilities add up to one \Rightarrow Bound on set size I : $I < \frac{1}{P_{\min}} \Rightarrow \log I < -k_{\max} \log p - (N-k_{\max}) \log(1-p)$	Encoding the set will take $\left(\frac{1}{N}\log_2 I\right)$ bits/symbol $\frac{1}{N}\log I < -\frac{1}{N}(\mu+m\sigma)\log p - \frac{1}{N}(N-\mu-m\sigma)\log(1-p)$ $= -\left(p+m\sqrt{\frac{p(1-p)}{N}}\right)\log p - \left(1-p-m\sqrt{\frac{p(1-p)}{N}}\right)\log(1-p)$ As $N \to \infty$ for sets of any width m : $\frac{1}{N}\log I < H_2(p) = -p\log p - (1-p)\log(1-p) \approx 0.47$ bits $_{(p=0.1)}$ Large sparse blocks can be compressed to NH_2 bits.
A weighing problem	Weighing problem: bounds
 Find 1 odd ball out of 12 You have a two-pan balance with three outputs: "left-pan heavier", "right-pan heavier", or "pans equal" How many weighings do you need to find the odd ball and decide whether it is heavier or lighter? Unclear? See p66 of MacKay's book, but do not look at his answer until you have had a serious attempt to solve it. 	Find 1 odd ball out of 12 with a two-pan balance There are 24 hypothesis: ball 1 heavier, ball 1 lighter, ball 2 heavier, For K weighings, there are at most 3^K outcomes: (left, balance, right), (right, right, left), $3^2=9 \Rightarrow 2$ weighings not enough $3^3=27 \Rightarrow 3$ weighings <i>might</i> be enough
	xx = importdata('HolstMars.wav'); hist(double(xx(:)), 400); xx = importdata('forum.jpg'); hist(xx(:), 50); xx = importdata('forum.jpg'); hist(xx(:), 50); Encode the typical set Index almost every block we'll see, with $k_{min} \le k \le k_{max}$: $k_{min} = \mu - m\sigma$ $k_{max} = \mu + m\sigma$ m = 4 ought to do it (but set much larger to satisfy Chebyshev's if you like) How many different blocks are in our set? Probabilities: - Most probable block: $P_{max} = p^{k_{min}}(1-p)^{N-k_{min}}$ - Least probable block: $P_{max} = p^{k_{min}}(1-p)^{N-k_{max}}$ Probabilities add up to one \Rightarrow Bound on set size I: $I < \frac{1}{P_{min}} \Rightarrow \log I < -k_{max} \log p - (N-k_{max}) \log(1-p)$ Mound three outputs: "left-pan heavier", "right-pan heavier", or "pans equal" How many weighings do you need to find the odd ball and decide whether it is heavier or lighter?

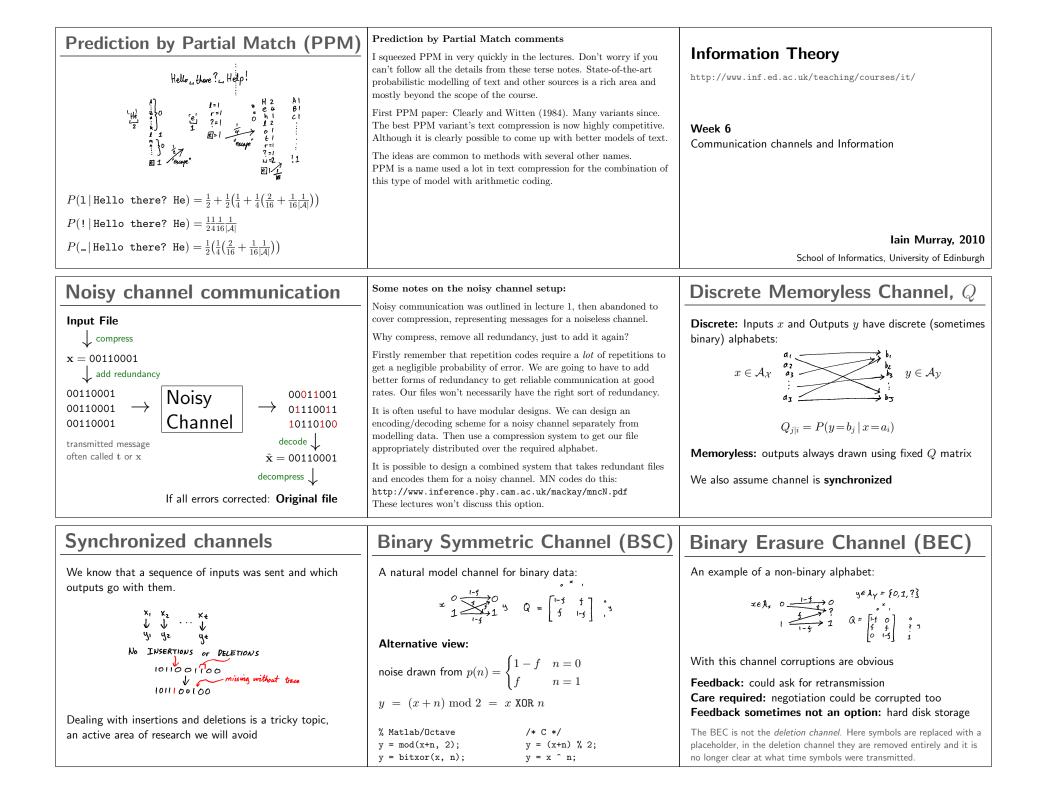
Weighing problem: strategy	Weighing problem: strategy	Sorting (review?)
Find 1 odd ball out of 12 with a two-pan balance	8 hypotheses remain. Find a second weighing where:	How much does it cost to sort n items?
Probability of an outcome is: $\frac{\# \text{ hypotheses compatible with outcome}}{\# \text{ hypotheses}}$	3 hypotheses ⇒ left pan down 3 hypotheses ⇒ right pan down 2 hypotheses ⇒ balance	There are 2^C outcomes of C binary comparisons
Experiment Left Right Balance 1 vs. 1 2/24 2/24 20/24 2 vs. 2 4/24 4/24 16/24 3 vs. 3 6/24 6/24 12/24 4 vs. 4 8/24 8/24 8/24	It turns out we can always identify one hypothesis with a third weighing $_{\rm (p69\ MacKay\ for\ details)}$	There are $n!$ orderings of the items To pick out the correct ordering must have: $C \log 2 \ge \log n! \implies C \ge \mathcal{O}(n \log n)$ (Stirling's series)
5 vs. 5 10/24 10/24 4/24 6 vs. 6 12/24 12/24 0/24	Intuition: outcomes with even probability distributions seem <i>informative</i> — useful to identify the correct hypothesis	Radix sort is " $\mathcal{O}(n)$ ", gets more information from the items
Measuring information	$\log \frac{1}{P}$ is the only natural measure of information based on probability alone (matching certain assumptions)	Foundations of probability (very much an aside) The main step justifying information resulted from $P(a, b) = P(a) P(b)$
As we read a file, or do experiments, we get information Very probable outcomes are not informative: \Rightarrow Information is zero if $P(x)=1$ \Rightarrow Information increases with $1/P(x)$ Information of two independent outcomes add	Assume: $f(ab) = f(a) + f(b); f(1) = 0; f$ smoothly increases $f(a(1 + \epsilon)) = f(a) + f(1 + \epsilon)$ Take limit $\epsilon \to 0$ on both sides: $f(a) + a\epsilon f'(a) = f(a) + f(1)^0 + \epsilon f'(1)$ $\Rightarrow f'(a) = f'(1)\frac{1}{a}$	for independent events. Where did <i>that</i> come from? There are various formulations of probability. Kolmogorov provided a measure-theoretic formalization for frequencies of events. Cox (1946) provided a very readable rationalization for using the standard rules of probability to express beliefs and to incorporate knowledge: http://dx.doi.org/10.1119/1.1990764
$\Rightarrow f\left(\frac{1}{P(x)P(y)}\right) = f\left(\frac{1}{P(x)}\right) + f\left(\frac{1}{P(y)}\right)$ Shannon information content: $h(x) = \log \frac{1}{P(x)} = -\log P(x)$	$\int_{1}^{x} f'(a) \mathrm{d}a = f'(1) \int_{1}^{x} \frac{1}{a} \mathrm{d}a$	There's some (I believe misguided) arguing about the details. A sensible response to some of these has been given by Van Horn (2003) http://dx.doi.org/10.1016/S0888-613X(03)00051-3
The base of the logarithm scales the information content: base 2: bits base e: nats base 10: bans (used at Bletchley park: MacKay, p265)	$\begin{split} f(x) &= f'(1) \ln x \\ \text{Define } b &= e^{1/f'(1)}, \text{ which must be } > 1 \text{ as } f \text{ is increasing.} \\ f(x) &= \log_b x \\ \text{We can choose to measure information in any base (>1), as the base is not determined by our assumptions.} \end{split}$	Ultimately for both information and probability, the main justification for using them is that they have proven to be hugely useful. While one can argue forever about choices of axioms, I don't believe that there are other compelling formalisms to be had for dealing with uncertainty and information.
Information content vs. storage	Fractional information	Entropy
A 'bit' is a symbol that takes on two values. The 'bit' is also a unit of information content. Numbers in 0–63, e.g. $47 = 101111$, need $\log_2 64 = 6$ bits If numbers 0–63 are equally probable, being told the number has information content $-\log \frac{1}{64} = 6$ bits The binary digits are the answers to six questions: 1: is $x \ge 32$? 2: is $x \mod 32 \ge 16$? 3: is $x \mod 16 \ge 8$? 4: is $x \mod 4 \ge 2$?	A dull guessing game: (submarine, MacKay p71) Q. Is the number 36? A. $a_1 = \text{No.}$ $h(a_1) = \log \frac{1}{P(x \neq 36)} = \log \frac{64}{63} = 0.0227 \text{ bits}$ Remember: $\log_2 x = \frac{\ln x}{\ln 2}$ Q. Is the number 42? A. $a_2 = \text{No.}$ $h(a_2) = \log \frac{1}{P(x \neq 42 \mid x \neq 36)} = \log \frac{63}{62} = 0.0231 \text{ bits}$ Q. Is the number 47? A. $a_3 = \text{Yes.}$ $h(a_3) = \log \frac{1}{P(x = 47 \mid x \neq 42, x \neq 36)} = \log \frac{62}{1} = 5.9542 \text{ bits}$	Improbable events are very informative, but don't happen very often! How much information can we <i>expect</i> ? Discrete sources: Ensemble: $X = (x, A_x, \mathcal{P}_X)$ Outcome: $x \in \mathcal{A}_x$, $p(x=a_i) = p_i$ Alphabet: $\mathcal{A}_x = \{a_1, a_2, \dots, a_i, \dots a_I\}$ Probabilities: $\mathcal{P}_X = \{p_1, p_2, \dots, p_i, \dots, p_I\}$, $p_i > 0$, $\sum_i p_i = 1$ Information content: $h(x = a_i) = \log \frac{1}{p_i}$, $h(x) = \log \frac{1}{P(x)}$ Entropy:
6: is $x \mod 2 = 1$ Each question has information content $-\log \frac{1}{2} = 1$ bit	$n(a_3) = \log \frac{1}{P(x=47 \mid x \neq 42, x \neq 36)} = \log \frac{1}{1} = 5.9542$ bits Total information: $5.9542 + 0.0231 + 0.0227 = 6$ bits	$H(X) = \sum_{i} p_{i} \log \frac{1}{p_{i}} = \mathbb{E}_{\mathcal{P}_{X}}[h(x)]$ average information content of source, also "the uncertainty of X"

