Information Theory

http://www.inf.ed.ac.uk/teaching/courses/it/

Week 1

Introduction to Information Theory

lain Murray, 2010

School of Informatics, University of Edinburgh

Course structure

Constituents:

- $--\sim$ 17 lectures
- Tutorials starting in week 3
- 1 assignment (20% marks)

Website:

```
http://tinyurl.com/itmsc
```

http://www.inf.ed.ac.uk/teaching/courses/it/

Notes, assignments, tutorial material, news (optional RSS feed)

Prerequisites: some maths, some programming ability

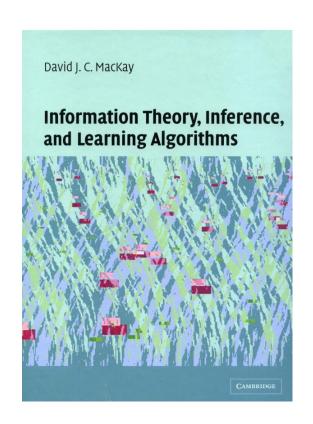
Maths background: This is a theoretical course so some general mathematical ability is essential. Be very familiar with logarithms, mathematical notation (such as sums) and some calculus.

Probabilities are used extensively: Random variables; expectation; Bernoulli, Binomial and Gaussian distributions; joint and conditional probabilities. There will be some review, but expect to work hard if you don't have the background.

Programming background: by the end of the course you are expected to be able to implement algorithms involving probability distributions over many variables. However, I am not going to teach you a programming language. I can discuss programming issues in the tutorials. I won't mark code, only its output, so you are free to pick a language. Pick one that's quick and easy to use.

The scope of this course is to understand the applicability and properties of methods. Programming will be exploratory: slow, high-level but clear code is fine. We will not be writing the final optimized code to sit on a hard-disk controller!

Resources / Acknowledgements



Recommended course text book

Inexpensive for a hardback textbook (Stocked in Blackwells, Amazon currently cheaper)

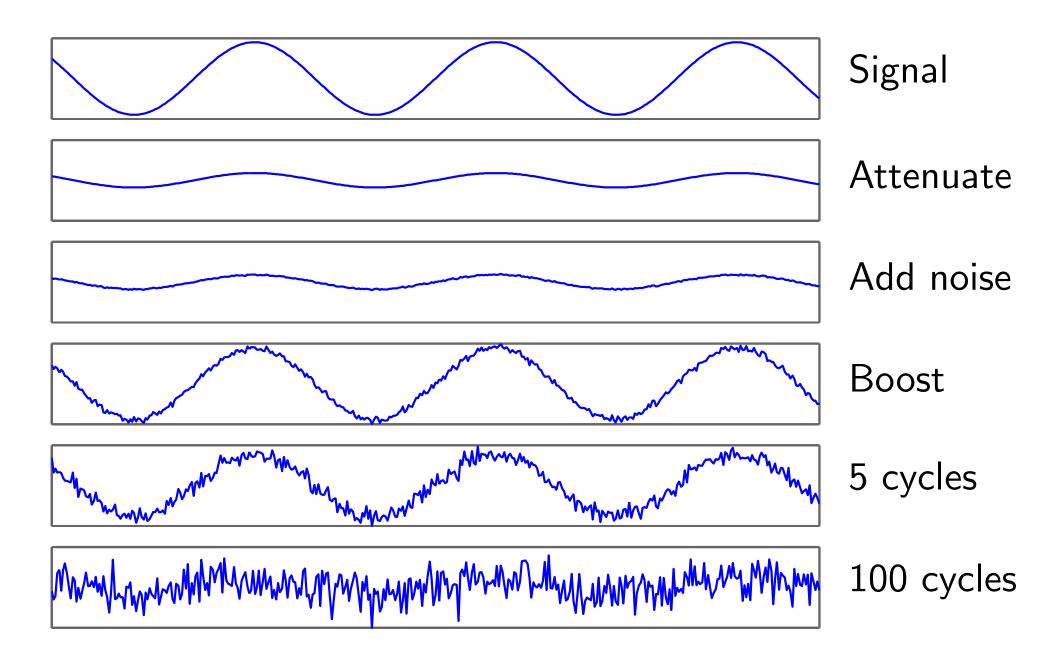
Also free online:

http://www.inference.phy.cam.ac.uk/mackay/itila/

Those preferring a theorem-lemma style book could check out: *Elements of information theory*, Cover and Thomas

I made use of course notes by MacKay and from CSC310 at the University of Toronto (Radford Neal, 2004; Sam Roweis, 2006)

Communicating with noise



Consider sending an audio signal by *amplitude modulation*: the desired speaker-cone position is the height of the signal. The figure shows an encoding of a pure tone.

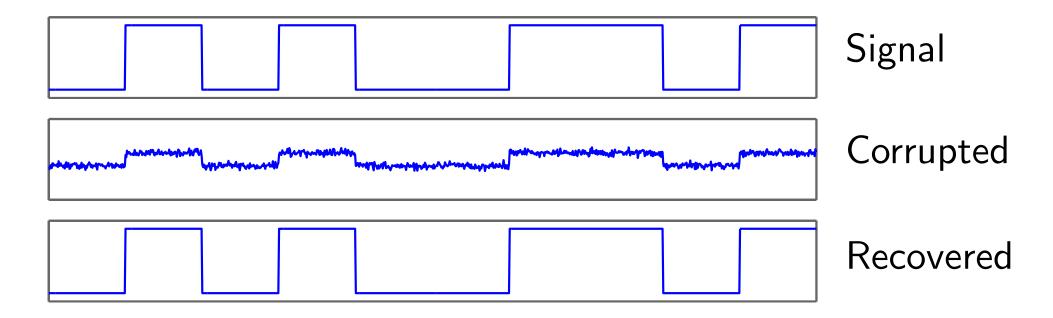
A classical problem with this type of communication channel is attenuation: the amplitude of the signal decays over time. (The details of this in a real system could be messy.) Assuming we could regularly boost the signal, we would also amplify any noise that has been added to the signal. After several cycles of attenuation, noise addition and amplification, corruption can be severe.

A variety of analogue encodings are possible, but whatever is used, no 'boosting' process can ever return a corrupted signal exactly to its original form. In digital communication the sent message comes from a discrete set. If the message is corrupted we can 'round' to the nearest discrete message. It is possible, but not guaranteed, we'll restore the message to exactly the one sent.

Digital communication

Encoding: amplitude modulation not only choice. Can re-represent messages to improve signal-to-noise ratio

Digital encodings: signal takes on discrete values



Communication channels

 $\mathsf{modem} \to \mathsf{phone} \ \mathsf{line} \to \mathsf{modem}$

Galileo \rightarrow radio waves \rightarrow Earth

parent cell → daughter cells

computer memory \rightarrow disk drive \rightarrow computer memory

Real channels are error prone.

Physical solutions:

change system to reduce probability of error

System solution

message
encoded message

corrupted encoding

decoded message

Rather than cooling a system, or increasing power, we send more robust encodings over the existing channel

But how is reliable communication possible at all?

Repetition codes

Repetition code R_3 :

```
hello there \rightarrow hhheeelllllooo ttthhheeerrreee \downarrow (noise added) hello thfr? \leftarrow hhkgeesllllqooc m qttzhhfferrrBme
```

Possible results of errors:

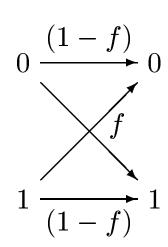
- Corrected
- Detected
- Undetected

Binary symmetric channel

Binary messages: 0010100111001...

Each 0 or 1 is flipped with probability f = 0.1

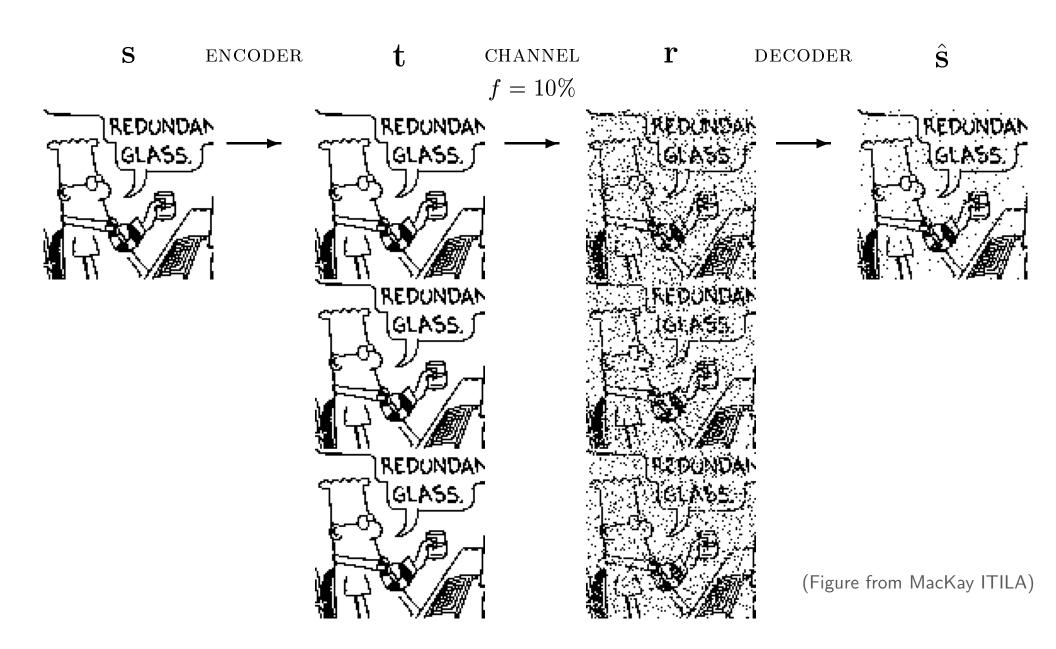
$$x \xrightarrow{0}$$
 $x \xrightarrow{1}$
 $y \xrightarrow{P(y=0 \mid x=0)}$
 $y \xrightarrow{P(y=0 \mid x=0)}$



(Figure from MacKay ITILA)

Can repetition codes give reliable communication?

Repetition code performance



Probability of error per bit ≈ 0.03 . What's good enough?

Consider a single 0 transmitted using R_3 as 000

Eight possible messages could be received:

000 100 010 001 110 101 011 111

Majority vote decodes the first four correctly but the next four result in errors. Fortunately the first four are more probable than the rest!

Probability of 111 is small: $f^3 = 0.1^3 = 10^{-3}$

Probability of two bit errors is $3f^2(1-f) = 0.03 \times 0.9$

Total probability of error is a bit less than 3%

How to reduce probability of error further? Repeat more! (N times)

Probability of bit error = Probability > half of bits are flipped:

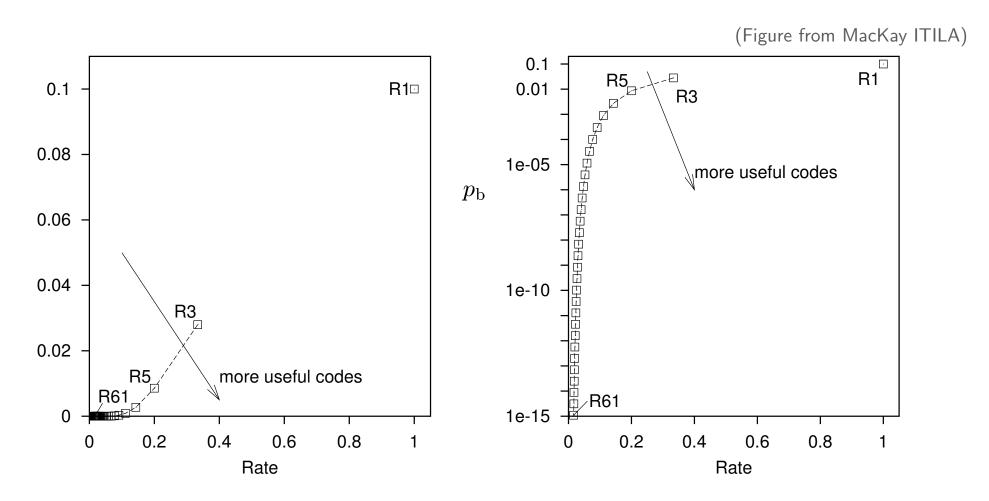
$$p_b = \sum_{r=\frac{N+1}{2}}^{N} {N \choose r} f^r (1-f)^{N-r}$$

But transmit symbols N times slower! Rate is 1/N.

Repetition code performance

Binary messages: 0010100111001...

Each 0 or 1 is flipped with probability f = 0.1

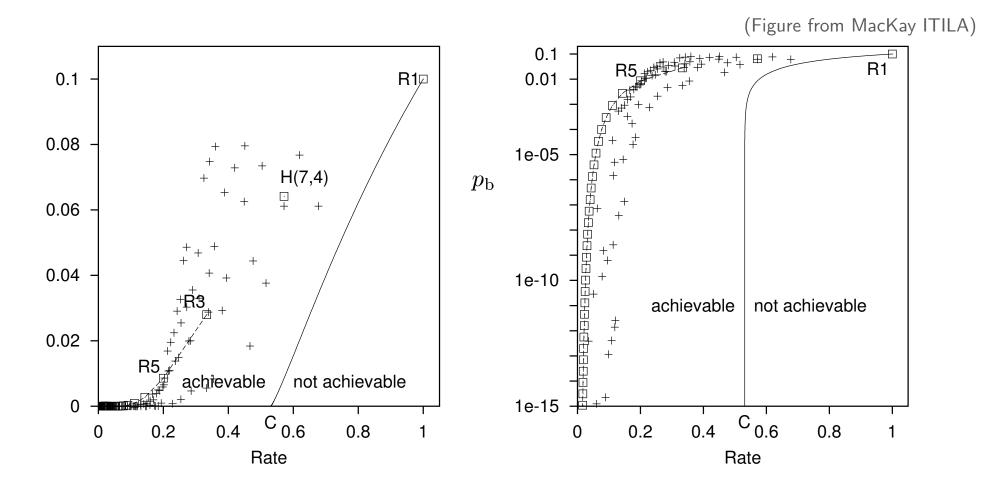


 $p_b = \text{probability of error at each bit of message}$

What is achievable?

Binary messages: 0010100111001...