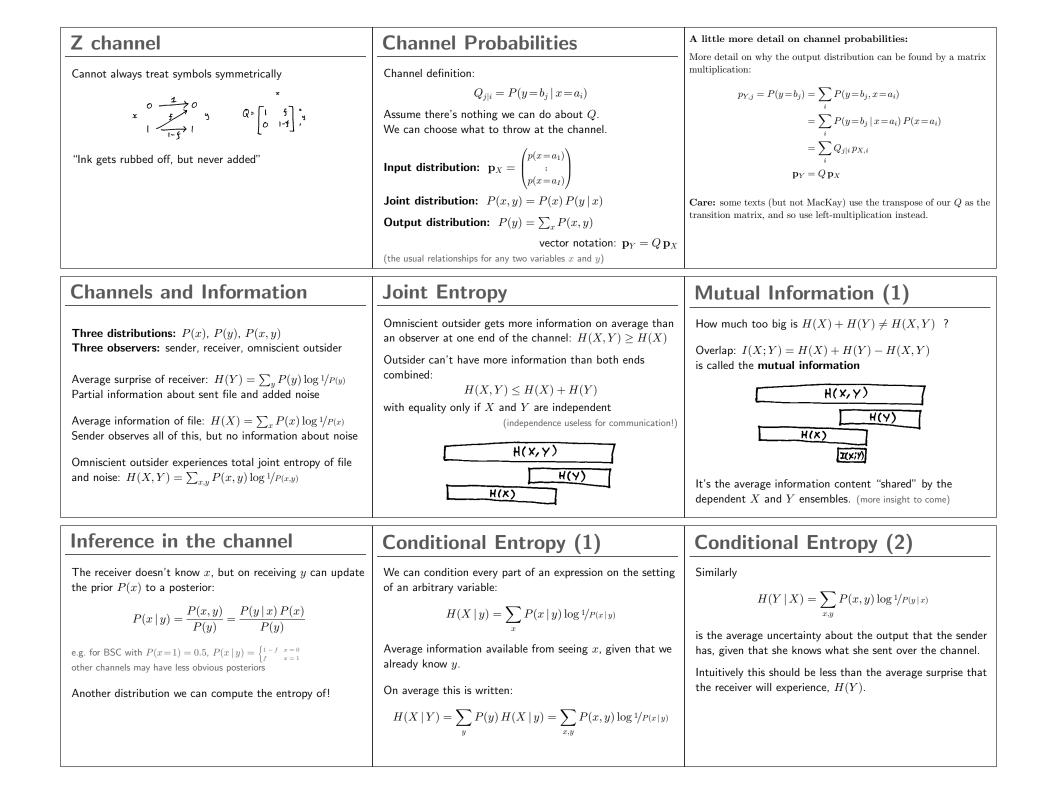

Binary Entropy	Entropy: decomposability	Why look at the decomposability of Entropy?
Entropy of Bernoulli variable: $H_2(X) = p_1 \log \frac{1}{p_1} + p_2 \log \frac{1}{p_2}$ $= -p \log p - (1-p) \log(1-p)$	Flip a coin: Heads $\rightarrow A$ Tails \rightarrow flip again: Heads $\rightarrow B$ 	Mundane, but useful: it can make your algebra a lot neater. Philosophical: we expect that the expected amount of information from a source should be the same if the same basic facts are represented in different ways and/or reported in a different order. Shannon's paper used the desired decomposability of entropy to derive what form it must take. This is similar to how we intuited the information content from simple assumptions.
$ \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $	$H(X) = 0.5 \log \frac{1}{0.5} + 0.25 \log \frac{1}{0.25} + 0.25 \log \frac{1}{0.25} = 1.5 \text{ bits}$ Or: $H(X) = H_2(0.5) + 0.5 H_2(0.5) = 1.5 \text{ bits}$	Maybe you will believe the following argument: any discrete variable could be represented as a set of binary choices. Each choice, s , cannot be compressed into less than $H_2(p_s)$ bits on average. Adding these up weighted by how often they are made gives the entropy of the original variable. So the entropy gives the limit to compressibility in general. If not convincing, we will review the full proof later (MacKay §4.2–4.6).
Plots take logs base 2. We define $0 \log 0 = 0$	Shannon's 1948 paper §6. MacKay §2.5, p33	
Where now?	Information Theory	(Binary) Symbol Codes
Bernoulli vars. compress to $H_2(X)$ bits/symbol and no less	http://www.inf.ed.ac.uk/teaching/courses/it/	For strings of symbols from alphabet e.g., $x_i \in \mathcal{A}_X = \{A, C, G, T\}$
The entropy $H(X)$ is the compression limit on average for arbitrary random symbols. (We will gather more evidence for this later)	Week 3 Symbol codes	Binary codeword assigned to each symbol CGTAGATTACAGG C 10
Where do we get the probabilities from? How do we <i>actually</i> compress the files? We can't explicitly list 2^{NH} items!		$\downarrow \qquad \qquad$
Can we avoid using enormous blocks?	lain Murray, 2010 School of Informatics, University of Edinburgh	Codewords are concatentated without punctuation
Uniquely decodable	Instantaneous/Prefix Codes	Non-instantaneous Codes
We'd like to make all codewords short But some codes are not uniquely decodable	Attach symbols to leaves of a binary tree Codeword gives path to get to leaf	The last code was instantaneously decodable : We knew as soon as we'd finished receiving a symbol
$\begin{array}{ccc} CGTAGATTACAGG & A & 0 \\ & \downarrow & C & 1 \\ 111111001110110010111111 & G & 111 \\ & \downarrow & & \\ CGTAGATTACAGG \\ CCCCCCCAACCCACCAACACCCCCC \end{array}$	1 = A $1 = 0$ $1 =$	$ \begin{array}{c} 101100000101100 \\ \downarrow \\ B 10 \\ C 000 \\ D 100 \\ \end{array} $
CCGCAACCCATCCAACAGCCC GGAAGATTACAGG ???	Decoding: follow tree while reading stream until hit leaf Symbol is <i>instantly</i> identified. Return to root of tree.	D This code <i>is</i> uniquely decodable, but not instantaneous or pleasant!

Expected length/symbol, $ar{L}$	An optimal symbol code	Limit on code lengths
Code lengths: $\{\ell_i\} = \{\ell_1, \ell_2, \dots, \ell_I\}$ Average, $\bar{L} = \sum_i p_i \ell_i$ Compare to Entropy: $H(X) = \sum_i p_i \log \frac{1}{p_i}$ If $\ell_i = \log \frac{1}{p_i}$ or $p_i = 2^{-\ell_i}$ we compress to the entropy	An example code with: $\bar{L} = \sum_{i} p_i \ell_i = H(X) = \sum_{i} p_i \log \frac{1}{p_i}$ $\boxed{\frac{x p(x) \text{codeword}}{A 1/2 0}}_{B 1/4 10}$ $C 1/8 110$ $D 1/8 111$	Imagine coding under an implicit distribution: $q_i = \frac{1}{Z} 2^{-\ell_i}, Z = \sum_i 2^{-\ell_i}.$ $H = \sum_i q_i \log \frac{1}{q_i} = \sum_i q_i (\ell_i + \log Z) = \overline{L} + \log Z$ $\Rightarrow \log Z \le 0, Z \le 1$ Kraft-McMillan Inequality $\underbrace{\sum_i 2^{-\ell_i} \le 1}_{i}$ (if uniquely-decodable
$\begin{tabular}{ c c c c c c c } \hline & & & & & & & & & & & & & & & & & & $	Kraft Inequality If height of budget is 1, codeword has height = $2^{-\ell_i}$ Pick codes of required lengths in order from shortest–largest Choose heighest codeword of required length beneath previously-chosen code (There won't be a gap because of sorting) Can always pick codewords if total height, $\sum_i 2^{-\ell_i} \le 1$ Kraft–McMillan Inequality $\sum_i 2^{-\ell_i} \le 1$ (instantaneous code possible) Corollary: there's probably no point using a non-instantaneous code. Can always make complete code $\sum_i 2^{-\ell_i} = 1$: slide last codeword left.	$\begin{array}{l} \hline \textbf{Performance of symbol codes} \\ \hline \textbf{Simple idea: set } \ell_i = \left\lceil \log \frac{1}{p_i} \right\rceil \\ \hline \textbf{These codelengths satisfy the Kraft inequality:} \\ \sum\limits_i 2^{-\ell_i} = \sum\limits_i 2^{-\lceil \log 1/p_i \rceil} \leq \sum\limits_i p_i = 1 \\ \hline \textbf{Expected length, } \bar{L} : \\ \bar{L} = \sum\limits_i p_i \ell_i = \sum\limits_i p_i \lceil \log 1/p_i \rceil < \sum\limits_i p_i \left(\log 1/p_i + 1 \right) \\ \bar{L} < H(\textbf{p}) + 1 \\ \hline \textbf{Symbol codes can compress to within 1 bit/symbol of the entropy.} \end{array}$
Summary of Lecture 5 Symbol codes assign each symbol in an alphabet a codeword. (We only considered binary symbol codes, which have binary codewords.) Messages are sent by concatenating codewords with no punctuation. Uniquely decodable: the original message is unambiguous Instantaneously decodable: the original symbol can always be determined as soon as the last bit of its codeword is received. Codeword lengths must satisfy $\sum_i 2^{-\ell_i} \leq 1$ for unique decodability Instantaneous prefix codes can always be found (if $\sum_i 2^{-\ell_i} \leq 1$) Complete codes have $\sum_i 2^{-\ell_i}=1$, as realized by prefix codes made from binary trees with a codeword at every leaf. If (big if) symbols are drawn i.i.d. with probabilities $\{p_i\}$, and $\ell_i = \log \frac{1}{p_i}$, then a prefix code exists that offers optimal compression. Next lecture: how to form the best symbol code when $\{\log \frac{1}{p_i}\}$ are not integers.	Optimal symbol codes Encode independent symbols with known probabilities: E.g., $A_X = \{A, B, C, D, E\}$ $\mathcal{P}_X = \{0.3, 0.25, 0.2, 0.15, 0.1\}$ We can do better than $\ell_i = \left\lceil \log \frac{1}{p_i} \right\rceil$ The Huffman algorithm gives an optimal symbol code. Proof: MacKay Exercise 5.16 (with solution). Cover and Thomas has another version.	Huffman algorithm Merge least probable $\begin{array}{cccccccccccccccccccccccccccccccccccc$