Each 0 or 1 is flipped with probability f = 0.1



 p_b = probability of error at each bit of message

Course content

Theoretical content

- Shannon's noisy channel and source coding theorems
- Much of the theory is non-constructive
- However bounds are useful and approachable

Practical coding algorithms

- Reliable communication
- Compression

Tools and related material

— Probabilistic modelling and machine learning

Storage capacity

3 decimal digits allow $10^3 = 1{,}000$ numbers: 000-999

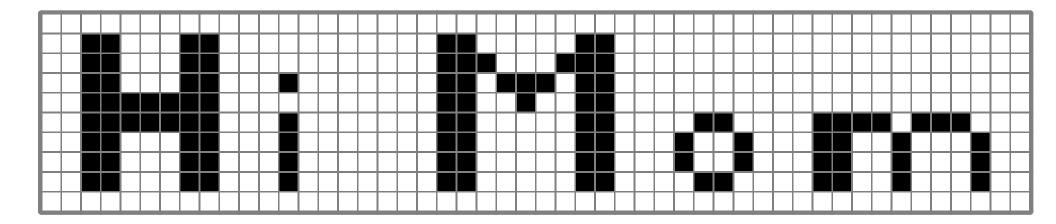
- 3 binary digits or bits allow $2^3 = 8$ numbers: 000, 001, 010, 011, 100, 101, 110, 111
- 8 bits, a 'byte', can store one of $2^8 = 256$ characters

Indexing I items requires at least $\log_{10} I$ decimal digits or $\log_2 I$ bits

Reminder: $b = \log_2 I \Rightarrow 2^b = I \Rightarrow b \log 2 = \log I \Rightarrow b = \frac{\log I}{\log 2}$

Representing data / coding

Example: a 10×50 binary image



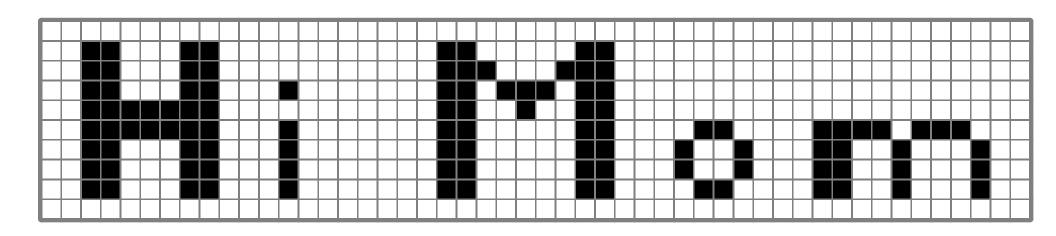
Assume image dimensions are known

Pixels could be represented with 1s and 0s

This encoding takes 500 bits (binary digits)

 2^{500} images can be encoded. The universe is $pprox 2^{98}$ picoseconds old.

Exploit sparseness



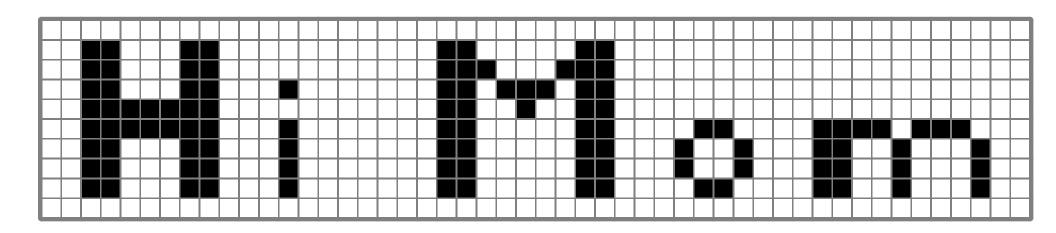
As there are fewer black pixels we send just them. Encode row + start/end column for each run in binary.

Requires (4+6+6)=16 bits per run (can you see why?) There are 54 black runs $\Rightarrow 54\times16 = 864$ bits

That's worse than the 500 bit encoding we started with!

Scan columns instead: 33 runs, (6+4+4)=14 bits each. **462 bits**.

Run-length encoding



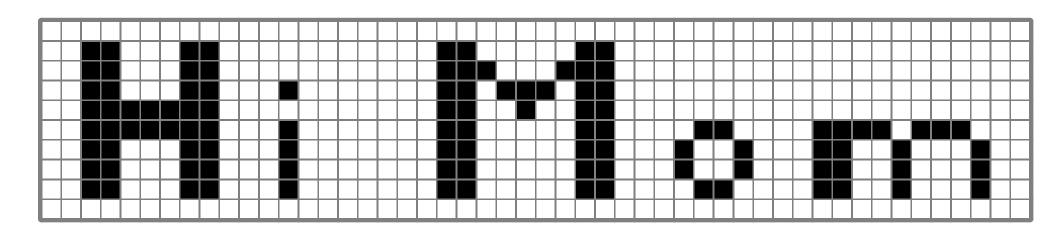
Common idea: store lengths of runs of pixels

Longest possible run = 500 pixels, need 9 bits for run length Use 1 bit to store colour of first run (should we?)

Scanning along rows: $109 \text{ runs} \Rightarrow 982 \text{ bits}(!)$

Scanning along cols: 67 runs \Rightarrow 604 bits

Adapting run-length encoding



Store number of bits actually needed for runs in a header. 4+4=8 bits give sizes needed for black and white runs.

Scanning along rows: **501 bits** (includes 8+1=9 header bits)

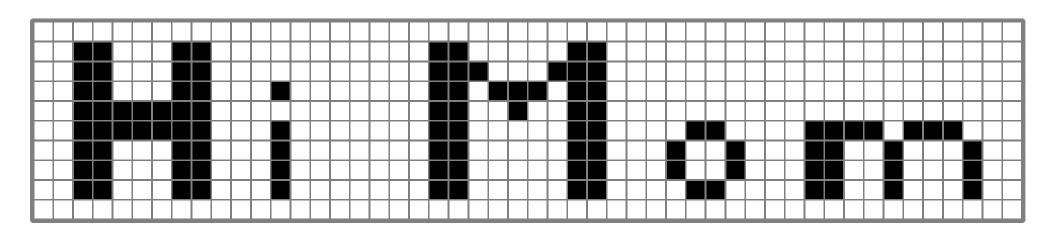
55 white runs up to 52 long, $55 \times 6 = 330$ bits 54 black runs up to 7 long, $54 \times 3 = 162$ bits

Scanning along cols: 249 bits

34 white runs up to 72 long, $24 \times 7 = 168$ bits

33 black runs up to 8 long, $24 \times 3 = 72$ bits (3 bits/run if no zero-length runs; we did need the first-run-colour header bit!)

Rectangles



Exploit spatial structure: represent image as 20 rectangles

Version 1:

Each rectangle: (x_1, y_1, x_2, y_2) , 4+6+4+6=20 bits

Total size: $20\times20 = 400$ bits

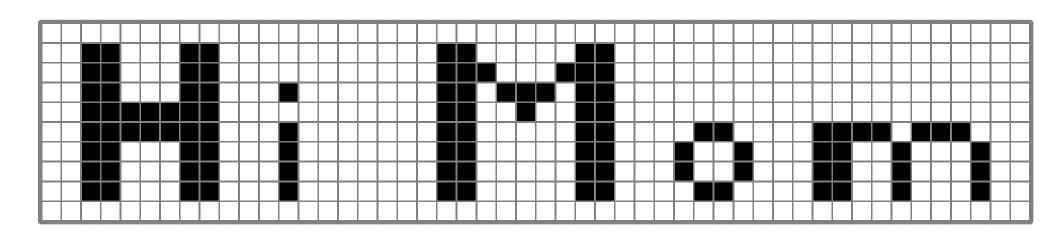
Version 2:

Header for max rectangle size: 2+3=5 bits

Each rectangle: (x_1, y_1, w, h) , 4+6+3+3=16 bits

Total size: $20 \times 16 + 5 = 325$ bits

Off-the-shelf solutions?



Established image compressors:

Use PNG: 128 bytes = 1024 bits

Use GIF: 98 bytes = 784 bits

Unfair: image is tiny, file format overhead: headers, image dims

Smallest possible GIF file is about 35 bytes. Smallest possible PNG file is about 67 bytes. Not strictly meaningful, but: $(98-35)\times8=504$ bits. $(128-67)\times8=488$ bits

"Overfitting"

We can compress the 'Hi Mom' image down to 1 bit:

Represent 'Hi Mom' image with a single '1'

All other files encoded with '0' and a naive encoding of the image.

. . . the actual message is one selected from a set of possible messages. The system must be designed to operate for each possible selection, not just the one which will actually be chosen since this is unknown at the time of design.

— Shannon, 1948

Summary of lecture 1 (slide 1/2)

Digital communication can work reliably over a noisy channel. We add *redundancy* to a message, so that we can infer what corruption occured and undo it.

Repetition codes simply repeat each message symbol N times. A majority vote at the receiving end removes errors unless more than half of the repetitions were corrupted. Increasing N reduces the error rate, but the *rate* of the code is 1/N: transmission is slower, or more storage space is used. For the Binary Symmetric Channel the error probability is: $\sum_{r=(N+1)/2}^{N} {N \choose r} f^r (1-f)^{N-r}$

Amazing claim: it is possible to get arbitrarily small errors at a fixed rate known as the *capacity* of the channel. *Aside*: codes that reach the capacity send a more complicated message than simple repetitions. Inferring what corruptions must have occurred (occurred with overwhelmingly high probability) is more complex than a majority vote. The algorithms are related to how some groups perform inference in machine learning.

Summary of lecture 1 (slide 2/2)

First task: represent data optimally when there is no noise

Representing files as (binary) numbers:

C bits (binary digits) can index $I = 2^{C}$ objects.

$$\log I = C \log 2$$
, $C = \frac{\log I}{\log 2}$ for logs of any base, $C = \log_2 I$

In information theory textbooks "log" often means "log₂".

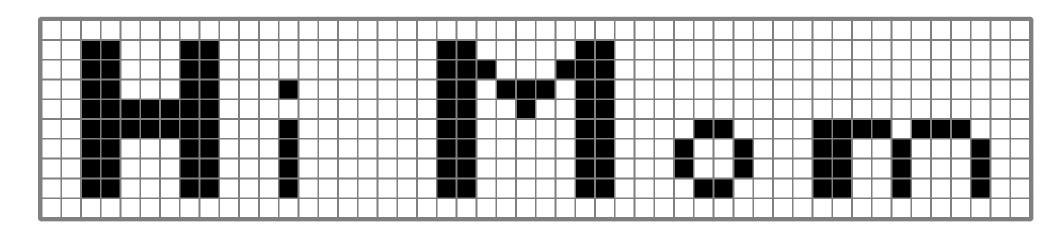
Experiences with the Hi Mom image:

Unless we're careful we can expand the file dramatically When developing a fancy method always have simple baselines in mind We'd also like some more principled ways to proceed.

Summarizing groups of bits (rectangles, runs, etc.) can lead to fewer objects to index. Structure in the image allows compression.

Cheating: add whole image as a "word" in our dictionary. Schemes should work on future data that the receiver hasn't seen.

Where now



What are the fundamental limits to compression? Can we avoid all the hackery?
Or at least make it clearer how to proceed?

This course: Shannon's information theory relates compression to *probabilistic modelling*

A simple probabilistic model (predict from three previous neighbouring pixels) and an *arithmetic coder* can compress to about **220 bits**.

Why is compression possible?

Try to compress all b bit files to < b bits

There are 2^b possible files but only (2^b-1) codewords

Theorem: if we compress some files we must expand others (or fail to represent some files unambiguously)

Search for the comp.compression FAQ currently available at: http://www.faqs.org/faqs/compression-faq/

Which files to compress?

We choose to compress the more probable files

Example: compress 28×28 binary images like this:

At the expense of longer encodings for files like this:

There are 2^{784} binary images. I think $< 2^{125}$ are like the digits

Sparse file model

Long binary vector x, mainly zeros

Assume bits drawn independently

Bernoulli distribution, a single "bent coin" flip

$$P(x_i | p) = \begin{cases} p & \text{if } x_i = 1\\ (1 - p) \equiv p_0 & \text{if } x_i = 0 \end{cases}$$

How would we compress a large file for p = 0.1?

Idea: encode blocks of N bits at a time

Intuitions:

- 'Blocks' of lengths N=1 give naive encoding: 1 bit / symbol Blocks of lengths N=2 aren't going to help ... maybe we want long blocks
- For large N, some blocks won't appear in the file, e.g. 111111111111... The receiver won't know exactly which blocks will be used Don't want a header listing blocks: expensive for large N.
- Instead we use our probabilistic model of the source to guide which blocks will be useful. For N=5 the 6 most probable blocks are:
- 00000 00001 00010 00100 01000 10000
- 3 bits can encode these as 0–5 in binary: 000 001 010 011 100 101
- Use spare codewords (110 111) followed by 4 more bits to encode remaining blocks. Expected length of this code = 3+4P (need 4 more) = $3+4(1-(1-p)^5-5p(1-p)^4) \approx 3.3$ bits $\Rightarrow 3.3/5 \approx 0.67$ bits/symbol

Quick quiz

- **Q1.** Toss a fair coin 20 times. (Block of N = 20, p = 0.5) What's the probability of all heads?
- Q2. What's the probability of 'TTHTTHHTTTHTHHTTT'?
- Q3. What's the probability of 7 heads and 13 tails?

```
you'll be waiting forever \mathbf{A} \approx 10^{-100} about one in a million \mathbf{B} \approx 10^{-6} about one in ten \mathbf{C} \approx 10^{-1} about a half \mathbf{D} \approx 0.5 very probable \mathbf{E} \approx 1-10^{-6}
```

don't know **Z** ???

Binomial distribution

How many 1's will be in our block?

Binomial distribution, the sum of N Bernoulli outcomes

$$k = \sum_{n=1}^{N} x_n, \quad x_n \sim \text{Bernoulli}(p)$$

 $\Rightarrow k \sim \text{Binomial}(N, p)$

$$P(k \mid N, p) = {N \choose k} p^k (1-p)^{N-k}$$
$$= \frac{N!}{(N-k)! \, k!} p^k (1-p)^{N-k}$$

Evaluating the numbers

$$\binom{N}{k} = \frac{N!}{(N-k)! \, k!}$$
, what happens for $N = 1000$, $k = 500$?

Knee-jerk reaction: try taking logs

Explicit summation: $\log x! = \sum_{n=2}^{x} \log n$

Library routines: $\ln x! = \ln \Gamma(x+1)$, e.g. gammaln

Stirling's approx: $\ln x! \approx x \ln x - x + \frac{1}{2} \ln 2\pi x$...