Huffman algorithm	Huffman decoding	Building prefix trees 'top-down'
Given a tree, label branches with 1s and 0s to get code $\frac{z}{A} \frac{p(x)}{c_{0.5}} \frac{l_{o_{0.5}}}{c_{0.5}} \frac{p(x)}{c_{0.5}} \frac{l_{o_{0.5}}}{c_{0.5}} \frac{p(x)}{c_{0.5}} \frac{p(x)}{c_$	Huffman codes are easily and uniquely decodable because they are prefix codes	Heuristic: if you're ever building a tree, consider top-down vs. bottom-up (and maybe middle-out) $egin{array}{c} x & P(x) \\ \hline A_1 & 0.24 \end{array}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 Reminder on decoding a prefix code stream: Start at root of tree Follow a branch after reading each bit of the stream Emit a symbol upon reaching a leaf of the tree Return to the root after emitting a symbol An input stream can only give one symbol sequence, the one that was encoded 	Weighing problem strategy: A_2 0.01 Use questions with nearly uniform B_1 0.24 Use questions with nearly uniform B_2 0.01 distribution over the answers. C_1 0.24 C_2 0.01 D_1 0.24 How well would this work on the ensemble to the right? D_1 0.24 $H(X) = 2.24$ bits (just over $\log 4 = 2$). Fixed-length encoding: 3 bits
Top-down performing badly	Compare to Huffman	Relative Entropy / KL
$\frac{z}{A_{\alpha} \sigma} \frac{\rho(x)}{\rho(x)} \frac{c(x)}{f(x)} \frac{f(x)}{f(x)}$ $\frac{A_{\alpha} \sigma}{\rho(x)} \frac{\rho(x)}{\rho(x)} \frac{A_{\alpha}}{\rho(x)} \frac{\rho(x)}{\rho(x)} \frac{P_{\alpha}}{\rho(x)} \frac{P_{\alpha}}{\rho($	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{l} \label{eq:linear_states} \textbf{Implicit probabilities:} \ q_i = 2^{-\ell_i} \\ (\sum_i q_i = 1 \text{ because Huffman codes are complete}) \\ \textbf{Extra cost for using "wrong" probability distribution:} \\ \Delta L = \sum_i p_i \ell_i - H(X) \\ = \sum_i p_i \log \frac{1}{q_i} - \sum_i p_i \log \frac{1}{p_i} \\ = \sum_i p_i \log \frac{p_i}{q_i} = D_{\mathrm{KL}}(p \mid\mid q) \\ D_{\mathrm{KL}}(p \mid\mid q) \text{ is the Relative Entropy also known as the Kullback-Leibler divergence or KL-divergence} \end{array}$
Gibbs' inequality	Convexity	Jensen's inequality
An important result: $D_{\mathrm{KL}}(p \mid\mid q) \geq 0$ with equality only if $p = q$ "If we encode with the wrong distribution we will do worse than the fundamental limit given by the entropy" A simple direct proof can be shown using convexity.	$f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2)$ $\lambda f(x_1) + (1-\lambda)f(x_2)$ $\downarrow \qquad \qquad$	For convex functions: $\mathbb{E}[f(x)] \ge f(\mathbb{E}[x])$ Centre of gravity Centre of gravity at $(\mathbb{E}[x], \mathbb{E}[f(x)])$, which is above $(\mathbb{E}[x], f(\mathbb{E}[x]))$
(Jensen's inequality)	Equality only if λ is 0 or 1, or if $x_1 = x_2$ (non-strictly convex functions contain straight line segments)	Strictly convex functions: Equality only if $P(x)$ puts all mass on one value

Remembering Jensen's	Convex vs. Concave	Jensen's: Entropy & Perplexity
Which way around is the inequality?	For (strictly) concave functions reverse the inequalities	Set $u(x) = \frac{1}{p(x)}$, $p(u(x)) = p(x)$
$f(x) = x^2$ is a convex function	For concave functions: $\mathbb{E}[f(x)] \leq f(\mathbb{E}[x])$	$\mathbb{E}[u] = \mathbb{E}[\frac{1}{p(x)}] = \mathcal{A} $ (Tutorial 1 question)
$\operatorname{var}[X] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 \ge 0$		$H(X) = \mathbb{E}[\log u(x)] \le \log \mathbb{E}[u]$ $H(X) \le \log \mathcal{A} $
So we know Jensen's must be: $\mathbb{E}[f(x)] \geq f(\mathbb{E}[x])$		Equality, maximum Entropy, for constant $u \Rightarrow$ uniform $p(x)$
(Or sketch a little picture in the margin)	A (con)cave	$2^{H(X)}$ = "Perplexity" = "Effective number of choices"
		Maximum effective number of choices is $ \mathcal{A} $
Summary of Lecture 6 The Huffman Algorithm gives optimal symbol codes:	Information Theory	Proving Gibbs' inequality
Merging event adds to code length for children, so Huffman always merges least probable events first	http://www.inf.ed.ac.uk/teaching/courses/it/	Idea: use Jensen's inequality
A complete code implies negative log probabilities: $q_i = 2^{-\ell_i}$. If the symbols are generated with these probabilities, the symbol code compresses to the entropy. Otherwise the number of extra bits/symbol is given by the Relative Entropy or KL-divergence : $D_{\text{KL}}(p q) = \sum_i p_i \log \frac{p_i}{q_i}$	Week 4 Compressing streams	For the idea to work, the proof must look like this: $D_{\mathrm{KL}}(p \mid\mid q) = \sum_{i} p_{i} \log \frac{p_{i}}{q_{i}} = \mathbb{E}[f(u)] \geq f\big(\mathbb{E}[u]\big)$
Gibbs' inequality says $D_{\mathrm{KL}}(p q) \ge 0$ with equality only when the distributions are equal.		Define $u_i = \frac{q_i}{p_i}$, with $p(u_i) = p_i$, giving $\mathbb{E}[u] = 1$
Jensen's inequality is a useful means to prove several inequalities in Information Theory including (it will turn out) Gibbs' inequality.		Identify $f(x) \equiv \log 1/x = -\log x$, a convex function
	lain Murray, 2010 School of Informatics, University of Edinburgh	Substituting gives: $D_{\mathrm{KL}}(p q) \geq 0$
Huffman and warst and	Reminder on Relative Entropy and symbol codes:	$a_i p_i \qquad \log_2 \frac{1}{a_i} l_i c(a_i)$
Huffman code worst case Previously saw: simple simple code $\ell_i = \lceil \log 1/p_i \rceil$ Always compresses with $\mathbb{E}[\text{length}] < H(X) + 1$	The Relative Entropy (AKA Kullback-Leibler or KL divergence) gives the expected extra number of bits per symbol needed to encode a source when a complete symbol code uses implicit probabilities $q_i = 2^{-\ell_i}$ instead of the true probabilities p_i .	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Huffman code can be this bad too:	We have been assuming symbols are generated i.i.d. with known probabilities p_i .	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
For $\mathcal{P}_X = \{1 - \epsilon, \epsilon\}, H(x) \to 0 \text{ as } \epsilon \to 0$	Where would we get the probabilities p_i from if, say, we were compressing text? A simple idea is to read in a large text file and	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Encoding symbols independently means $\mathbb{E}[\text{length}] = 1$.	record the empirical fraction of times each character is used. Using these probabilities the next slide (from MacKay's book) gives a	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Relative encoding length: $\mathbb{E}[\text{length}]/H(X) \to \infty$ (!)	Huffman code for English text. The Huffman code uses 4.15 bits/symbol, whereas $H(X) = 4.11$ bits.	s 0.0567 4.1 4 0011 t 0.0706 3.8 4 1111 u 0.0334 4.9 5 10101
Question: can we fix the problem by encoding blocks? $H(X)$ is $\log(\text{effective number of choices})$ With many typical symbols the "+1" looks small	Encoding blocks might close the narrow gap. More importantly English characters are not drawn independently encoding blocks could be a better model.	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$


Bigram statistics	Answering the previous vague question	Human predictions
Previous slide: $A_X = \{a - z,\}, H(X) = 4.11 \text{ bits}$ Question: I decide to encode bigrams of English text: $A_{X'} = \{aa, ab,, az, a_{-},,\}$ What is $H(X')$ for this new ensemble? A ~ 2 bits B ~ 4 bits C ~ 7 bits D ~ 8 bits E ~ 16 bits Z ?	We didn't completely define the ensemble: what are the probabilities? We could draw characters independently using p_i 's found before. Then a bigram is just two draws from X, often written X^2 . $H(X^2) = 2H(X) = 4.22$ bits We could draw pairs of adjacent characters from English text. When predicting such a pair, how many effective choices do we have? More than when we had $\mathcal{A}_X = \{\mathbf{a}=\mathbf{z}_{,-}\}$: we have to pick the first character and another character. But the second choice is easier. We expect $H(X) < H(X') < 2H(X)$. Maybe 7 bits? Looking at a large text file the actual answer is about 7.6 bits. This is ≈ 3.8 bits/character — better compression than before. Shannon (1948) estimated about 2 bits/character for English text. Shannon (1951) estimated about 1 bits/character for English text. Compression performance results from the quality of a probabilistic model and the compressor that uses it.	Ask people to guess letters in a newspaper headline: $k \cdot i \cdot d \cdot s \cdot _ \cdot m \cdot a \cdot k \cdot e \cdot _ \cdot n \cdot u \cdot t \cdot r \cdot i \cdot t \cdot i \cdot o \cdot u \cdot s \cdot _ \cdot s \cdot n \cdot a \cdot c \cdot k \cdot s$ $11 \cdot 4 \cdot 2 \cdot 1 \cdot 1 \cdot 4 \cdot 2 \cdot 4 \cdot 1 \cdot 1 \cdot 1 \cdot 5 \cdot 1 \cdot 2 \cdot 1 \cdot 1 \cdot 1 \cdot 2 \cdot 1 \cdot 1 \cdot 1 \cdot 1$
Predictions	Cliché Predictions	A more boring prediction game
nutritious s Avenced Search Language Tools nutritious snacks nutritious soups nutritious soup recipes nutritious smacks for children nutritious school lunches nutritious school lunches nutritious sol recipes nutritious school lunches nutritious sol foods Im Feeling Lucky	kids make n kids make n kids make nutritious snacks Google Search Im Feeling Lucky Advertising Programmes Business Solutions About Google Goto Google.com	"I have a binary string with bits that were drawn i.i.d Predict away!" What fraction of people, f , guess next bit is '1'? Bit: 1 1 1 1 1 1 1 1 1 $f: \approx 1/2 \approx 1/2 \approx 1/2 \approx 2/3 \ldots \ldots \approx 1$ The source was genuinely i.i.d.: each bit was independent of past bits. We, not knowing the underlying flip probability, learn from experience. Our predictions depend on the past. So should our compression systems.
Arithmetic Coding	Arithmetic Coding	Arithmetic Coding
For better diagrams and more detail, see MacKay Ch. 6 Consider all possible strings in alphabetical order (If infinities scare you, all strings up to some maximum length) Example: $A_X = \{a, b, c, e^{a}\}$ Where 'em' is a special End-of-File marker.	We give all the strings a binary codeword Huffman merged leaves — but we have too many to do that Create a tree of strings 'top-down': $ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Overlay string tree on binary symbol code tree bec^{g} $for p(x_1) \text{ distribution can't begin to encode 'b' yet}$ Look at $P(x_2 x_1 = b)$ can't start encoding 'ba' either Look at $P(x_3 ba)$. Message for 'bac' begins 1000



The card game model	Inferring the card	Predicting the next outcome
Cards: 1) $\mathbb{B} \mathbb{W}$, 2) $\mathbb{B} \mathbb{B}$, 3) $\mathbb{W} \mathbb{W}$ $P(c) = \begin{cases} 1/3 & c = 1, 2, 3\\ 0 & \text{otherwise.} \end{cases}$ $P(x_1 = \mathbb{B} \mid c) = \begin{cases} 1/2 & c = 1\\ 1 & c = 2\\ 0 & c = 3 \end{cases}$ Bayes rule can 'invert' this to tell us $P(c \mid x_1 = \mathbb{B})$; infer the generative process for the data we have.	$\begin{array}{llllllllllllllllllllllllllllllllllll$	For this problem we can spot the answer, for more complex problems we want a formal means to proceed. $P(x_2 x_1 = B)?$ Need to introduce c to use expressions we know: $P(x_2 x_1 = B) = \sum_{c \in 1,2,3} P(x_2, c x_1 = B)$ $= \sum_{c \in 1,2,3} P(x_2 x_1 = B, c) P(c x_1 = B)$ Predictions we would make if we knew the card, weighted by the posterior probability of that card. $P(x_2 x_1 = B) = \frac{1}{2} \sum_{c \in 1,2,3} P(x_2 x_1 = B, c) P(c x_1 = B)$
$ \begin{array}{l} \label{eq:stategy for solving inference and prediction problems:} \\ \end{tabular} \\ \e$	<pre>Not convinced? Not everyone believes the answer to the card game question. Sometimes probabilities are counter-intuitive. I'd encourage you to write simulations of these games if you are at all uncertain. Here is an Octave/Matlab simulator I wrote for the card game question: cards = [1 1;</pre>	Sparse files $\mathbf{x} = 00001000010000000000000000$ We are interested in predicting the $(N+1)$ th bit. Generative model: $P(\mathbf{x} f) = \prod_{i} P(x_i f) = \prod_{i} f^{x_i} (1 - f)^{1 - x_i}$ $= f^k (1 - f)^{N-k}, k = \sum_{i} x_i = "\# 1s"$ Can 'invert', find $p(f \mathbf{x})$ with Bayes rule
$\begin{array}{ c c c } \hline \textbf{Inferring} & f = P(x_i = 1) \\ \hline \textbf{Cannot do inference without using beliefs} \\ \textbf{A possible expression of uncertainty: } p(f) = 1, f \in [0,1] \\ \textbf{Bayes rule:} \\ & p(f \mid \mathbf{x}) \propto P(\mathbf{x} \mid f) p(f) \propto f^k (1-f)^{N-k} \\ & = \text{Beta}(f; k+1, N-k+1) \\ \hline \textbf{Beta distribution:} \\ & \text{Beta}(f; \alpha, \beta) = \frac{1}{B(\alpha, \beta)} f^{\alpha-1} (1-f)^{\beta-1} = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha) \Gamma(\beta)} f^{\alpha-1} (1-f)^{\beta-1} \\ & \text{Mean: } \alpha/(\alpha + \beta) \end{array}$	References on inferring a probability The 'bent coin' is discussed in MacKay §3.2, p51 See also Ex. 3.15, p59, which has an extensive worked solution. The MacKay section mentions that this problem is the one studied by Thomas Bayes, published in 1763. This is true, although the problem was described in terms of a game played on a Billiard table. The Bayes paper has historical interest, but without modern mathematical notation takes some time to read. Several versions can be found around the web. The original version has old-style typesetting. The paper was retypeset, but with the original long arguments, for Biometrica in 1958: http://dx.doi.org/10.1093/biomet/45.3-4.296	Prediction Prediction rule from marginalization and product rules: $P(x_{N+1} \mathbf{x}) = \int P(x_{N+1} f, \mathbf{x}) \cdot p(f \mathbf{x}) df$ The boxed dependence can be omitted here. $P(x_{N+1}=1 \mathbf{x}) = \int f \cdot p(f \mathbf{x}) df = \mathbb{E}_{p(f \mathbf{x})}[f] = \frac{k+1}{N+2}.$