Care: Stirling's series gets *less* accurate if you add lots terms(!), but it is pretty good for large x with just the terms shown.

See also: more specialist routines. Matlab/Octave: binopdf, nchoosek

Philosophical Transactions (1683-1775) Vol. 53, (1763), pp. 269-271. The Royal Society. http://www.jstor.org/stable/105732

XLIII. A Letter from the late Reverend Mr. Thomas Bayes, F. R. S. to John Canton, M. A. and F. R. S.

SIR,

Read Nov. 24, I f the following observations do not seem to you to be too minute, I should esteem it as a favour, if you would please to communicate them to the Royal Society.

It has been afferted by some eminent mathematicians, that the sum of the logarithms of the numbers 1.2.3.4. &c. to z, is equal to $\frac{1}{2} \log_{10} c + z + \frac{1}{2} \times \log_{10} z$ lessened by the series $z - \frac{1}{12z} + \frac{1}{360z^3} + \frac{1}{1260z^5} + \frac{1}{1680z^7} - \frac{1}{1188z^9} + &c.$ if c denote the circumference of a circle whose radius is unity. And it is true that this expression will very nearly approach to the value of that sum when z is large, and you take in only a proper number of the first terms of the foregoing series: but the whole series can never properly ex-

press

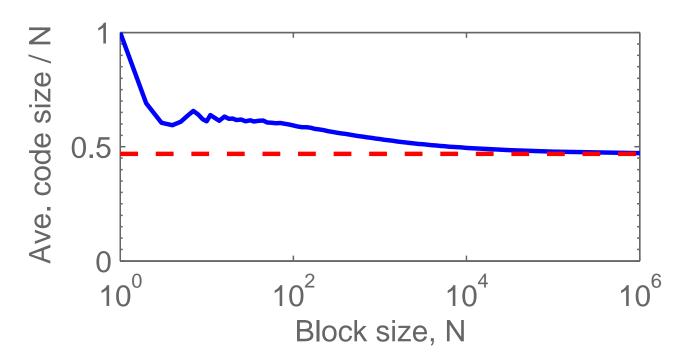
Compression for N-bit blocks

Strategy:

- Encode N-bit blocks with $\leq t$ ones with $C_1(t)$ bits.
- Use remaining codewords followed by $C_2(t)$ bits for other blocks.

Set $C_1(t)$ and $C_2(t)$ to minimum values required.

Set t to minimize average length: $C_1(t) + P(t < \sum_{n=1}^{N} x_n) C_2(t)$



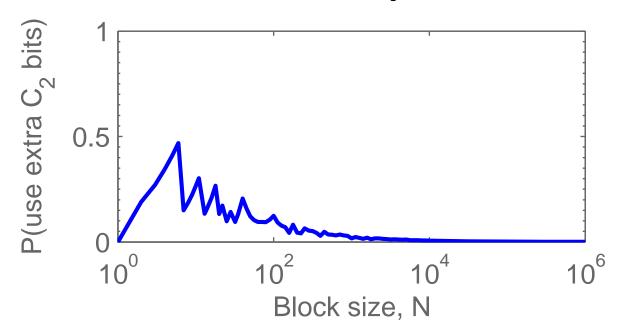
Can we do better?

We took a simple, greedy strategy:

Assume one code-length C_1 , add another C_2 bits if that doesn't work.

First observation for large N:

The first C_1 bits index almost every block we will see.



With high probability we can compress a large-N block into a fixed number of bits. Empirically $\approx 0.47\,N$ for $p\!=\!0.1$.

Can we do better?

We took a simple, greedy strategy:

Assume one code-length C_1 , add another C_2 bits if that doesn't work.

Second observation for large N:

Trying to use $< C_1$ bits means we *always* use more bits

At $N = 10^6$, trying to use 0.95 the optimal C_1 initial bits $\Rightarrow P(\text{need more bits}) \approx 1 - 10^{-100}$

It is very unlikely a file can be compressed into fewer bits.

Summary of lecture 2 (slide 1/2)

If some files are shrunk others must grow:

files length b bits = 2^b # files < b bits = $\sum_{c=0}^{b-1} 2^c = 1 + 2 + 4 + 8 + \dots + 2^{b-1} = 2^b - 1$

(We'll see that things are even worse for encoding blocks in a stream.

Consider using bit strings up to length 2 to index symbols:

If you receive 111, what was sent? BBB, BE, EB?)

We temporarily focus on sparse binary files:

Encode blocks of N bits, $\mathbf{x} = 00010000001000...000$

Assume model: $P(\mathbf{x}) = p^k (1 - p)^{N - k}$, where $k = \sum_i x_i = \# 1$'s"

Key idea: give short encoding to most probable blocks:

Most probable block has k=0. Next N most probable blocks have k=1 Let's encode all blocks with $k \le t$, for some threshold t.

This set has $I_1 = \sum_{k=0}^t {N \choose k}$ items. Can index with $C_1 = \lceil \log_2 I_1 \rceil$ bits.

Summary of lecture 2 (slide 2/2)

Can make a lossless compression scheme:

Actually transmit $C_1 = \lceil \log_2(I_1 + 1) \rceil$ bits Spare code word(s) are used to signal C_2 more bits should be read, where $C_2 \leq N$ can index the other blocks with k > t.

Expected/average code length = $C_1 + P(k > t) C_2$

Empirical results for large block-lengths N

- The best codes (best t, C_1, C_2) had code length $\approx 0.47N$
- these had tiny P(k > t); it doesn't matter how we encode k > t
- Setting $C_1 = 0.95 \times 0.47N$ made $P(k > t) \approx 1$

$\approx 0.47N$ bits are sufficient and necessary to encode long blocks (with our model, p=0.1) almost all the time and on average

No scheme can compress binary variables with p=0.1 into less than 0.47 bits on average, or we could condradict the above result.

Other schemes will be more practical (they'd better be!) and will be closer to the 0.47N limit for small N.

H/W: a weighing problem

Find 1 odd ball out of 12

You have a two-pan balance with three outputs:

"left-pan heavier", "right-pan heavier", or "pans equal"

How many weighings do you need to find the odd ball and decide whether it is heavier or lighter?

Unclear? See p66 of MacKay's book, but do not look at his answer until you have had a serious attempt to solve it.

Are you sure your answer is right? Can you prove it?
Can you prove it without an extensive search of the solution space?

Information Theory

http://www.inf.ed.ac.uk/teaching/courses/it/

Week 2

Information and Entropy

lain Murray, 2010

School of Informatics, University of Edinburgh

Numerics: $\log \sum_{i} \exp(x_i)$

$$\binom{N}{k}$$
 blows up for large N,k ; we evaluate $l_{N,k}=\ln \binom{N}{k}$

Common problem: want to find a sum, like $\sum_{k=0}^{r} {N \choose k}$

Actually we want its log:

$$\ln \sum_{k=0}^{t} \exp(l_{N,k}) = l_{\max} + \ln \sum_{k=0}^{t} \exp(l_{N,k} - l_{\max})$$

To make it work, set $l_{\max} = \max_k \; l_{N,k}$. Togsumexp functions are frequently used

Distribution over blocks

total number of bits: N (= 1000 in examples here)

probability of a 1: $p = P(x_i = 1)$

number of 1's: $k = \sum_{i} x_i$

Every block is improbable!

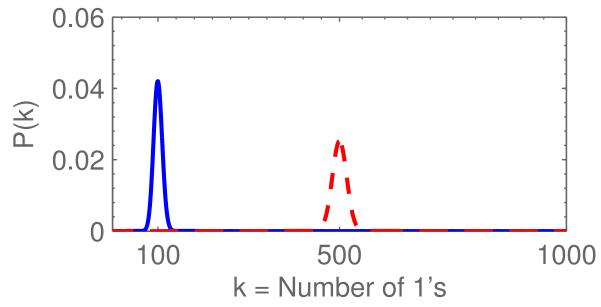
$$P(\mathbf{x}) = p^k (1-p)^{N-k}$$
, (at most $(1-p)^N \approx 10^{-45}$ for $p = 0.1$)

How many 1's will we see?

$$P(k) = \binom{N}{k} p^k (1-p)^{N-k}$$

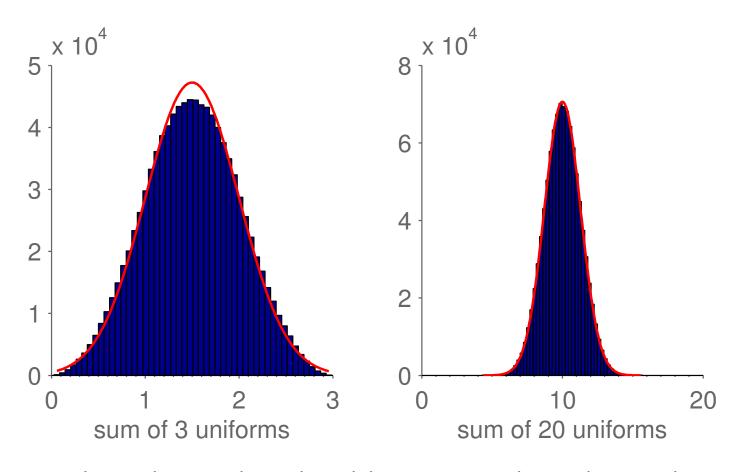
Solid: p = 0.1

Dashed: p = 0.5



Central Limit theorem

The sum or mean of independent variables with bounded mean and variance tends to a Gaussian (normal) distribution.



N=1e6; hist(sum(rand(3,N),1)); hist(sum(rand(20,N),1));

There are a few forms of the Central Limit Theorem (CLT), we are just noting a vague statement as we won't make extensive use of it.

CLT behaviour can occur unreasonably quickly when the assumptions hold. Some old random-number libraries used to use the following method for generating a sample from a unit-variance, zero-mean Gaussian: a) generate 12 samples uniformly between zero and one; b) add them up and subtract 6. It isn't that far off!

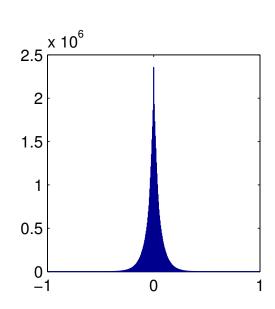
Data from a natural source will usually not be Gaussian.

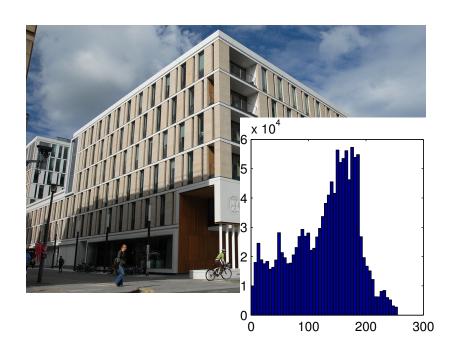
The next slide gives examples. Reasons: extreme outliers often occur; there may be lots of strongly dependent variables underlying the data; there may be mixtures of small numbers of effects with very different means or variances.

An example random variable with unbounded mean is given by the payout of the game in the *St. Petersburg Paradox*. A fair coin is tossed repeatedly until it comes up tails. The game pays out $2^{\text{\#heads}}$ pounds. How much would you pay to play? The 'expected' payout is infinite: $1/2 \times 1 + 1/4 \times 2 + 1/8 \times 4 + 1/16 \times 8 + \ldots = 1/2 + 1/2 + 1/2 + 1/2 + \ldots$

Gaussians are not the only fruit

```
xx = importdata('Holst_-_Mars.wav');
hist(double(xx(:)), 400);
```





```
xx = importdata('forum.jpg');
hist(xx(:), 50);
```

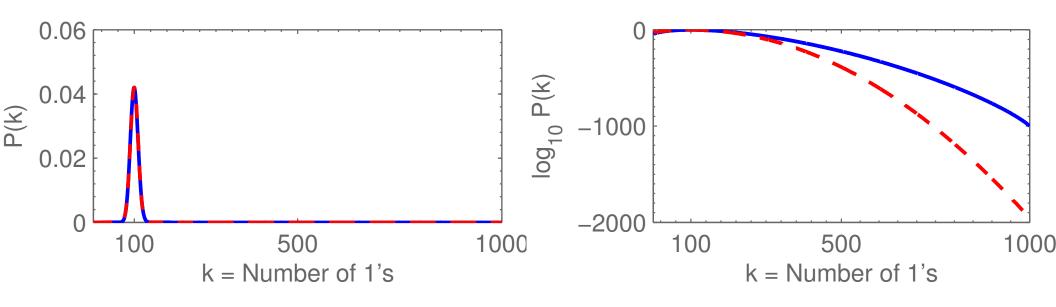
How many 1's will we see?

How many 1's will we see? $P(k) = \binom{N}{k} p^k (1-p)^{N-k}$

Gaussian fit (dashed lines):

$$P(k) \approx \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{1}{2\sigma^2}(k-\mu)^2\right), \quad \mu = Np, \quad \sigma^2 = Np(1-p)$$

(Binomial mean and variance, MacKay p1)



The log-probability plot on the previous slide illustrates how one must be careful with the Central Limit Theorem. Even though the assumptions hold, convergence of the tails is very slow. (The theory gives only "convergence in distribution" which makes weak statements out there.) While k, the number of ones, closely follows a Gaussian near the mean, we can't use the Gaussian to make precise statements about the tails.

All that we will use for now is that the mass in the tails further out than a few standard deviations (a few σ) will be small. This is correct, we just can't guarantee that the probability will be quite as small as if the whole distribution actually were Gaussian.

Chebyshev's inequality (MacKay p82, Wikipedia, ...) tells us that: $P(|k - \mu| \ge m\sigma) \le \frac{1}{m^2}$,

a loose bound which will be good enough for what follows.

The fact that as $N \to \infty$ all of the probability mass becomes close to the mean is referred to as the *law of large numbers*.

Encode the typical set

Index almost every block we'll see, with $k_{\min} \le k \le k_{\max}$:

$$k_{\min} = \mu - m\sigma$$
$$k_{\max} = \mu + m\sigma$$

 $m\!=\!4$ ought to do it

(but set much larger to satisfy Chebyshev's if you like)

How many different blocks are in our set?