Laplace's law of succession	New prior / prediction rule	Large pseudo-counts
$P(x_{N+1}=1 \mathbf{x}) = \frac{k+1}{N+2}$ Maximum Likelihood (ML): $\hat{f} = \operatorname{argmax}_{f} P(\mathbf{x} f) = \frac{k}{N}$. ML estimate is <i>unbiased</i> : $\mathbb{E}[\hat{f}] = f$. Laplace's rule is like using the ML estimate, but imagining we saw a 0 and a 1 before starting to read in \mathbf{x} . Laplace's rule biases probabilities towards $\frac{1}{2}$. ML estimate assigns zero probability to unseen symbols. Encoding zero-probability symbols needs ∞ bits.	Could use a Beta prior distribution: $p(f) = \text{Beta}(f; n_1, n_0)$ $p(f \mathbf{x}) \propto f^{k+n_1-1} (1-f)^{N-k+n_0-1}$ $= \text{Beta}(f; k+n_1, N-k+n_0)$ $P(x_{N+1}=1 \mathbf{x}) = \mathbb{E}_{p(f \mathbf{x})}[f] = \frac{k+n_1}{N+n_0+n_1}$ Think of n_1 and n_0 as previously observed counts $(n_1=n_0=1 \text{ gives uniform prior and Laplace's rule})$	Beta(20,10) distribution: $ \int_{\frac{6}{2}}^{6} \int_{\frac{2}{0}}^{\frac{6}{0}} \int_{\frac{6}{0}}^{\frac{6}{0}} \int_{\frac{6}{0}}^{\frac{6}{0}$
Fractional pseudo-counts	Fractional pseudo-counts	Larger alphabets
Beta(0.2,0.2) distribution: $ \begin{array}{c} 20\\ 6\\ 10\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0\\ 0$	Beta(1.2,0.2) distribution: $ \begin{array}{c} 40 \\ 20 \\ 0 \\ 0 \\ 0 \\ 0.2 \\ 0.4 \\ 0.6 \\ 0.8 \\ 1 \end{array} $ Posterior from previous prior and observing a single 1	i.i.d. symbol model: $P(\mathbf{x} \mathbf{p}) = \prod_{i} p_{i}^{k_{i}}, \text{where } k_{i} = \sum_{n} \mathbb{I}(x_{n} = a_{i})$ The k_{i} are counts for each symbol. Dirichlet prior, generalization of Beta: $p(\mathbf{p} \boldsymbol{\alpha}) = \text{Dirichlet}(\mathbf{p}; \boldsymbol{\alpha}) = \frac{\delta(1-\sum_{i} p_{i})}{B(\boldsymbol{\alpha})} \prod_{i} p_{i}^{\alpha_{i}-1}$ Dirichlet predictions (Lidstone's law): $P(x_{N+1} = a_{i} \mathbf{x}) = \frac{k_{i} + \alpha_{i}}{N + \sum_{j} \alpha_{j}}$ Counts k_{i} are added to pseudo-counts α_{i} . All $\alpha_{i} = 1$ gives Laplace's rule.
More notes on the Dirichlet distribution The thing to remember is that a Dirichlet is proportional to $\prod_i p_i^{\alpha_i - 1}$	Reflection on Compression	Structure
The posterior $p(\mathbf{p} \mid \mathbf{x}, \boldsymbol{\alpha}) \propto P(\mathbf{x} \mid \mathbf{p}) p(\mathbf{p} \mid \boldsymbol{\alpha})$ will then be Dirichlet with the α_i 's increased by the observed counts. Details (for completeness): $B(\boldsymbol{\alpha})$ is the Beta function $\frac{\prod_i \Gamma(\alpha_i)}{\Gamma(\sum_i \alpha_i)}$. I left the $0 \leq p_i \leq 1$ constraints implicit. The $\delta(1 - \sum_i p_i)$ term constraints the distribution to the 'simplex', the region of a hyper-plane where $\sum_i p_i = 1$. But I can't omit this Dirac-delta, because it is infinite when evaluated at a valid probability vector(!). The density over just the first $(I-1)$ parameters is finite, obtained by integrating out the last parameter: $p(\mathbf{p}_{j < I-1}) = \int p(\mathbf{p} \mid \boldsymbol{\alpha}) dp_I = \frac{1}{B(\boldsymbol{\alpha})} \left(1 - \sum_{i=1}^{I-1} p_i\right)^{\alpha_I - 1} \prod_{i=1}^{I-1} p_i^{\alpha_i - 1}$	Take any complete compressor. If "incomplete" imagine an improved "complete" version. Complete codes: $\sum_{\mathbf{x}} 2^{-\ell(\mathbf{x})} = 1$, \mathbf{x} is whole input file Interpretation: implicit $Q(\mathbf{x}) = 2^{-\ell(bx)}$ If we believed files were drawn from $P(\mathbf{x}) \neq Q(\mathbf{x})$ we would expect to do $D(P Q) > 0$ bits better by using $P(\mathbf{x})$. Compression is the modelling of probabilities of files .	For any distribution: $P(\mathbf{x}) = P(x_1) \prod_{n=2}^{N} P(x_n \mathbf{x}_{< n})$ For i.i.d. symbols: $P(x_n = a_i \mathbf{p}) = p_i$ $P(x_n \mathbf{x}_{< n}) = \int P(\mathbf{x}_n \mathbf{p}) p(\mathbf{p} \mathbf{x}_{< n}) d\mathbf{p}$ $P(x_n = a_i \mathbf{x}_{< n}) = \mathbb{E}_{p(\mathbf{p} \mathbf{x}_{< n})}[p_i]$ we saw: easy-to-compute from counts with a Dirichlet prior. i.i.d. assumption is often terrible: want different structure.
There are no infinities, and the relation to the Beta distribution is now clearer, but the expression isn't as symmetric.	If we think our compressor should 'adapt', we are making a statement about the structure of our beliefs, $P(\mathbf{x})$.	Even then, do we need to specify priors (like the Dirichlet)?

Why not just fit p?	Fitting cannot be optimal	Fitting isn't that easy!
Run over file $ ightarrow$ counts ${f k}$	When fitting, we never save a file (\mathbf{p}, \mathbf{x}) where	Setting $p_i = \frac{k_i}{N}$ is easy. How do we encode the header? Optimal scheme depends on $p(\mathbf{p})$; need a prior!
Set $p_i = rac{k_i}{N}$, (Maximum Likelihood, and obvious, estimator)	$p_i eq rac{k_i(\mathbf{x})}{N}$	What precision to send parameters?
Save $(\mathbf{p},\mathbf{x}),~\mathbf{p}$ in a header, \mathbf{x} encoded using \mathbf{p}	Informally: we are encoding ${f p}$ twice	Trade-off between header and message size.
Simple? Prior-assumption-free?	More formally: the code is incomplete	Interesting models will have many parameters. Putting them in a header could dominate the message.
	However, gzip and arithmetic coders are incomplete too, but they are still useful!	Having both ends learn the parameters while {en,de}coding the file avoids needing a header.
	In some situations the fitting approach is very close to optimal	For more (non-examinable) detail on these issues see MacKay p352–353
Richer models	Image contexts	A good image model?
Images are not bags of i.i.d. pixels Text is not a bag of i.i.d. characters/words (although many "Topic Models" get away with it!)		The context model isn't far off what several real image compression systems do for binary images.
Less restrictive assumption than: $P(x_n \mathbf{x}_{< n}) = \int P(\mathbf{x}_n \mathbf{p}) p(\mathbf{p} \mathbf{x}_{< n}) \; \mathrm{d}\mathbf{p}$		
is $P(x_n \mathbf{x}_{< n}) = \int P(\mathbf{x}_n \mathbf{p}_{C(\mathbf{x}_{< n})}) p(\mathbf{p}_{C(\mathbf{x}_{< n})} \mathbf{x}_{< n}) \mathrm{d}\mathbf{p}_{C(\mathbf{x}_{< n})}$	$P(x_i = \texttt{Black} \mid C) = \frac{k_{\texttt{B}\mid C} + \alpha}{N_C + \alpha \mathcal{A} } = \frac{2 + \alpha}{7 + 2\alpha}$	With arithmetic coding we go from 500 to 220 bits A better image model might do better
Probabilities depend on the local context, C: — Surrounding pixels, already {en,de}coded — Past few characters of text	There are 2^p contexts of size p binary pixels Many more counts/parameters than i.i.d. model	If we knew it was text and the font we'd need fewer bits!
Context size	Problem with large contexts	Prediction by Partial Match (PPM)
How big to make the context? kids_make_nutr? Context length:	For simple counting methods, statistics are poor: $p(x_n=a_i \mathbf{x}_{< n})=\frac{k_{\mathbf{i} C}+\alpha}{N_C+\alpha \mathcal{A} }$	One way of smoothing predictions from several contexts: Helle للمعه ؟ لم الجل
 0: i.i.d. bag of characters 1: bigrams, give vowels higher probability >1: predict using possible words ≫1: use understanding of sentences? 	$k_{: C}$ will be zero for most symbols in long contexts Predictions become uniform \Rightarrow no compression.	$\begin{array}{c} \vdots \\ H_{2} \\ H_{1} \\ H_{2} \\ H_{$
Ideally we'd use really long contexts, as humans do.	What broke? We believe some contexts are related: kids_make_nutr ? kids_like_nutr ? while the Dirichlet prior says they're unrelated	Model: draw using fractions observed at context Escape to shorter context with some probability (variant-dependent)

Conditional Entropy (3)	Mutual Information	on (2)	The	Capacity	
The chain rule for entropy:	H(X,Y)		Where are we going?		
H(X,Y) = H(X) + H(Y X) = H(Y) + H(X Y)	H(X)		$I(X;Y)$ depends on the channel and input distribution \mathbf{p}_X		
"The average coding cost of a pair is the same regardless of whether you treat them as a joint event, or code one and then the other." Proof: $H(X,Y) = \sum_{x} \sum_{y} p(x) p(y x) \left[\log \frac{1}{p(x)} + \log \frac{1}{p(y x)} \right]$ $= \sum_{x} p(x) \log \frac{1}{p(x)} \sum_{y} p(y x)^{-1} + \sum_{x} \sum_{y} p(x, y) \log \frac{1}{p(y x)}$	H(Y) $H(X Y)$ $H(Y X)$ The receiver thinks: $I(X;Y) = H(X) - H(X Y)$ The mutual information is, on average, the information content of the input minus the part that is still uncertain after seeing the output. That is, the average information that we can get about the input over the channel. $I(X;Y) = H(Y) - H(Y X)$ is often easier to calculate		The Capacity: $C(Q) = \max_{\mathbf{p}_X} I(X;Y)$ C gives the maximum average amount of information we can get in one use of the channel. We will see that reliable communication is possible at C bits per channel use.		
Lots of new definitions	The probabilities associated with a channel		Correspo	onding information mea	sures
When dealing with extended ensembles, independent identical copies of an ensemble, entropies were easy: $H(X^K) = K H(X)$.	Very little of this is special to channels, of dependent random variables.	it's mostly results for any pair	H(X)	$\sum_x p(x) \log \frac{1}{p(x)}$	Ave. info. content of source Sender's ave. surprise on seeing
Dealing with channels forces us to extend our notions of information to collections of dependent variables. For every joint, conditional and marginal probability we have a different entropy and we'll want to understand their relationships. Unfortunately this meant seeing a lot of definitions at once. They are summarized on pp138–139 of MacKay. And also in the following tables.	$ \begin{array}{c ccc} P(x) & \text{We choose} & \text{In} \\ P(y \mid x) & Q, \text{ channel definition} & C \\ S \\ P(x,y) & p(y \mid x) p(x) & C \\ & & \text{jc} \\ P(y) & \sum_{x} p(x,y) = Q \mathbf{p}_{X} & (\mathbf{I} \\ P(x \mid y) & p(y \mid x) p(x) / p(y) & \mathbf{R} \\ \end{array} $	nterpretation / Name nput distribution Channel noise model Sender's beliefs about output Dmniscient outside observer's oint distribution Marginal) output distribution Receiver's beliefs about input. Inference"	$ \begin{array}{c} H(X \mid y) \\ H(X \mid Y) \\ H(Y \mid X) \\ I(X;Y) \end{array} $	$\begin{split} \sum_{y} p(y) \log \frac{1}{p(y)} \\ \sum_{x,y} p(x,y) \log \frac{1}{p(x,y)} \\ \sum_{x,y} p(x,y) \log \frac{1}{p(x y)} \\ \sum_{x,y} p(x,y) \log \frac{1}{p(x y)} \\ \sum_{x,y} p(x,y) \log \frac{1}{p(y x)} \\ H(X) + H(Y) - H(X,Y) \\ H(X) - H(X Y) \\ H(Y) - H(Y X) \\ \end{split}$ where diagram relating all the second	Ave. info. content of output Partial info. about x and noise Ave. surprise of receiver Ave. info. content of (x, y) or "source and noise". Ave. surprise of outsider Uncertainty after seeing output Average, $\mathbb{E}_{p(y)}[H(X \mid y)]$ Sender's ave. uncertainty abour 'Overlap' in ave. info. contents Ave. uncertainty reduction by Ave info. about x over channel Often easier to calculate
Ternary confusion channel	Information Theory		ISBI	Ns — checks	sum example
$a \xrightarrow{1}_{V_2} o$ $b \xrightarrow{V_2}_{V_2} 1$ $Q = \begin{bmatrix} 1 & V_2 & 0 \\ 0 & V_2 & 1 \end{bmatrix} $ $Q = \begin{bmatrix} 1 & V_2 & 0 \\ 0 & V_2 & 1 \end{bmatrix} $ $Assume \mathbf{p}_X = \begin{bmatrix} 1/3, 1/3, 1/3 \end{bmatrix}.$ What is $I(X;Y)$?	http://www.inf.ed.ac.uk/teaching Week 7 Noisy channel coding	/courses/it/	ISI Group-F The che		rn Recognition book: $x_2 + 3 x_3 + \dots + 9 x_9 \mod 1$ 038731073], 1:

 $H(X) - H(X | Y) = H(Y) - H(Y | X) = 1 - \frac{1}{3} = \frac{2}{3}$

Optimal input distribution: $\mathbf{p}_X = [1/2, 0, 1/2]$

For which I(X;Y) = 1, the *capacity* of the channel.

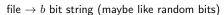
Iain Murray, 2010 School of Informatics, University of Edinburgh - Why is the check digit there? - $\sum_{i=1}^{9} x_i \mod 10$ would detect any single-digit error. - Why is each digit pre-multiplied by *i*? - Why do mod 11, which means we sometimes need X?

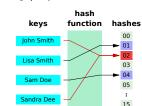
Questions:

Some people often type in ISBNs. It's good to tell them of mistakes without needing a database lookup to an archive of all books.	Noisy typewriter	Noisy Typewriter Capacity:	
 Not only are all single-digit errors detected, but also transposition of two adjacent digits. The back of the MacKay textbook cannot be checked using the given formula. In recent years books started to get 13-digit ISBN's. These have a different check-sum, performed modulo-10, which doesn't provide the same level of protection. Check digits are such a good idea, they're found on <i>many</i> long numbers that people have to type in, or are unreliable to read: Product codes (UPC, EAN,) Government issued IDs for Tax, Health, etc., the world over. Standard magnetic swipe cards. Airline tickets. Postal barcodes. 	See the fictitious noisy typewriter model, MacKay p148 For Uniform input distribution: $\mathbf{p}_X = [1/27, 1/27, \dots 1/27]^\top$ $H(X) = \log(27)$ $p(x \mid y = \mathbb{B}) = \begin{cases} 1/3 & x = \mathbb{A} \\ 1/3 & x = \mathbb{B} \\ 1/3 & x = \mathbb{C} \\ 0 & \text{otherwise.} \end{cases}$ $H(X \mid Y) = \mathbb{E}_{p(y)}[H(X \mid y)] = \log 3$ $I(X;Y) = H(X) - H(X \mid Y) = \log 27/3 = \log_2 9 \text{ bits}$	In fact, the capacity: $C = \max_{\mathbf{p}_X} I(X;Y) = \log_2 9$ bits Under the uniform input distribution the receiver infers 9 bits of information about the input. And Shannon's theory will tell us that this is the fastest rate that we can communicate information without error. For this channel there is a simple way of achieving error-less communication at this rate: only use 9 of the inputs as on the next slide (along with the Q matrix for the channel). Confirm that the mutual information for this input distribution is also $\log_2 9$ bits.	
Non-confusable inputs	The challenge	Extensions of the BSC	
ABC DEF G HE JKLMNDPD & STUVWKXP- H H H H H H H H H H H H H H H H H H H	Most channels aren't as easy-to-use as the typewriter. How to communicate without error with messier channels? Idea: use N^{th} extension of channel: Treat N uses as one use of channel with $\text{Input} \in \mathcal{A}_X^N$ $\text{Output} \in \mathcal{A}_Y^N$ For large N a subset of inputs can be non-confusable with high-probability.	$(f = 0.15) \\ (f $	
Extensions of the Z channel	Non-confusable typical sets	Do the 4th extensions look like the noisy typewriter?	
$(f = 0.15) \\ (f $	$ \begin{array}{c} \mathcal{A}_{Y}^{N} \\ & \\ & \\ \mathcal{V} \\ & \\ \mathcal{V} \\ & \\ \mathcal{V} \\ & \\ \mathcal{V} \\ \mathcal$	I think they look like a mess! For the BSC the least confusable inputs are 0000 and $1111 - a$ simple repetition code. For the Z-channel one might use more inputs if one has a moderate tolerance to error. (Might guess this: the Z-channel has higher capacity.) To get really non-confusable inputs need to extend to larger N. Large blocks are hard to visualize. The cartoon on the previous slide is part of how the noisy channel theorem is proved. We know from source-coding that only some large blocks under a given distribution are "typical". For a given input, only certain outputs are typical (e.g., all the blocks that are within a few bit-flips from the input). If we select only a tiny subset of inputs, <i>codewords</i> , whose typical output sets only weakly overlap. Using these nearly non-confusable inputs will be like using the noisy typewriter. That will be the idea. But as with compression, dealing with large blocks can be impractical. So first we're going to look at some simple	

[7,4] Hamming Codes	[N,K] Block codes	Noisy channel coding theorem
Sends $K=4$ source bits With $N=7$ uses of the channel Can detect <i>and correct</i> any single-bit error in block. My explanation in the lecture and on the board followed that in the MacKay book, p8, quite closely. You should understand how this block code works.	[7,4] Hamming code was an example of a block code We use $S = 2^K$ codewords (hopefully hard-to-confuse) Rate: # bits sent per channel use: $R = \frac{\log_2 S}{N} = \frac{K}{N}$ Example, repetition code R_3 : N=3, S=2 codewords: 000 and 111. $R = 1/3$. Example, [7,4] Hamming code: $R = 4/7$. Some texts (not MacKay) use $(\log_{ \mathcal{A}_X } S)/N$, the relative rate compared to a uniform distribution on the non-extended channel. I don't use this definition.	Consider a channel with capacity $C = \max_{\mathbf{p}_X} I(X;Y)$ [E.g.'s, Tutorial 5: BSC, $C = 1 - H_2(f)$; BEC $C = 1 - f$] No feed back channel For any desired error probability $\epsilon > 0$, e.g. 10^{-15} , 10^{-30} For any rate $R < C$ 1) There is a block code (N might be big) with error $< \epsilon$ and rate $K/N \ge R$. 2) We cannot transmit without error at rates $> C$.
Capacity as an upper limit It is easy to see that errorless transmission above capacity is impossible for the BSC and the BEC. It would imply we can compress any file to less than its information content. BSC: Take a message with information content $K + NH_2(f)$ bits. Take the first K bits and create a block of length N using an error correction code for the BSC. Encode the remaining bits into N binary symbols with probability of a one being f. Add together the two blocks modulo 2. If the error correcting code can identify the message' and 'noise' bits, we have compressed $K + NH_2(f)$ bits into N binary symbols. Therefore, $N > K + NH_2(f) \Rightarrow K/N < 1 - H_2(f)$. That is, $R < C$ for errorless communication. BEC: we typically receive $N(1-f)$ bits, the others having been erased. If the block of N bits contained a message of K bits, and is recoverable, then $K < N(1-f)$, or we have compressed the message to these than K bits. Therefore $K/N < (1-f)$, or $R < C$.	Linear [N,K] codesHamming code example of linear code: $\mathbf{t} = G^{\top}\mathbf{s} \mod 2$ Transmitted vector takes on one of 2^K codewordsCodewords satisfy $M = N - K$ constraints: $H\mathbf{t} = 0 \mod 2$ Dimensions: \mathbf{t} $N \times 1$ G^{\top} $N \times K$ \mathbf{s} $K \times 1$ H $M \times N$ For the BEC, choosing constraints H at random makes communication approach capacity for large N !	Required constraintsThere are $E \approx Nf$ erasures in a blockNeed E independent constraints to fill in erasuresH matrix provides $M = N - K$ constraints.But they won't all be independent.Example: two Hamming code parity checks are: $t_1 + t_2 + t_3 + t_5 = 0$ and $t_2 + t_3 + t_4 + t_6 = 0$ We could specify 'another' constraint: $t_1 + t_4 + t_5 + t_6 = 0$ But this is the sum (mod 2) of the first two, and provides no extra checking.
H constraints Q. Why would we choose H with redundant rows? A. We don't know ahead of time which bits will be erased. Only at decoding time to we set up the M equations in the E unknowns. For H filled with $\{0, 1\}$ uniformly at random, we expect to get E independent constraints with only $M = E + 2$ rows. Recall $E \approx Nf$. For large N , if $f < M/N$ there will be enough constraints with high probability. Errorless communication possible if f < (N-K)/N = 1 - R or if $R < 1 - f$, i.e., $R < C$. A large random linear code achieves capacity.	Details on finding independent constraints: Imagine that while checking parity conditions, a row of H at a time, you have seen n independent constraints so far. $P(\text{Next row of } H \text{ useful}) = 1 - 2^n/2^E = 1 - 2^{n-E}$ There are 2^E possible equations in the unknowns, but 2^n of those are combinations of the n constraints we've already seen. Expect number of wasted rows before we see E constraints: $\sum_{n=0}^{E-1} \left(\frac{1}{1-2^{n-E}}-1\right) = \sum_{n=0}^{E-1} \frac{1}{2^{E-n}-1} = 1 + \frac{1}{3} + \frac{1}{7} + \dots$ $< 1 + \frac{1}{2} + \frac{1}{4} + \dots < 2$ (The sum is actually about 1.6)	Packet erasure channel Split a video file into $K = 10,000$ packets and transmit Some might be lost (dropped by switch, fail checksum,) Assume receiver knows the identity of received packets: — Transmission and reception could be synchronized — Or large packets could have unique ID in header If packets are 1 bit, this is the BEC. Digital fountain methods provide cheap, easy-to-implement codes for erasure channels. They are <i>rateless</i> : no need to specify M , just keep getting packets. When slightly more than K have been received, the file can be decoded.