Probabilities:

- Most probable block: $P_{\text{max}} = p^{k_{\text{min}}} (1-p)^{N-k_{\text{min}}}$
- Least probable block: $P_{\min} = p^{k_{\max}} (1-p)^{N-k_{\max}}$

Probabilities add up to one \Rightarrow Bound on set size I:

$$I < \frac{1}{P_{\min}} \Rightarrow \log I < -k_{\max} \log p - (N - k_{\max}) \log(1 - p)$$

Asymptotic possibility

Encoding the set will take $\left(\frac{1}{N}\log_2I\right)$ bits/symbol

$$\frac{1}{N}\log I < -\frac{1}{N}(\mu + m\sigma)\log p - \frac{1}{N}(N - \mu - m\sigma)\log(1 - p)$$

$$= -\left(p + m\sqrt{\frac{p(1-p)}{N}}\right)\log p - \left(1 - p - m\sqrt{\frac{p(1-p)}{N}}\right)\log(1-p)$$

As $N \to \infty$ for sets of any width m:

$$\frac{1}{N}\log I < H_2(p) = -p\log p - (1-p)\log(1-p) \approx 0.47 \text{ bits}$$

Large sparse blocks can be compressed to NH_2 bits.

Asymptotic impossibility

Large blocks almost always fall in our *typical set*, $T_{N,m}$ **Idea:** try indexing a set S with $N(H_2-\epsilon)$ bits

$$P(\mathbf{x} \in S) = P(\mathbf{x} \in S \cap T_{N,m}) + P(\mathbf{x} \in S \cap \overline{T_{N,m}})$$

$$\leq 2^{N(H_2 - \epsilon)} P_{\max} + \text{ "tail probability"}$$

$$\log P_{\max} = -N(H_2 + \mathcal{O}(\frac{1}{\sqrt{N}}))$$
, derivation similar to last slide

$$P(\mathbf{x} \in S) \le 2^{-N(\epsilon + \mathcal{O}(1/\sqrt{N}))} +$$
 "tail probability"

The probability of landing in any set indexed by fewer than H_2 bits/symbol becomes tiny as $N \to \infty$

A weighing problem

Find 1 odd ball out of 12

You have a two-pan balance with three outputs:

"left-pan heavier", "right-pan heavier", or "pans equal"

How many weighings do you need to find the odd ball and decide whether it is heavier or lighter?

Unclear? See p66 of MacKay's book, but do not look at his answer until you have had a serious attempt to solve it.

Are you sure your answer is right? Can you prove it?

Can you prove it without an extensive search of the solution space?

Weighing problem: bounds

Find 1 odd ball out of 12 with a two-pan balance

There are 24 hypothesis:

ball 1 heavier, ball 1 lighter, ball 2 heavier, . . .

For K weighings, there are at most 3^K outcomes:

(left, balance, right), (right, right, left), . . .

 $3^2 = 9 \implies 2$ weighings not enough

 $3^3 = 27 \Rightarrow 3$ weighings *might* be enough

Weighing problem: strategy

Find 1 odd ball out of 12 with a two-pan balance

Probability of an outcome is: $\frac{\# \text{ hypotheses compatible with outcome}}{\# \text{ hypotheses}}$

Experiment	Left	Right	Balance
1 vs. 1	2/24	2/24	20/24
2 vs. 2	4/24	4/24	16/24
3 vs. 3	6/24	6/24	12/24
4 vs. 4	8/24	8/24	8/24
5 vs. 5	10/24	10/24	4/24
6 vs. 6	12/24	12/24	0/24

Weighing problem: strategy

- 8 hypotheses remain. Find a second weighing where:
 - 3 hypotheses \Rightarrow left pan down
 - 3 hypotheses \Rightarrow right pan down
 - 2 hypotheses \Rightarrow balance

It turns out we can always identify one hypothesis with a third weighing (p69 MacKay for details)

Intuition: outcomes with even probability distributions seem informative — useful to identify the correct hypothesis

Sorting (review?)

How much does it cost to sort n items?

There are 2^{C} outcomes of C binary comparisons

There are n! orderings of the items

To pick out the correct ordering must have:

$$C \log 2 \ge \log n! \implies C \ge \mathcal{O}(n \log n)$$
 (Stirling's series)

Radix sort is " $\mathcal{O}(n)$ ", gets more information from the items

Measuring information

As we read a file, or do experiments, we get information

Very probable outcomes are not informative:

- \Rightarrow Information is zero if P(x)=1
- \Rightarrow Information increases with 1/P(x)

Information of two independent outcomes add

$$\Rightarrow f\left(\frac{1}{P(x)P(y)}\right) = f\left(\frac{1}{P(x)}\right) + f\left(\frac{1}{P(y)}\right)$$

Shannon information content: $h(x) = \log \frac{1}{P(x)} = -\log P(x)$

The base of the logarithm scales the information content:

base 2: bits

base e: nats

base 10: bans (used at Bletchley park: MacKay, p265)

 $\log \frac{1}{P}$ is the only natural measure of information based on probability alone (matching certain assumptions)

Assume: f(ab) = f(a) + f(b); f(1) = 0; f smoothly increases

$$f(a(1+\epsilon)) = f(a) + f(1+\epsilon)$$

Take limit $\epsilon \to 0$ on both sides:

$$f(a) + a\epsilon f'(a) = f(a) + f(1)^{0} + \epsilon f'(1)$$

$$\Rightarrow f'(a) = f'(1)\frac{1}{a}$$

$$\int_{1}^{x} f'(a) da = f'(1) \int_{1}^{x} \frac{1}{a} da$$

Define $b = e^{1/f'(1)}$, which must be > 1 as f is increasing.

$$f(x) = \log_b x$$

 $f(x) = f'(1) \ln x$

We can choose to measure information in any base (>1), as the base is not determined by our assumptions.

Foundations of probability (very much an aside)

- The main step justifying information resulted from P(a, b) = P(a) P(b) for independent events. Where did that come from?
- There are various formulations of probability. Kolmogorov provided a measure-theoretic formalization for frequencies of events.
- Cox (1946) provided a very readable rationalization for using the standard rules of probability to express beliefs and to incorporate knowledge: http://dx.doi.org/10.1119/1.1990764
- There's some (I believe misguided) arguing about the details. A sensible response to some of these has been given by Van Horn (2003) http://dx.doi.org/10.1016/S0888-613X(03)00051-3
- Ultimately for both information and probability, the main justification for using them is that they have proven to be hugely useful. While one can argue forever about choices of axioms, I don't believe that there are other compelling formalisms to be had for dealing with uncertainty and information.

Information content vs. storage

A 'bit' is a symbol that takes on two values. The 'bit' is also a unit of information content.

Numbers in 0–63, e.g. 47 = 1011111, need $\log_2 64 = 6$ bits

If numbers 0–63 are equally probable, being told the number has information content $-\log\frac{1}{64}=6$ bits

The binary digits are the answers to six questions:

```
1: is x \ge 32?

2: is x \mod 32 \ge 16?

3: is x \mod 16 \ge 8?

4: is x \mod 8 \ge 4?

5: is x \mod 4 \ge 2?

6: is x \mod 2 = 1?
```

Each question has information content $-\log\frac{1}{2}=1$ bit

Fractional information

A dull guessing game: (submarine, MacKay p71)

Q. Is the number 36?

A.
$$a_1 = No$$
.

$$h(a_1) = \log \frac{1}{P(x \neq 36)} = \log \frac{64}{63} = 0.0227$$
 bits

Remember: $\log_2 x = \frac{\ln x}{\ln 2}$

Q. Is the number 42?

A. $a_2 = No$.

$$h(a_2) = \log \frac{1}{P(x \neq 42 \mid x \neq 36)} = \log \frac{63}{62} = 0.0231$$
 bits

Q. Is the number 47?

A. $a_3 =$ Yes.

$$h(a_3) = \log \frac{1}{P(x=47 \mid x \neq 42, x \neq 36)} = \log \frac{62}{1} = 5.9542$$
 bits

Total information: 5.9542 + 0.0231 + 0.0227 = 6 bits

Entropy

Improbable events are very informative, but don't happen very often! How much information can we *expect*?

Discrete sources:

Ensemble: $X = (x, A_X, \mathcal{P}_X)$

Outcome: $x \in \mathcal{A}_x$, $p(x=a_i) = p_i$

Alphabet: $A_X = \{a_1, a_2, \dots, a_i, \dots a_I\}$

Probabilities: $\mathcal{P}_X = \{p_1, p_2, \dots, p_i, \dots p_I\}, \qquad p_i > 0, \quad \sum_i p_i = 1$

Information content:

$$h(x=a_i) = \log \frac{1}{p_i}, \qquad h(x) = \log \frac{1}{P(x)}$$

Entropy:

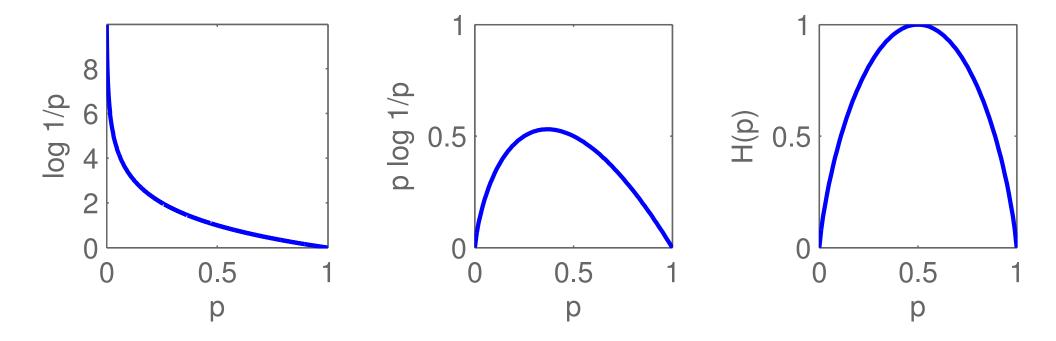
$$H(X) = \sum_{i} p_i \log \frac{1}{p_i} = \mathbb{E}_{\mathcal{P}_X}[h(x)]$$

average information content of source, also "the uncertainty of X"

Binary Entropy

Entropy of Bernoulli variable:

$$H_2(X) = p_1 \log \frac{1}{p_1} + p_2 \log \frac{1}{p_2}$$
$$= -p \log p - (1-p) \log(1-p)$$



Plots take logs base 2. We define $0 \log 0 = 0$

Entropy: decomposability

Flip a coin:

Heads
$$\rightarrow A$$

Tails \rightarrow flip again:

Heads
$$\rightarrow B$$

Tails
$$\rightarrow C$$

$$A_X = \{A, B, C\}$$

$$\mathcal{P}_X = \{0.5, 0.25, 0.25\}$$

$$H(X) = 0.5 \log \frac{1}{0.5} + 0.25 \log \frac{1}{0.25} + 0.25 \log \frac{1}{0.25} = 1.5$$
 bits

Or:
$$H(X) = H_2(0.5) + 0.5 H_2(0.5) = 1.5$$
 bits

Why look at the decomposability of Entropy?

Mundane, but useful: it can make your algebra a lot neater.

Philosophical: we expect that the expected amount of information from a source should be the same if the same basic facts are represented in different ways and/or reported in a different order.

Shannon's paper used the desired decomposability of entropy to derive what form it must take. This is similar to how we intuited the information content from simple assumptions.

Maybe you will believe the following argument: any discrete variable could be represented as a set of binary choices. Each choice, s, cannot be compressed into less than $H_2(p_s)$ bits on average. Adding these up weighted by how often they are made gives the entropy of the original variable. So the entropy gives the limit to compressibility in general. If not convincing, we will review the full proof later (MacKay §4.2–4.6).

Where now?

Bernoulli vars. compress to $H_2(X)$ bits/symbol and no less

The entropy H(X) is the compression limit on average for arbitrary random symbols. (We will gather more evidence for this later)

Where do we get the probabilities from?

How do we actually compress the files?

We can't explicitly list 2^{NH} items!

Can we avoid using enormous blocks?

Information Theory

http://www.inf.ed.ac.uk/teaching/courses/it/

Week 3
Symbol codes

lain Murray, 2010

School of Informatics, University of Edinburgh

(Binary) Symbol Codes

For strings of symbols from alphabet e.g.,

$$x_i \in \mathcal{A}_X = \{A, C, G, T\}$$

Binary codeword assigned to each symbol

$$\begin{matrix} CGTAGATTACAGG \\ \downarrow \end{matrix}$$

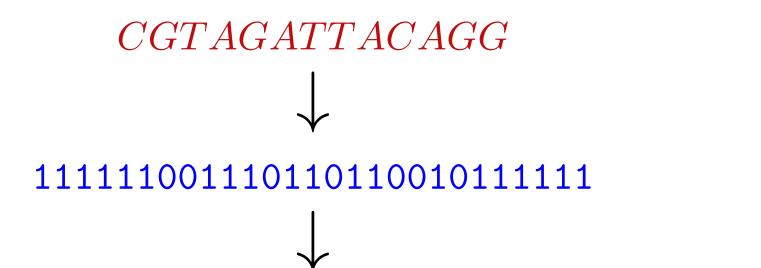
10111110011101101100100111111

Codewords are concatentated without punctuation

Uniquely decodable

We'd like to make all codewords short

But some codes are not uniquely decodable

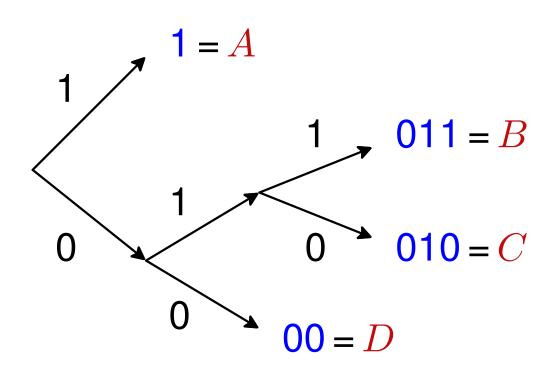


 $CGTAGATTACAGG \\ CCCCCCAACCCACCACCAACACCCCC \\ CCGCAACCCATCCAACAGCCC \\ GGAAGATTACAGG$

Instantaneous/Prefix Codes

Attach symbols to leaves of a binary tree

Codeword gives path to get to leaf

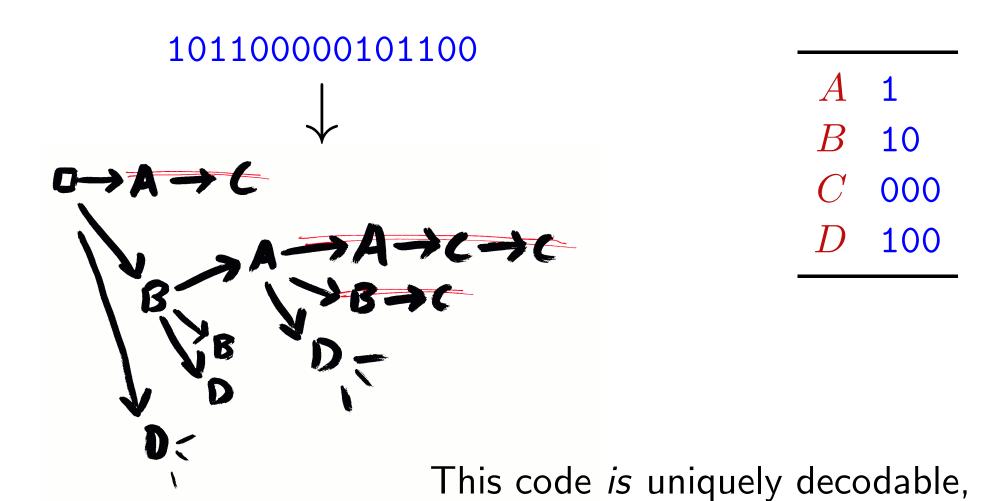


"Prefix code" because no codeword is a prefix of another

Decoding: follow tree while reading stream until hit leaf Symbol is *instantly* identified. Return to root of tree.

Non-instantaneous Codes

The last code was **instantaneously decodable**: We knew as soon as we'd finished receiving a symbol



but not instantaneous or pleasant!

Expected length/symbol, \bar{L}

Code lengths:
$$\{\ell_i\} = \{\ell_1, \ell_2, \dots, \ell_I\}$$

Average,
$$ar{L} = \sum_i p_i \, \ell_i$$

Compare to Entropy:

$$H(X) = \sum_{i} p_i \log \frac{1}{p_i}$$

If $\ell_i = \log \frac{1}{p_i}$ or $p_i = 2^{-\ell_i}$ we compress to the entropy

An optimal symbol code

An example code with:

$$\bar{L} = \sum_{i} p_i \,\ell_i = H(X) = \sum_{i} p_i \log \frac{1}{p_i}$$

x	p(x)	codeword
\overline{A}	1/2	0
B	1/4	10
C	1/8	110
D	1/8	111

Limit on code lengths

Imagine coding under an implicit distribution:

$$q_i = \frac{1}{Z} 2^{-\ell_i}, \quad Z = \sum_i 2^{-\ell_i}.$$

$$H = \sum_{i} q_{i} \log \frac{1}{q_{i}} = \sum_{i} q_{i} (\ell_{i} + \log Z) = \bar{L} + \log Z$$

$$\Rightarrow \log Z \leq 0, \quad Z \leq 1$$

Kraft-McMillan Inequality
$$\sum_i 2^{-\ell_i} \le 1$$
 (if uniquely-decodable)

	00	000	0000	set
0	00	001	0010	budget
	01	010	0100 0101	code
	01	011	0110	
	10	100	1000 1001	tal symbol
1		101	1010 1011	tal s
—	11	110	1100 1101	to
	- -	111	1110 1111	The

Kraft Inequality

If height of budget is 1, codeword has height $=2^{-\ell_i}$

Pick codes of required lengths in order from shortest-largest

Choose heighest codeword of required length beneath previously-chosen code (There won't be a gap because of sorting)

Can always pick codewords if total height, $\sum_{i} 2^{-\ell_i} \leq 1$

Kraft-McMillan Inequality
$$\sum_i 2^{-\ell_i} \le 1$$
 (instantaneous code possible)

Corollary: there's probably no point using a non-instantaneous code. Can always make **complete code** $\sum_{i} 2^{-\ell_i} = 1$: slide last codeword left.

Performance of symbol codes

Simple idea: set
$$\ell_i = \left\lceil \log \frac{1}{p_i} \right\rceil$$

These codelengths satisfy the Kraft inequality:

$$\sum_{i} 2^{-\ell_i} = \sum_{i} 2^{-\lceil \log 1/p_i \rceil} \le \sum_{i} p_i = 1$$

Expected length, \bar{L} :

$$\bar{L} = \sum_{i} p_i \ell_i = \sum_{i} p_i \lceil \log 1/p_i \rceil < \sum_{i} p_i (\log 1/p_i + 1)$$

$$\bar{L} < H(\mathbf{p}) + 1$$

Symbol codes can compress to within 1 bit/symbol of the entropy.

Summary of Lecture 5

Symbol codes assign each symbol in an alphabet a codeword. (We only considered binary symbol codes, which have binary codewords.) Messages are sent by concatenating codewords with no punctuation.

Uniquely decodable: the original message is unambiguous

Instantaneously decodable: the original symbol can always be determined as soon as the last bit of its codeword is received.

Codeword lengths must satisfy $\sum_{i} 2^{-\ell_i} \le 1$ for unique decodability

Instantaneous prefix codes can always be found (if $\sum_{i} 2^{-\ell_i} \leq 1$)

Complete codes have $\sum_{i} 2^{-\ell_i} = 1$, as realized by prefix codes made from binary trees with a codeword at every leaf.

If (big if) symbols are drawn i.i.d. with probabilities $\{p_i\}$, and $\ell_i = \log \frac{1}{p_i}$, then a prefix code exists that offers optimal compression.

Next lecture: how to form the best symbol code when $\{\log \frac{1}{p_i}\}$ are not integers.

Optimal symbol codes

Encode independent symbols with known probabilities:

E.g.,
$$\mathcal{A}_X = \{A, B, C, D, E\}$$

 $\mathcal{P}_X = \{0.3, 0.25, 0.2, 0.15, 0.1\}$

We can do better than
$$\ell_i = \left\lceil \log \frac{1}{p_i} \right\rceil$$

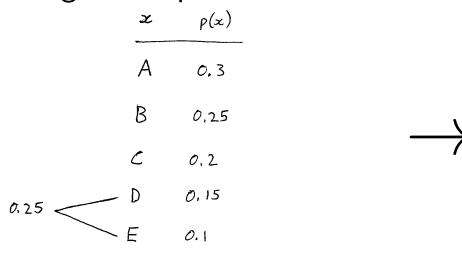
The Huffman algorithm gives an optimal symbol code.

Proof: MacKay Exercise 5.16 (with solution).

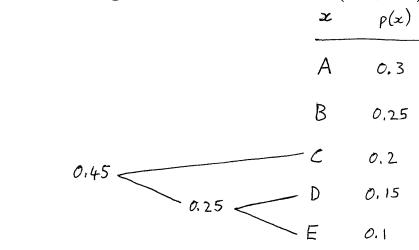
Cover and Thomas has another version.

Huffman algorithm

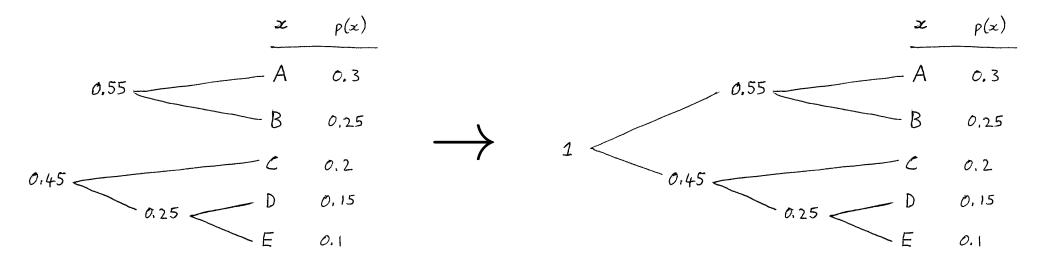
Merge least probable



Can merge C with B or (D, E)



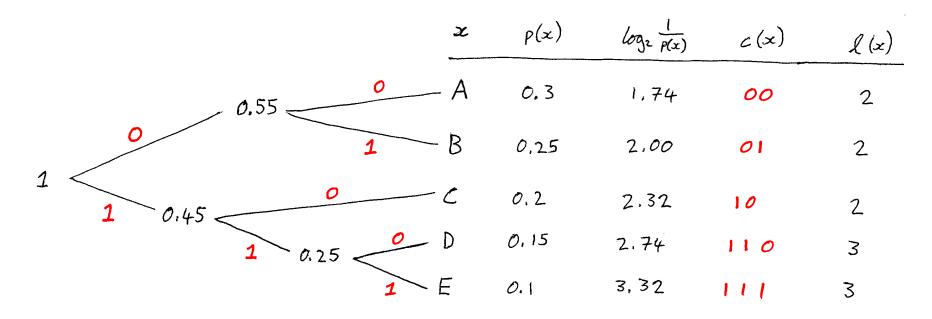
$$P(D \text{ or } E) = 0.25$$



Continue merging least probable, until root represents all events P=1

Huffman algorithm

Given a tree, label branches with 1s and 0s to get code



Code-lengths are close to the information content (not just rounded up, some are shorter)

 $H(X) \approx 2.23$ bits. Expected length = 2.25 bits.

Wow! Despite limitations we will discuss, Huffman codes can be very good. You'll find them inside many systems (e.g., bzip2, jpeg, mp3), although all these schemes do clever stuff to come up with a good symbol representation.

Huffman decoding

Huffman codes are easily and uniquely decodable because they are prefix codes

Reminder on decoding a prefix code stream:

- Start at root of tree
- Follow a branch after reading each bit of the stream
- Emit a symbol upon reaching a leaf of the tree
- Return to the root after emitting a symbol. . .

An input stream can only give one symbol sequence, the one that was encoded

Building prefix trees 'top-down'

Heuristic:	if you're ever	building a tree	e, consider
top-down	vs. bottom-up	o (and maybe r	niddle-out)

\boldsymbol{x}	P(x)
------------------	------

$A_1 \quad 0.24$

$$A_2 \quad 0.01$$

Weighing problem strategy:

Use questions with nearly uniform distribution over the answers.

$$B_1 \quad 0.24$$

$$B_2 = 0.01$$

$$C_1 = 0.24$$

$$C_2 = 0.01$$

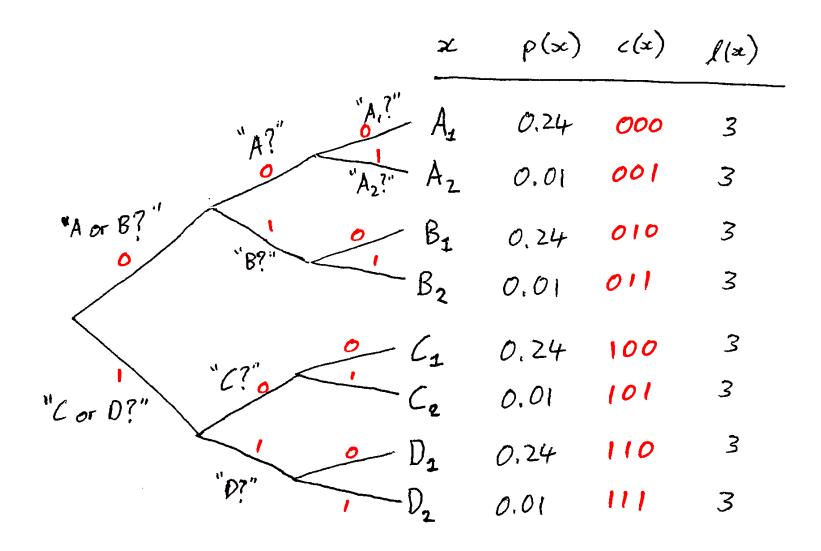
$$D_1 = 0.24$$

$$D_2 = 0.01$$

How well would this work on the ensemble to the right?

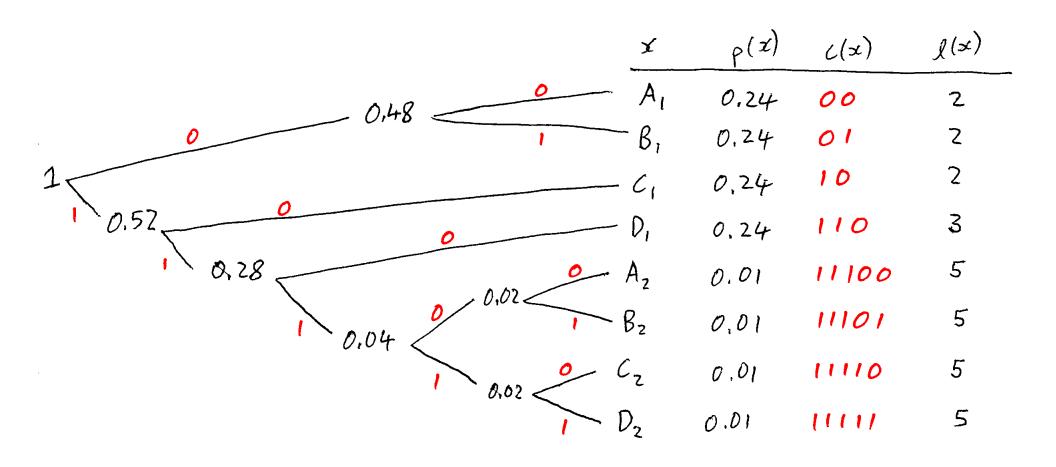
H(X) = 2.24 bits (just over $\log 4 = 2$). Fixed-length encoding: 3 bits

Top-down performing badly



Probabilities for answers to first two questions is (1/2, 1/2)Greedy strategy \Rightarrow very uneven distribution at end

Compare to Huffman



Expected length 2.36 bits/symbol

(Symbols reordered for display purposes only)

Relative Entropy / KL

Implicit probabilities: $q_i = 2^{-\ell_i}$

 $(\sum_i q_i = 1 \text{ because Huffman codes are complete})$

Extra cost for using "wrong" probability distribution:

$$egin{aligned} \Delta L &= \sum_{i} p_{i} \ell_{i} - H(X) \ &= \sum_{i} p_{i} \log \frac{1}{q_{i}} - \sum_{i} p_{i} \log \frac{1}{p_{i}} \ &= \sum_{i} p_{i} \log \frac{p_{i}}{q_{i}} = D_{\mathrm{KL}}(p \mid\mid q) \end{aligned}$$

 $D_{\mathrm{KL}}(p \parallel q)$ is the $Relative\ Entropy$ also known as the Kullback-Leibler divergence or KL-divergence

Gibbs' inequality

An important result:

$$D_{\mathrm{KL}}(p || q) \geq 0$$

with equality only if p = q

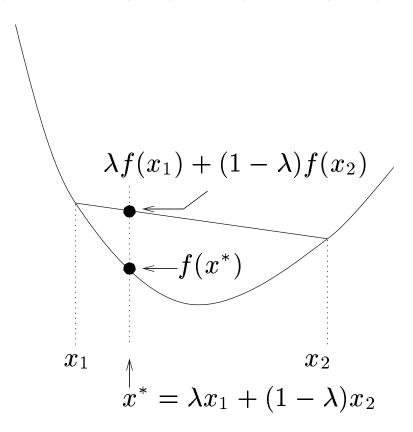
"If we encode with the wrong distribution we will do worse than the fundamental limit given by the entropy"

A simple direct proof can be shown using convexity.