Digital fountain (LT) code	LT code decoding	Soliton degree distribution
Packets are sprayed out continuously Receiver grabs any $K' > K$ of them (e.g., $K' \approx 1.05K$) Receiver knows packet IDs n , and encoding rule Encoding packet n : Sample d_n psuedo-randomly from a degree distribution $\mu(d)$ Pick d_n psuedo-random source packets Bitwise add them mod 2 and transmit result. Decoding: 1. Find a check packet with $d_n = 1$ Use that to set corresponding source packet Subtract known packet from all checks Degrees of some check packets reduce by 1. GOTO 1.	$\begin{array}{c} a) & \overset{s_{1}}{\longrightarrow} & \overset{s_{2}}{\longrightarrow} & \overset{s_{3}}{\longrightarrow} & b) & \overset{1}{\longrightarrow} & \overset{c}{\longrightarrow} & \overset{c}{\longrightarrow}$	Ideal wave of decoding always has one $d=1$ node to remove "Ideal soliton" does this in expectation: $\rho(d) = \begin{cases} 1/K & d=1\\ 1/d(d-1) & d=2,3,\ldots,K \end{cases}$ (Ex. 50.2 explains how to show this.) A robustified version, $\mu(d)$, ensures decoding doesn't stop and all packets get connected. Still get $R \to C$ for large K . A Soliton wave was first observed in 19 C Scotland on the Union Canal.
Number of packets to catch	Reed–Solomon codes (sketch mention)	Information Theory
K = 10,000 source packets Numbers of transmitted	Widely used: e.g. CDs, DVDs, Digital TV k message symbols $ ightarrow$ coefficients of degree $k{-}1$ polynomial	Information Theory http://www.inf.ed.ac.uk/teaching/courses/it/
packets required for decoding on random trials for three different packet distributions.	Evaluate polynomial at $> k$ points and send Some points can be erased: Can recover polynomial with any k points.	Week 8 Noisy channel coding theorem and LDPC codes
10000 10500 11000 11500 12000 10000 10500 11000 11500 12000 MacKay, p593	To make workable, polynomials are defined on Galois fields. Reed–Solomon codes can be used to correct bit-flips as well as erasures: like identifying outliers when doing regression.	Iain Murray, 2010 School of Informatics, University of Edinburgh
Typical sets revisited	Typical sets: general alphabets	Source Coding Theorem
Week 2: looked at $k = \sum_{i} x_{i}$, $x_{i} \sim \text{Bernoulli}(f)$ $p(k) \int O(\sqrt{n})$ $N \leq N \leq N$ Saw number of 1's is almost always in narrow range around	More generally look at $\hat{H} = \frac{1}{N} \sum_{i} \log \frac{1}{P(x_i)}, x_i \sim P$ $\begin{array}{c} & & & \\ & & & $	(MacKay, p82–3 for details) Almost all strings have prob. less than $2^{-N(H(X)-\beta)}$ Therefore typical set has size $\leq 2^{N(H(X)+\beta)}$ For large N can set β small Index almost all strings with $\log_2 2^{NH(X)} = NH(X)$ bits
expected number. Indexing this 'typical set' was the cost of compression.	For any β , $P(\mathbf{x} \in T_{N,\beta}) > 1 - \delta$, for any δ if N big enough See MacKay, Ch. 4	We now extend ideas of typical sets to joint ensembles of inputs and outputs of noisy channels


Jointly typical sequences	Chance of being jointly typical	Random typical set code
For $n = 1 \dots N$: $x_n \sim \mathbf{p}_X$ Send \mathbf{x} over extended channel: $y_n \sim Q_{\cdot x_n}$ Jointly typical: $(\mathbf{x}, \mathbf{y}) \in J_{N,\beta}$ if $\left \frac{1}{N}\log \frac{1}{P(\mathbf{x},\mathbf{y})} - H(X,Y)\right < \beta$ There are $\leq 2^{N(H(X,Y)+\beta)}$ jointly typical sequences	$\begin{aligned} (\mathbf{x}, \mathbf{y}) \text{ from channel are jointly typical with prob } 1-\delta \\ (\mathbf{x}', \mathbf{y}') \text{ generated independently are rarely jointly typical} \\ P(\mathbf{x}', \mathbf{y}' \in J_{N,\beta}) &= \sum_{(\mathbf{x}, \mathbf{y}) \in J_{N,\beta}} P(\mathbf{x}) P(\mathbf{y}) \\ &\leq J_{N,\beta} 2^{-N(H(X)-\beta)} 2^{-N(H(Y)-\beta)} \\ &\leq 2^{N(H(X,Y)-H(X)-H(Y)+3\beta)} \\ &\leq 2^{-N(I(X;Y)-3\beta)} \\ &\leq 2^{-N(C-3\beta)}, \text{ for optimal } \mathbf{p}_X \end{aligned}$	Randomly choose $S = 2^{NR'}$ codewords $\{\mathbf{x}^{(s)}\}$ Decode $\mathbf{y} \rightarrow \hat{s}$ if $(\mathbf{y}, \mathbf{x}^{(\hat{s})}) \in J_{N,\beta}$ and no other $(\mathbf{y}, \mathbf{x}^{(s')}) \in J_{N,\beta}$ $A_{Y} \longrightarrow Prob (\mathbf{y} \text{ not jointly typual}$ $ivith any \underline{x}) = \delta(small as we like for large N)\rho \geq 2 \underline{x}^{(i)} jointly typual with \underline{y})\leq (2^{NR'-1}) \cdot 2^{-NE} - 3\beta$
Error rate averaged over codes	Error for a particular code	Worse case codewords
Set rate $R' < C - 3\beta$. For large N prob. confusion $< \delta$ Total error probability on average $< 2\delta$ $A_{Y} \longrightarrow Rrob (u. not jointly typeial with any \underline{x}) = \delta(small as we like for large N)p(\geq 2 \underline{x}^{(s)}) jointly typeial with \underline{u})\leq (2^{NR'-1}) \cdot 2^{-NR'-3\beta}#$ other codewords	We randomly drew all the codewords for each symbol sent. Block error rate averaged over all codes: $\langle p_B \rangle \equiv \sum_{\mathcal{C}} P(\hat{s} \neq s \mathcal{C}) P(\mathcal{C}) < 2\delta$ Some codes will have error rates more/less than this There exists <i>a</i> code with block error: $p_B(\mathcal{C}) \equiv P(\hat{s} \neq s \mathcal{C}) < 2\delta$	$\begin{array}{c c} \lambda_{\mathcal{A}}^{N} & \overbrace{}^{V} & \begin{array}{c} \text{Confusable codewords} \\ \text{Could have } p(3 \neq s c) \approx 1 \end{array} (!) \\ \hline & \begin{array}{c} \vdots & \vdots & \vdots \\ \hline & \end{array} \\ \hline & \begin{array}{c} \vdots & \vdots & \vdots \\ \hline & \end{array} \\ \hline & \begin{array}{c} \text{Chuck then } \underline{both} & \text{out} \\ \hline & \begin{array}{c} \text{out} & \text{out} \\ \hline & \end{array} \\ \hline & \begin{array}{c} \text{Chuck then } \underline{both} & \text{out} \\ \hline & \begin{array}{c} \text{out} & \text{out} \\ \hline & \end{array} \\ \hline & \begin{array}{c} \text{Chuck then } \underline{both} & \text{out} \\ \hline & \begin{array}{c} \text{codewords} \end{array} \\ \hline & \begin{array}{c} \text{Chuck then } \underline{both} & \text{out} \\ \hline & \begin{array}{c} \text{out} & \text{out} \\ \hline & \begin{array}{c} \text{codewords} \end{array} \\ \hline & \begin{array}{c} \text{Column of } \end{array} \\ \hline \\ \hline \end{array} $ \\ \hline \end{array} \\ \hline \end{array} \\ \hline \end{array}
Noisy channel coding theorem	Code distance	Distance isn't everything
For N large enough, can shrink β 's and δ 's close to zero. For large N a code exists with rate close to C with error close to zero. (As close as you like for large enough N .) In week 7 we showed that it is impossible to transmit at rates greater than the capacity without non-negligible probability of error for particular channels. This is also true in general.	Distance, $d \equiv \min_{s,s'} \mathbf{x}^{(s)} - \mathbf{x}^{(s')} $ E.g., $d=3$ for the [7, 4] Hamming code Can always correct $\lfloor (d-1)/2 \rfloor$ errors Distance of random codes? $ \mathbf{x}^{(s)} - \mathbf{x}^{(s')} \approx \frac{N}{2}$ for large N Not guaranteed to correct errors in $\geq \frac{N}{4}$ bits With BSC get $\approx Nf$ errors, and proof works for $f > \frac{1}{4}$	Distance can sometimes be a useful measure of a code However, good codes have codewords that aren't separated by twice the number of errors we want to correct In high-dimensions the overlapping volume is tiny. Shannon-limit approaching codes for the BSC correct <i>almost all</i> patterns with Nf errors, even though they can't strictly correct <i>all</i> such patterns.