(Jensen's inequality)

Convexity

$$f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2)$$



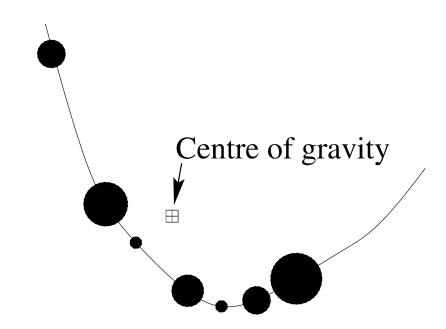
Strictly convex functions:

Equality only if λ is 0 or 1, or if $x_1 = x_2$

(non-strictly convex functions contain straight line segments)

Jensen's inequality

For convex functions: $\mathbb{E}[f(x)] \ge f(\mathbb{E}[x])$



Centre of gravity at $(\mathbb{E}[x], \mathbb{E}[f(x)])$, which is above $(\mathbb{E}[x], f(\mathbb{E}[x]))$

Strictly convex functions:

Equality only if P(x) puts all mass on one value

Remembering Jensen's

Which way around is the inequality?

$$f(x) = x^2$$
 is a convex function

$$var[X] = \mathbb{E}[x^2] - \mathbb{E}[x]^2 \ge 0$$

So we know Jensen's must be: $\mathbb{E}[f(x)] \geq f(\mathbb{E}[x])$

(Or sketch a little picture in the margin)

Convex vs. Concave

For (strictly) concave functions reverse the inequalities

For concave functions: $\mathbb{E}[f(x)] \leq f(\mathbb{E}[x])$

A (con)cave

Photo credit: Kevin Krejci on Flickr

Jensen's: Entropy & Perplexity

Set
$$u(x) = \frac{1}{p(x)}$$
, $p(u(x)) = p(x)$

$$\mathbb{E}[u] = \mathbb{E}\left[\frac{1}{p(x)}\right] = |\mathcal{A}|$$

(Tutorial 1 question)

$$H(X) = \mathbb{E}[\log u(x)] \le \log \mathbb{E}[u]$$

$$H(X) \le \log |\mathcal{A}|$$

Equality, maximum Entropy, for constant $u \Rightarrow$ uniform p(x)

 $2^{H(X)} =$ "Perplexity" = "Effective number of choices"

Maximum effective number of choices is $|\mathcal{A}|$

Summary of Lecture 6

The **Huffman Algorithm** gives optimal symbol codes:

- Merging event adds to code length for children, so
- Huffman always merges least probable events first
- A complete code implies negative log probabilities: $q_i = 2^{-\ell_i}$.
- If the symbols are generated with these probabilities, the symbol code compresses to the entropy. Otherwise the number of extra
- bits/symbol is given by the **Relative Entropy** or **KL-divergence**:

$$D_{\mathrm{KL}}(p || q) = \sum_{i} p_{i} \log \frac{p_{i}}{q_{i}}$$

Gibbs' inequality says $D_{\text{KL}}(p || q) \ge 0$ with equality only when the distributions are equal.

Jensen's inequality is a useful means to prove several inequalities in Information Theory including (it will turn out) Gibbs' inequality.

Information Theory

http://www.inf.ed.ac.uk/teaching/courses/it/

Week 4

Compressing streams

lain Murray, 2010

School of Informatics, University of Edinburgh

Proving Gibbs' inequality

Idea: use Jensen's inequality

For the idea to work, the proof must look like this:

$$D_{\mathrm{KL}}(p \mid\mid q) = \sum_{i} p_{i} \log \frac{p_{i}}{q_{i}} = \mathbb{E}[f(u)] \ge f(\mathbb{E}[u])$$

Define $u_i = \frac{q_i}{p_i}$, with $p(u_i) = p_i$, giving $\mathbb{E}[u] = 1$

Identify $f(x) \equiv \log 1/x = -\log x$, a convex function

Substituting gives: $|D_{\mathrm{KL}}(p||q) \geq 0$

$$D_{\mathrm{KL}}(p \mid\mid q) \ge 0$$

Huffman code worst case

Previously saw: simple simple code $\ell_i = \lceil \log 1/p_i \rceil$

Always compresses with $\mathbb{E}[\operatorname{length}] < H(X) + 1$

Huffman code can be this bad too:

For
$$\mathcal{P}_X = \{1 - \epsilon, \epsilon\}$$
, $H(x) \to 0$ as $\epsilon \to 0$

Encoding symbols independently means $\mathbb{E}[\operatorname{length}] = 1$.

Relative encoding length: $\mathbb{E}[\operatorname{length}]/H(X) \to \infty$ (!)

Question: can we fix the problem by encoding blocks?

H(X) is $\log(\text{effective number of choices})$

With many typical symbols the "+1" looks small

Reminder on Relative Entropy and symbol codes:

The Relative Entropy (AKA Kullback-Leibler or KL divergence) gives the expected extra number of bits per symbol needed to encode a source when a complete symbol code uses implicit probabilities $q_i = 2^{-\ell_i}$ instead of the true probabilities p_i .

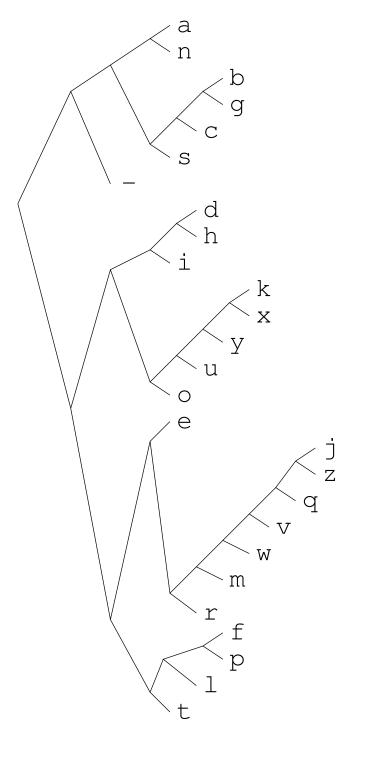
We have been assuming symbols are generated i.i.d. with known probabilities p_i .

Where would we get the probabilities p_i from if, say, we were compressing text? A simple idea is to read in a large text file and record the empirical fraction of times each character is used. Using these probabilities the next slide (from MacKay's book) gives a Huffman code for English text.

The Huffman code uses 4.15 bits/symbol, whereas H(X) = 4.11 bits. Encoding blocks might close the narrow gap.

More importantly English characters are not drawn independently encoding blocks could be a better model.

a_i	p_i	$\log_2 \frac{1}{p_i}$	l_i	$c(a_i)$
a	0.0575	4.1	4	0000
b	0.0128	6.3	6	001000
С	0.0263	5.2	5	00101
d	0.0285	5.1	5	10000
е	0.0913	3.5	4	1100
f	0.0173	5.9	6	111000
g	0.0133	6.2	6	001001
h	0.0313	5.0	5	10001
i	0.0599	4.1	4	1001
j	0.0006	10.7	10	1101000000
k	0.0084	6.9	7	1010000
1	0.0335	4.9	5	11101
m	0.0235	5.4	6	110101
n	0.0596	4.1	4	0001
0	0.0689	3.9	4	1011
р	0.0192	5.7	6	111001
q	0.0008	10.3	9	110100001
r	0.0508	4.3	5	11011
s	0.0567	4.1	4	0011
t	0.0706	3.8	4	1111
u	0.0334	4.9	5	10101
V	0.0069	7.2	8	11010001
W	0.0119	6.4	7	1101001
x	0.0073	7.1	7	1010001
У	0.0164	5.9	6	101001
Z	0.0007	10.4	10	1101000001
_	0.1928	2.4	2	01



Bigram statistics

Previous slide: $A_X = \{a-z, _\}$, H(X) = 4.11 bits

Question: I decide to encode bigrams of English text:

$$\mathcal{A}_{X'} = \{\mathtt{aa},\mathtt{ab},\ldots,\mathtt{az},\mathtt{a}_,\ldots,__\}$$

What is H(X') for this new ensemble?

 $\mathbf{A} \sim 2 \text{ bits}$

 $\mathbf{B} \sim 4 \text{ bits}$

 $\mathbf{C} \sim 7 \text{ bits}$

 $D \sim 8$ bits

E ~ 16 bits

Z ?

Answering the previous vague question

We didn't completely define the ensemble: what are the probabilities?

We could draw characters independently using p_i 's found before. Then a bigram is just two draws from X, often written X^2 . $H(X^2) = 2H(X) = 4.22$ bits

We could draw pairs of adjacent characters from English text.

When predicting such a pair, how many effective choices do we have? More than when we had $\mathcal{A}_X = \{\mathbf{a}-\mathbf{z}, \bot\}$: we have to pick the first character and another character. But the second choice is easier.

We expect H(X) < H(X') < 2H(X). Maybe 7 bits?

Looking at a large text file the actual answer is about 7.6 bits.

This is ≈ 3.8 bits/character — better compression than before.

Shannon (1948) estimated about 2 bits/character for English text. Shannon (1951) estimated about 1 bits/character for English text

Compression performance results from the quality of a probabilistic model and the compressor that uses it.

Human predictions

Ask people to guess letters in a newspaper headline:

$$k \cdot i \cdot d \cdot s \cdot \underline{\quad m \cdot a \cdot k \cdot e \cdot \underline{\quad n \cdot u \cdot t \cdot r \cdot i \cdot t \cdot i \cdot o \cdot u \cdot s \cdot \underline{\quad s \cdot n \cdot a \cdot c \cdot k \cdot s}}$$

Numbers show # guess required by 2010 class

⇒ "effective number of choices" or entropy varies *hugely*

We need to be able to use a different probability distribution for every context

Sometimes many letters in a row can be predicted at minimal cost: need to be able to use $< 1 \, \text{bit/character.}$

(MacKay Chapter 6 describes how numbers like those above could be used to encode strings.)

Predictions

Advanced Search nutritious s Language Tools nutritious snacks nutritious soups nutritious soup recipes nutritious smoothies nutritious salads nutritious snacks for children A nutritious synonym m nutritious school lunches nutritious salad recipes nutritious soft foods Google Search I'm Feeling Lucky

Cliché Predictions

kids make n
kids make nutritious snacks

Google Search I'm Feeling Lucky

Advanced Search Language Tools

Advertising Programmes

Business Solutions

About Google

Go to Google.com

A more boring prediction game

"I have a binary string with bits that were drawn i.i.d.. Predict away!"

What fraction of people, f, guess next bit is '1'?

Bit: 1 1 1 1 1 1 1 1 1 1 1 1 1
$$f: \approx 1/2 \approx 1/2 \approx 1/2 \approx 2/3 \ldots \approx 1$$

The source was genuinely i.i.d.: each bit was independent of past bits.

We, not knowing the underlying flip probability, learn from experience. Our predictions depend on the past. So should our compression systems.

Arithmetic Coding

For better diagrams and more detail, see MacKay Ch. 6

Consider all possible strings in alphabetical order

(If infinities scare you, all strings up to some maximum length)

Example: $A_X = \{a, b, c, \infty \}$

Where 'em' is a special End-of-File marker.

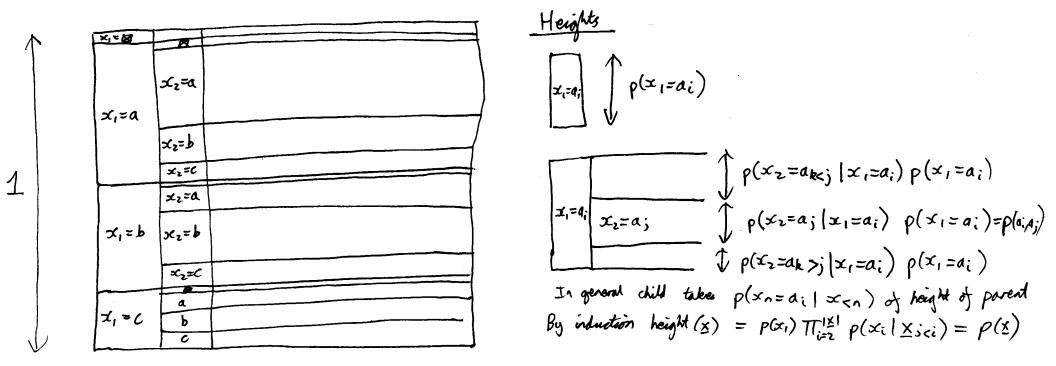
```
aem, aaem, ..., abem, ..., acem, ...
bem, baem, ..., bbem, ..., bcem, ...
cem, caem, ..., cbem, ..., ccem, ..., ccccc...ccem
```

Arithmetic Coding

We give all the strings a binary codeword

Huffman merged leaves — but we have too many to do that

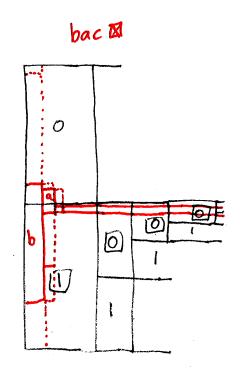
Create a tree of strings 'top-down':



Could keep splitting into *really* short blocks of height P(string)

Arithmetic Coding

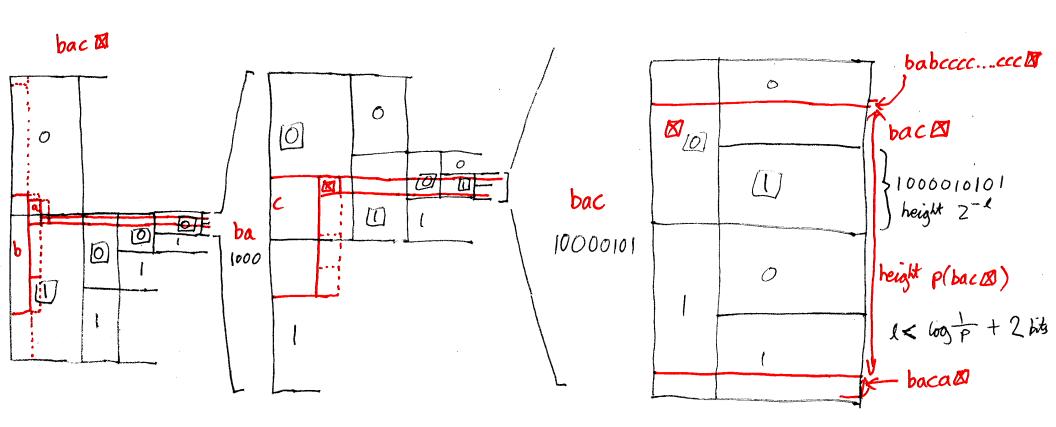
Overlay string tree on binary symbol code tree



From $P(x_1)$ distribution can't begin to encode 'b' yet Look at $P(x_2 | x_1 = b)$ can't start encoding 'ba' either Look at $P(x_3 | ba)$. Message for 'bac' begins 1000

Arithmetic Coding

Diagram: zoom in. Code: rescale to avoid underflow



From $P(x_4 | \mathbf{bac})$. Message 'bac\omega' encoded by 1000010101

Encoding lies only within message: uniquely decodable

1000010100 would also work: slight inefficiency

Some comments on arithmetic coding

Tutorial homework: prove encoding length $< \log \frac{1}{P(\mathbf{x})} + 2$ bits An excess of 2 bits on the whole file (millions or more bits?) Arithmetic coding compresses very close to the information content given by the probabilistic model used by both the sender and receiver.