Low Density Parity Check codes	Why Low Density Parity Check (LDPC) codes?	Sum-Product algorithm
LDPC codes originally discovered by Gallagher (1961) Sparse graph codes like LDPC not used until 1990s. $ \underbrace{t}_{\text{pridy}} \qquad $	The noisy channel coding theorem can be reproved for randomly generated linear codes. However, not all ways of generating low-density codes, with each variable only involved in a few parity checks and vice-versa, are very good. For some sequences of low-density codes, the Shannon limit is approached for large block-lengths. For both uniformly random linear codes, or random LDPC codes, the results are for optimal decoding: $\hat{\mathbf{t}} = \operatorname{argmax}_{\mathbf{t}} P(\mathbf{t} \mathbf{r})$. This is a hard combinatorial optimization problem in general. The reason to use low-density codes is that we have good approximate solvers: use the sum-product algorithm (AKA "loopy belief propagation") — decode if the thresholded beliefs give a setting of \mathbf{t} that satisfies all parity checks.	Example with three received bits and one parity check RECEIVED 0 $r = \begin{bmatrix} 0,9\\0,024 \end{bmatrix}$ $r = \begin{bmatrix} 0,1\\0,024 \end{bmatrix}$ $p = \begin{bmatrix} 0,1\\0,024 \end{bmatrix}$ $q \Rightarrow p = \begin{bmatrix} 0,1\\0,02 \end{bmatrix}$ $q \Rightarrow p = \begin{bmatrix} 0,1\\0,02 \end{bmatrix}$ $r = \begin{bmatrix} 0,1\\0,02 \end{bmatrix}$ RECEIVED 1 $r = \begin{bmatrix} 0,1\\0,02 \end{bmatrix}$ $r = \begin{bmatrix} 0,1\\0,02 \end{bmatrix}$
		For more all hors proved a grant recognition and indennie regiming
Sum-Product algorithm notes: Beliefs are combined by element-wise multiplying Two types of messages: variable \rightarrow factor and factor \rightarrow variable Messages combine beliefs from all neighbours except recipient Variable \rightarrow factor:	More Sum-Product algorithm notes:Messages can be renormalized, e.g. to sum to 1, at any time.I did this for the outgoing message from <i>a</i> to an imaginary factor downstream. This message gives the relative beliefs about about the settings of <i>a</i> given the graph we can see:	<pre>Information Theory http://www.inf.ed.ac.uk/teaching/courses/it/</pre>
$q_{n \to m}(x_n) = \prod_{m' \in \mathcal{M}(n) \setminus m} r_{m' \to n}(x_n)$ Factor \to variable: $r_{m \to n}(x_n) = \sum_{\mathbf{x}_m \setminus n} \left(f_m(\mathbf{x}_m) \prod_{n' \in \mathcal{N}(m) \setminus n} q_{n' \to m}(x_{n'}) \right)$	$b_n(x_n) = \prod_{m' \in \mathcal{M}(n)} r_{m' \to n}(x_n)$ The settings with maximum belief are taken and, if they satisfy the parity checks, used as the decoded codeword. The beliefs are the correct posterior marginals if the factor graph is a tree. Empirically the decoding algorithm works well on low-density graphs that aren't trees. Loopy belief propagation is also sometimes used in computer vision and machine learning, however, it will not	Week 9 Hashes and lossy memories
$ \begin{array}{l} \mbox{Example } r_{p \rightarrow a} \mbox{ in diagram, with sum over } (b,c) \in \{(0,0),(0,1),(1,0),(1,1)\} \\ r_{p \rightarrow a}(0) = 1 \times 0.1 \times 0.1 + 0 + 0 + 1 \times 0.9 \times 0.9 = 0.82 \\ r_{p \rightarrow a}(1) = 0 + 1 \times 0.1 \times 0.9 + 1 \times 0.9 \times 0.1 + 0 = 0.18 \end{array} $	give accurate or useful answers on all inference/optimization problems! We haven't covered efficient implementation which uses Fourier transform tricks to compute the sum quickly.	lain Murray, 2010 School of Informatics, University of Edinburgh
Course overview	Rate distortion theory (taster)	Reversing a block code
Source coding / compression: — Losslessly representing information compactly — Good probabilistic models → better compression Noisy channel coding / error correcting codes: — Add redundancy to transmit without error — Large psuedo-random blocks approach theory limits — Decoding requires large-scale inference (cf Machine learning) Other topics in information theory — Cryptography: not covered here — Over capacity: using fewer bits than info. content — Rate distortion theory — Hashing	Q. How do we store N bits of information with $N/3$ binary symbols (or N uses of a channel with $C = 1/3$)? A. We can't without a non-negligible probability of error. But what if we were forced to try? Idea 1: — Drop $2N/3$ bits on the floor — Transmit $N/3$ reliably — Let the receiver guess the remaining bits Expected number of errors: $2N/3 \cdot 1/2 = N/3$ Can we do better?	Swap roles of encoder and decoder for $[N, K]$ block code E.g., Repetition code R_3 Put message through decoder first, transmit, then encode 110111010001000 \rightarrow 11000 \rightarrow 11111100000000 111 and 000 sent without error. Other six blocks lead to one error. Error rate = $6/8 \cdot 1/3 = 1/4$, which is $< 1/3$ Slightly more on MacKay p167-8, much more in Cover and Thomas. Rate distortion theory plays little role in practical lossy compression systems for (e.g.) images. It's a challenge to find practical coding schemes that respect perceptual measures of distortion.

Hashing	Hashing motivational examples:	Journal of Experimental Psychology:
Hashes reduce large amounts of data into small values	Many animals can do amazing things. While: http://www.google.com/technology/pigeonrank.html was a hoax. The paper on the next slide and others like it are not.	Journal of Experimental Psychology: American Psychological Association, Inc. Pigeon Visual Memory Capacity
(obviously the info. content of a source is not preserved in general)	It isn't just pigeons. <i>Amazingly</i> humans can do this stuff too. Paul Speller demonstrated that humans can remember to distinguish	William Vaughan, Jr., and Sharon L. Greene Harvard University
Computers, humans and other animals can do amazing things, very quickly, based on tiny amounts of information.	similar pictures of pigeons over many minutes(!). http://www. webarchive.org.uk/wayback/archive/20100223122414/http:	This article reports on four experiments on pigeon visual memory capacity. In the first experiment, pigeons learned to discriminate between 80 pairs of random shapes. Memory for 40 of those pairs was only slightly poorer following 490 days without 'exposure. In the second experiment, 80 pairs of photographic slides were learned:
Understanding how to use hashes can make progress in cognitive science and practical information systems.	<pre>//www.oneandother.co.uk/participants/PaulSpeller How can we build systems that rapidly recall arbitrary labels attached to large numbers of rich but noisy media sources? YouTube has recently done this on a very large scale for copyright enforcement.</pre>	exposure in the second experiment, so pairs or photographic sides were learned; 629 days without exposure did not significantly disrupt memory. In the third experiment, 160 pairs of slides were learned; 731 days without exposure did not significantly disrupt memory. In the fourth experiment, pigeons learned to respond appropriately to 40 pairs of slides in the normal orientation and to respond in the opposite way when the slides were left-right reversed. After an interval of 751 days, there was a transient disruption in discrimination. These experiments demonstrate that pigeons have a heretofore unsuspected capacity with regard to both breadth
Some of this is long-established computer science	Some web browsers rapidly prove that a website isn't on a malware black-list without needing to access an external server, or needing an	and stability of memory for abstract stimuli and pictures.
A surprising amount is fertile research ground	explicit list of all black-listed sites. (False positives can be checked with a request to an external server.)	
Remembering images	Remembering images	'Safe browsing'
ti o transition of the second se	I COMPARENT OF THE STATE OF T	Reported Attack Page! Privation Private Page at a stack page at a stack page and has been blocked based on your security preferences. Attack page try to install programs that steal private information, use your computer to attack others, or damage your system. Information, use your computer to attack others, or damage your system. Be me attack page interinosity distribute harmful software. but many are componented without the knowledge or permission of their owners. Interine out of here? Cet me out of here? Why was this page blocked? Not mit werene
Information retrieval	Information retrieval	Information retrieval
	KRYSTLE S5,000 POWAR PHRASE	KRYSTLE Rick CAITLIN S5.000 S0 S2.000 I V I G I V I G I V I G I V I G I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I I

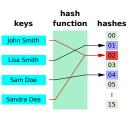
Hash functions

A common view:

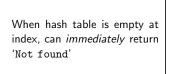
Many uses: e.g., integrity checking, security, communication with feedback (rsync), indexing for information retrieval

Notes on Bloom filters

Probability of false negative is zero


Probability of false positive depends on number of memory bits, M, and number of hash functions, K.

For fixed large M the optimal K (ignoring computation cost) turns out to be the one that sets \approx $^{1/2}$ of the bits to be on. This makes sense: the memory is less informative if sparse.


Other things we've learned are useful too. One way to get a low false positive rate is to make K small but M huge. This would have a huge memory cost...except we could compress the sparse bit-vector. This can potentially perform better than a standard Bloom filter (but the details will be more complicated).

Google Chrome uses (or at least used to use) a Bloom filter with $K\!=\!4$ for its safe web-browsing feature.

Hash indexes table of pointers to data

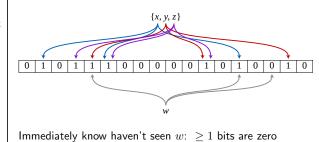
Need to resolve conflicts. Ways include:

- List of data at each location. Check each item in list.
- Put pointer to data in next available location.
- Deletions need 'tombstones', rehash when table is full — 'Cuckoo hashing': use > 1 hash and recursively move pointers out of the way to alternative locations.

Hashing in Machine Learning

A couple of example research papers

Semantic Hashing (Salakhutdinov & Hinton, 2009)


- Hash bits are "latent variables" underlying data
- 'Semantically' close files \rightarrow close hashes
- Very fast retrieval of 'related' objects

Feature Hashing for Large Scale Multitask Learning, (Weinberger et al., 2009)

- (Weinberger et al., 2005)
- 'Hash' large feature vectors without (much) loss in (spam) classification performance.
- Exploit multiple hash functions to give millions of users personalized spam filters at only about twice the cost (time and storage) of a single global filter(!).

Hash files multiple times (e.g., 3) Set (or leave) bits equal to 1 at hash locations