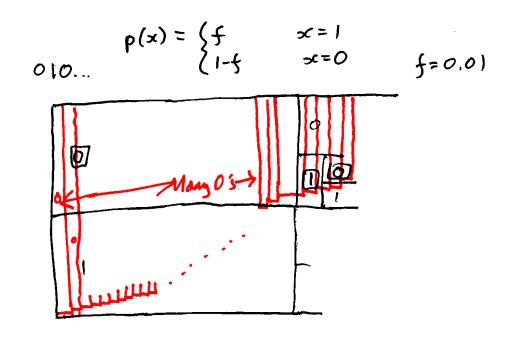
The conditional probabilities $P(x_i | \mathbf{x}_{j < i})$ can change for each symbol. Arbitrary adaptive models can be used (if you have one).

Large blocks of symbols are compressed together: possibly your whole file. The inefficiencies of symbol codes have been removed.

Huffman coding blocks of symbols requires an exponential number of codewords. In arithmetic coding, each character is predicted one at a time, as in a guessing game. The model and arithmetic coder just consider those $|\mathcal{A}_X|$ options at a time. None of the code needs to enumerate huge numbers of potential strings. (De)coding costs should be linear in the message length.

AC and sparse files

Finally we have a practical coding algorithm for sparse files



(You could make a better picture!)

The initial code-bit 0, encodes many initial message 0's.

Notice how the first binary code bits will locate the first 1. Something like run-length encoding has dropped out.

Non-binary encoding

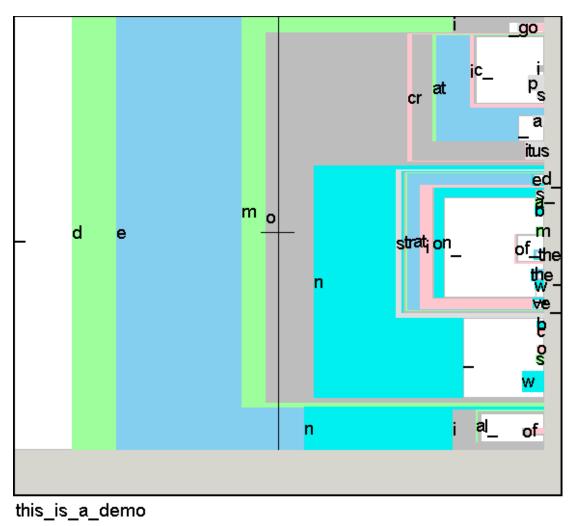
Can overlay string on any other indexing of [0,1] line

X	3 3
B	3
8	B

Now know how to compress into α , β and γ

Dasher

Dasher is an information-efficient text-entry interface. Use the same string tree. Gestures specify which one we want.



http://www.inference.phy.cam.ac.uk/dasher/

Information Theory

http://www.inf.ed.ac.uk/teaching/courses/it/

Week 5

Models for stream codes

lain Murray, 2010

School of Informatics, University of Edinburgh

Card prediction

3 cards with coloured faces:

- 1. one white and one black face
- 2. two black faces
- 3. two white faces

I shuffle cards and turn them over randomly. I select a card and way-up uniformly at random and place it on a table.

Question: You see a black face. What is the probability that the other side of the same card is white?

$$P(x_2 = W \mid x_1 = B) = \frac{1}{3}, \frac{1}{2}, \frac{2}{3}, \text{ other?}$$

Notes on the card prediction problem:

This card problem is Ex. 8.10a), MacKay, p142.

It is *not* the same as the famous 'Monty Hall' puzzle: Ex. 3.8–9 and http://en.wikipedia.org/wiki/Monty_Hall_problem

The Monty Hall problem is also worth understanding. Although the card problem is (hopefully) less controversial and more straightforward. The process by which a card is selected should be clear: P(c) = 1/3 for c = 1, 2, 3, and the face you see first is chosen at random: e.g., $P(x_1 = B | c = 1) = 0.5$.

Many people get this puzzle wrong on first viewing (it's easy to mess up). We'll check understanding again with another prediction problem in a tutorial exercise. If you do get the answer right immediately (are you sure?), this is will be a simple example on which to demonstrate some formalism.

How do we solve it formally?

Use Bayes rule?

$$P(x_2 = W \mid x_1 = B) = \frac{P(x_1 = B \mid x_2 = W) P(x_2 = W)}{P(x_1 = B)}$$

The boxed term is no more obvious than the answer!

Bayes rule is used to 'invert' forward generative processes that we understand.

The first step to solve inference problems is to write down a model of your data.

The card game model

Cards: 1) B|W, 2) B|B, 3) W|W

$$P(c) = \begin{cases} 1/3 & c = 1, 2, 3 \\ 0 & \text{otherwise.} \end{cases}$$

$$P(x_1 = \mathbf{B} \mid c) = \begin{cases} 1/2 & c = 1\\ 1 & c = 2\\ 0 & c = 3 \end{cases}$$

Bayes rule can 'invert' this to tell us $P(c | x_1 = B)$; infer the generative process for the data we have.

Inferring the card

Cards: 1) B|W, 2) B|B, 3) W|W

$$P(c \mid x_1 = \mathbb{B}) = \frac{P(x_1 = \mathbb{B} \mid c) P(c)}{P(x_1 = \mathbb{B})}$$

$$\propto \begin{cases} 1/2 \cdot 1/3 = 1/6 & c = 1\\ 1 \cdot 1/3 = 1/3 & c = 2\\ 0 & c = 3 \end{cases}$$

$$= \begin{cases} 1/3 & c = 1 \\ 2/3 & c = 2 \end{cases}$$

Q "But aren't there two options given a black face, so it's 50-50?" **A** There are two options, but the likelihood for one of them is $2 \times$ bigger

Predicting the next outcome

For this problem we can spot the answer, for more complex problems we want a formal means to proceed.

$$P(x_2 | x_1 = B)$$
?

Need to introduce c to use expressions we know:

$$P(x_2 | x_1 = B) = \sum_{c \in 1,2,3} P(x_2, c | x_1 = B)$$

$$= \sum_{c \in 1,2,3} P(x_2 | x_1 = B, c) P(c | x_1 = B)$$

Predictions we would make if we knew the card, weighted by the posterior probability of that card. $P(x_2 = W \mid x_1 = B) = 1/3$

Strategy for solving inference and prediction problems:

When interested in something y, we often find we can't immediately write down mathematical expressions for P(y | data).

So we introduce stuff, z, that helps us define the problem:

$$P(y | \text{data}) = \sum_{z} P(y, z | \text{data})$$

by using the sum rule. And then split it up:

$$P(y | \text{data}) = \sum_{z} P(y | z, \text{data}) P(z | \text{data})$$

using the product rule. If knowing extra stuff z we can predict y, we are set: weight all such predictions by the posterior probability of the stuff (P(z | data), found with Bayes rule).

Sometimes the extra stuff summarizes everything we need to know to make a prediction:

$$P(y \mid z, \text{data}) = P(y \mid z)$$

although not in the card game above.

Not convinced?

Not everyone believes the answer to the card game question.

Sometimes probabilities are counter-intuitive. I'd encourage you to write simulations of these games if you are at all uncertain. Here is an Octave/Matlab simulator I wrote for the card game question:

```
cards = [1 1;
         0 0;
         1 0];
num_cards = size(cards, 1);
N = 0; % Number of times first face is black
kk = 0; % Out of those, how many times the other side is white
for trial = 1:1e6
    card = ceil(num_cards * rand());
    face = 1 + (rand < 0.5);
    other_face = (face==1) + 1;
    x1 = cards(card, face);
    x2 = cards(card, other_face);
    if x1 == 0
        N = N + 1;
        kk = kk + (x2 == 1):
    end
end
approx_probability = kk / N
```

Sparse files

 $\mathbf{x} = 00001000010000001000...000$

We are interested in predicting the (N+1)th bit.

Generative model:

$$P(\mathbf{x} \mid f) = \prod_{i} P(x_i \mid f) = \prod_{i} f^{x_i} (1 - f)^{1 - x_i}$$

$$= f^k (1 - f)^{N - k}, \qquad k = \sum_{i} x_i = \text{"# 1s"}$$

Can 'invert', find $p(f | \mathbf{x})$ with Bayes rule

Inferring $f = P(x_i = 1)$

Cannot do inference without using beliefs

A possible expression of uncertainty: $p(f) = 1, \quad f \in [0, 1]$

Bayes rule:

$$p(f \mid \mathbf{x}) \propto P(\mathbf{x} \mid f) p(f) \propto f^{k} (1 - f)^{N-k}$$
$$= \text{Beta}(f; k+1, N-k+1)$$

Beta distribution:

$$Beta(f; \alpha, \beta) = \frac{1}{B(\alpha, \beta)} f^{\alpha - 1} (1 - f)^{\beta - 1} = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} f^{\alpha - 1} (1 - f)^{\beta - 1}$$

Mean: $\alpha/(\alpha+\beta)$

References on inferring a probability

The 'bent coin' is discussed in MacKay §3.2, p51

See also Ex. 3.15, p59, which has an extensive worked solution.

The MacKay section mentions that this problem is the one studied by Thomas Bayes, published in 1763. This is true, although the problem was described in terms of a game played on a Billiard table.

The Bayes paper has historical interest, but without modern mathematical notation takes some time to read. Several versions can be found around the web. The original version has old-style typesetting. The paper was retypeset, but with the original long arguments, for Biometrica in 1958:

http://dx.doi.org/10.1093/biomet/45.3-4.296

Prediction

Prediction rule from marginalization and product rules:

$$P(x_{N+1} \mid \mathbf{x}) = \int P(x_{N+1} \mid f, \mathbf{x}) \cdot p(f \mid \mathbf{x}) df$$

The boxed dependence can be omitted here.

$$P(x_{N+1}=1 \mid \mathbf{x}) = \int f \cdot p(f \mid \mathbf{x}) df = \mathbb{E}_{p(f \mid \mathbf{x})}[f] = \frac{k+1}{N+2}.$$

Laplace's law of succession

$$P(x_{N+1}=1 \mid \mathbf{x}) = \frac{k+1}{N+2}$$

Maximum Likelihood (ML): $\hat{f} = \operatorname{argmax}_f P(\mathbf{x} \mid f) = \frac{k}{N}$. ML estimate is *unbiased*: $\mathbb{E}[\hat{f}] = f$.

Laplace's rule is like using the ML estimate, but imagining we saw a 0 and a 1 before starting to read in \mathbf{x} .

Laplace's rule biases probabilities towards 1/2.

ML estimate assigns zero probability to unseen symbols. Encoding zero-probability symbols needs ∞ bits.

New prior / prediction rule

Could use a Beta prior distribution:

$$p(f) = \text{Beta}(f; n_1, n_0)$$

$$p(f | \mathbf{x}) \propto f^{k+n_1-1} (1-f)^{N-k+n_0-1}$$

$$= \text{Beta}(f; k+n_1, N-k+n_0)$$

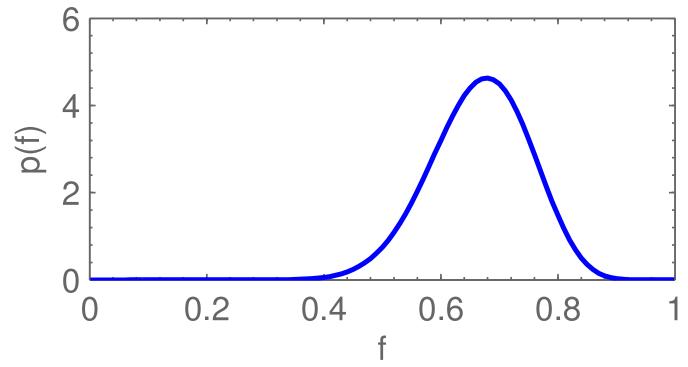
$$P(x_{N+1}=1 \mid \mathbf{x}) = \mathbb{E}_{p(f \mid \mathbf{x})}[f] = \frac{k+n_1}{N+n_0+n_1}$$

Think of n_1 and n_0 as previously observed counts

 $(n_1 = n_0 = 1 \text{ gives uniform prior and Laplace's rule})$

Large pseudo-counts

Beta(20,10) distribution:



Mean: 2/3

This prior says f close to 0 and 1 are very improbable We'd need $\gg 30$ observations to change our mind (to over-rule the prior, or psuedo-observations)

Fractional pseudo-counts

Beta(0.2,0.2) distribution:

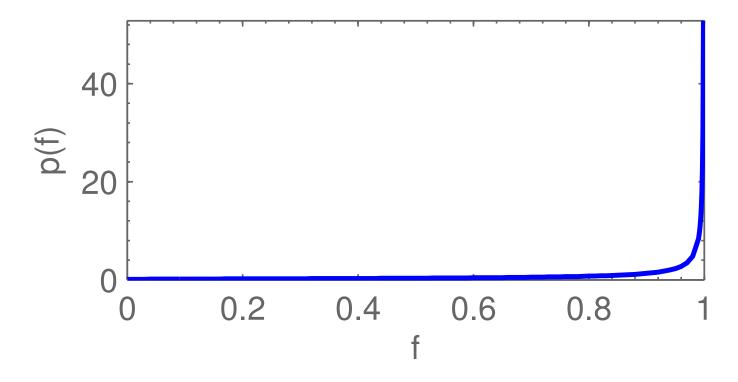


Mean: 1/2 — notice prior says more than a guess of f = 1/2

f is probably close to 0 or 1 but we don't know which yet One observation will rapidly change the posterior

Fractional pseudo-counts

Beta(1.2,0.2) distribution:



Posterior from previous prior and observing a single 1

Larger alphabets

i.i.d. symbol model:

$$P(\mathbf{x} \mid \mathbf{p}) = \prod_{i} p_i^{k_i}, \quad \text{where } k_i = \sum_{n} \mathbb{I}(x_n = a_i)$$

The k_i are counts for each symbol.

Dirichlet prior, generalization of Beta:

$$p(\mathbf{p} \mid \boldsymbol{\alpha}) = \text{Dirichlet}(\mathbf{p}; \ \boldsymbol{\alpha}) = \frac{\delta(1 - \sum_{i} p_i)}{B(\boldsymbol{\alpha})} \prod_{i} p_i^{\alpha_i - 1}$$

Dirichlet predictions (Lidstone's law):

$$P(x_{N+1} = a_i \mid \mathbf{x}) = \frac{k_i + \alpha_i}{N + \sum_j \alpha_j}$$

Counts k_i are added to pseudo-counts α_i . All $\alpha_i = 1$ gives Laplace's rule.

More notes on the Dirichlet distribution

The thing to remember is that a Dirichlet is proportional to $\prod_i p_i^{\alpha_i-1}$

The posterior $p(\mathbf{p} \mid \mathbf{x}, \boldsymbol{\alpha}) \propto P(\mathbf{x} \mid \mathbf{p}) p(\mathbf{p} \mid \boldsymbol{\alpha})$ will then be Dirichlet with the α_i 's increased by the observed counts.

Details (for completeness): $B(\alpha)$ is the Beta function $\frac{\prod_i \Gamma(\alpha_i)}{\Gamma(\sum_i \alpha_i)}$.

I left the $0 \le p_i \le 1$ constraints implicit. The $\delta(1 - \sum_i p_i)$ term constrains the distribution to the 'simplex', the region of a hyper-plane where $\sum_i p_i = 1$. But I can't omit this Dirac-delta, because it is infinite when evaluated at a valid probability vector(!).

The density over just the first (I-1) parameters is finite, obtained by integrating out the last parameter:

$$p(\mathbf{p}_{j< I-1}) = \int p(\mathbf{p} \mid \boldsymbol{\alpha}) \, dp_I = \frac{1}{B(\boldsymbol{\alpha})} \left(1 - \sum_{i=1}^{I-1} p_i \right)^{\alpha_I - 1} \prod_{i=1}^{I-1} p_i^{\alpha_i - 1}$$

There are no infinities, and the relation to the Beta distribution is now clearer, but the expression isn't as symmetric.

Reflection on Compression

Take any complete compressor.

If "incomplete" imagine an improved "complete" version.

Complete codes: $\sum_{\mathbf{x}} 2^{-\ell(\mathbf{x})} = 1$, \mathbf{x} is whole input file

Interpretation: implicit $Q(\mathbf{x}) = 2^{-\ell(bx)}$

If we believed files were drawn from $P(\mathbf{x}) \neq Q(\mathbf{x})$ we would expect to do D(P||Q) > 0 bits better by using $P(\mathbf{x})$.

Compression is the modelling of probabilities of files.

If we think our compressor should 'adapt', we are making a statement about the structure of our beliefs, $P(\mathbf{x})$.

Structure

For any distribution:

$$P(\mathbf{x}) = P(x_1) \prod_{n=2}^{N} P(x_n \mid \mathbf{x}_{< n})$$

For i.i.d. symbols: $P(x_n = a_i | \mathbf{p}) = p_i$

$$P(x_n | \mathbf{x}_{< n}) = \int P(\mathbf{x}_n | \mathbf{p}) p(\mathbf{p} | \mathbf{x}_{< n}) d\mathbf{p}$$

$$P(x_n = a_i | \mathbf{x}_{< n}) = \mathbb{E}_{p(\mathbf{p} | \mathbf{x}_{< n})}[p_i]$$

we saw: easy-to-compute from counts with a Dirichlet prior.

i.i.d. assumption is often terrible: want different structure.

Even then, do we need to specify priors (like the Dirichlet)?

Why not just fit p?

Run over file \rightarrow counts **k**

Set $p_i = \frac{k_i}{N}$, (Maximum Likelihood, and obvious, estimator)

Save (\mathbf{p}, \mathbf{x}) , \mathbf{p} in a header, \mathbf{x} encoded using \mathbf{p}

Simple? Prior-assumption-free?

Fitting cannot be optimal

When fitting, we never save a file (\mathbf{p}, \mathbf{x}) where

$$p_i \neq \frac{k_i(\mathbf{x})}{N}$$

Informally: we are encoding p twice

More formally: the code is incomplete

However, gzip and arithmetic coders are incomplete too, but they are still useful!

In some situations the fitting approach is very close to optimal

Fitting isn't that easy!

Setting $p_i = \frac{k_i}{N}$ is easy. How do we encode the header?

Optimal scheme depends on $p(\mathbf{p})$; need a prior!

What precision to send parameters?

Trade-off between header and message size.

Interesting models will have many parameters.

Putting them in a header could dominate the message.

Having both ends learn the parameters while {en,de}coding the file avoids needing a header.

For more (non-examinable) detail on these issues see MacKay p352-353

Richer models

Images are not bags of i.i.d. pixels

Text is not a bag of i.i.d. characters/words

(although many "Topic Models" get away with it!)

Less restrictive assumption than:

$$P(x_n | \mathbf{x}_{< n}) = \int P(\mathbf{x}_n | \mathbf{p}) p(\mathbf{p} | \mathbf{x}_{< n}) d\mathbf{p}$$

is

$$P(x_n \mid \mathbf{x}_{< n}) = \int P(\mathbf{x}_n \mid \mathbf{p}_{C(\mathbf{x}_{< n})}) p(\mathbf{p}_{C(\mathbf{x}_{< n})} \mid \mathbf{x}_{< n}) d\mathbf{p}_{C(\mathbf{x}_{< n})}$$

Probabilities depend on the local context, C:

- Surrounding pixels, already {en,de}coded
- Past few characters of text

Image contexts

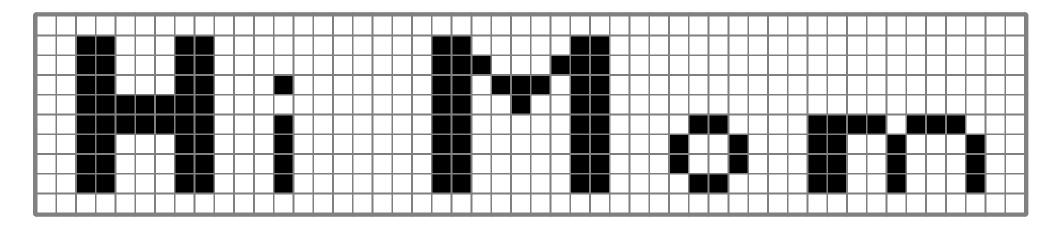


$$P(x_i = \texttt{Black} \mid C) = \frac{k_{\texttt{B}\mid C} + \alpha}{N_C + \alpha |\mathcal{A}|} = \frac{2 + \alpha}{7 + 2\alpha}$$

There are 2^p contexts of size p binary pixels Many more counts/parameters than i.i.d. model

A good image model?

The context model isn't far off what several real image compression systems do for binary images.



With arithmetic coding we go from 500 to 220 bits

A better image model might do better

If we knew it was text and the font we'd need fewer bits!

Context size

How big to make the context?

Context length:

0: i.i.d. bag of characters

1: bigrams, give vowels higher probability

>1: predict using possible words

 \gg 1: use understanding of sentences?

Ideally we'd use really long contexts, as humans do.

Problem with large contexts

For simple counting methods, statistics are poor:

$$p(x_n = a_i \mid \mathbf{x}_{< n}) = \frac{k_{i|C} + \alpha}{N_C + \alpha |\mathcal{A}|}$$

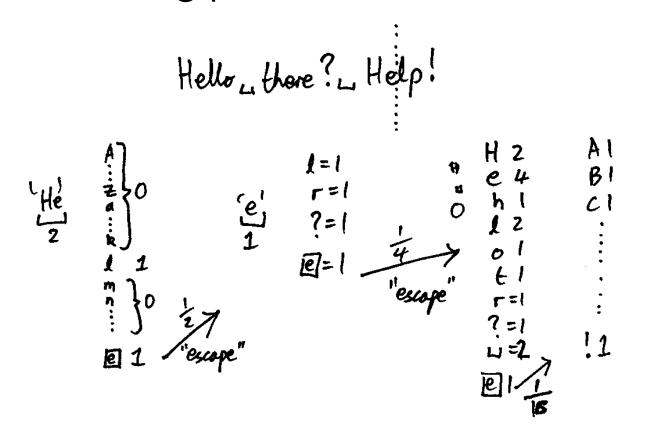
 $k_{\cdot|C}$ will be zero for most symbols in long contexts Predictions become uniform \Rightarrow no compression.

What broke? We believe some contexts are related:

while the Dirichlet prior says they're unrelated

Prediction by Partial Match (PPM)

One way of smoothing predictions from several contexts:



Model: draw using fractions observed at context Escape to shorter context with some probability (variant-dependent)

Prediction by Partial Match (PPM)

$$P(1 \,|\, \text{Hello there? He}) = \tfrac{1}{2} + \tfrac{1}{2} \big(\tfrac{1}{4} + \tfrac{1}{4} \big(\tfrac{2}{16} + \tfrac{1}{16} \tfrac{1}{|\mathcal{A}|} \big) \big)$$

$$P(! \,|\, \text{Hello there? He}) = \tfrac{1}{2} \tfrac{1}{4} \tfrac{1}{16} \tfrac{1}{|\mathcal{A}|}$$

$$P(_|\, \text{Hello there? He}) = \tfrac{1}{2} \big(\tfrac{1}{4} \big(\tfrac{2}{16} + \tfrac{1}{16} \tfrac{1}{|\mathcal{A}|} \big) \big)$$

Prediction by Partial Match comments

I squeezed PPM in very quickly in the lectures. Don't worry if you can't follow all the details from these terse notes. State-of-the-art probabilistic modelling of text and other sources is a rich area and mostly beyond the scope of the course.

First PPM paper: Clearly and Witten (1984). Many variants since. The best PPM variant's text compression is now highly competitive. Although it is clearly possible to come up with better models of text.

The ideas are common to methods with several other names. PPM is a name used a lot in text compression for the combination of this type of model with arithmetic coding.

Information Theory

http://www.inf.ed.ac.uk/teaching/courses/it/

Week 6

Communication channels and Information

lain Murray, 2010

School of Informatics, University of Edinburgh

Noisy channel communication

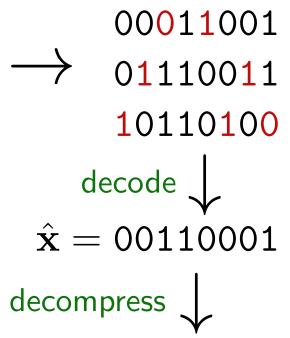
Input File

$$\mathbf{x} = 00110001$$
 \downarrow add redundancy

 $00110001 \longrightarrow 00110001$

transmitted message often called t or x

Noisy Channel



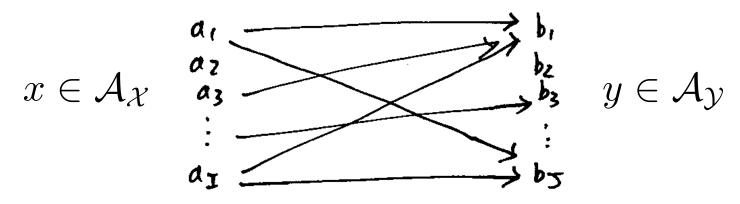
If all errors corrected: Original file

Some notes on the noisy channel setup:

- Noisy communication was outlined in lecture 1, then abandoned to cover compression, representing messages for a noiseless channel.
- Why compress, remove all redundancy, just to add it again?
- Firstly remember that repetition codes require a *lot* of repetitions to get a negligible probability of error. We are going to have to add better forms of redundancy to get reliable communication at good rates. Our files won't necessarily have the right sort of redundancy.
- It is often useful to have modular designs. We can design an encoding/decoding scheme for a noisy channel separately from modelling data. Then use a compression system to get our file appropriately distributed over the required alphabet.
- It is possible to design a combined system that takes redundant files and encodes them for a noisy channel. MN codes do this: http://www.inference.phy.cam.ac.uk/mackay/mncN.pdf
 These lectures won't discuss this option.

Discrete Memoryless Channel, Q

Discrete: Inputs x and Outputs y have discrete (sometimes binary) alphabets:



$$Q_{j|i} = P(y = b_j \mid x = a_i)$$

Memoryless: outputs always drawn using fixed Q matrix

We also assume channel is synchronized

Synchronized channels

We know that a sequence of inputs was sent and which outputs go with them.

Dealing with insertions and deletions is a tricky topic, an active area of research we will avoid

Binary Symmetric Channel (BSC)

A natural model channel for binary data:

$$2 \xrightarrow{1-\frac{f}{f}} 0$$

$$2 \xrightarrow{1-\frac{f}{f}} 0$$

$$1 \xrightarrow{1-\frac{f}{f}} 0$$

$$Q = \begin{bmatrix} 1-\frac{f}{f} & \frac{f}{f} \\ \frac{f}{f} & \frac{1-\frac{f}{f}}{f} \end{bmatrix}$$

Alternative view:

noise drawn from
$$p(n) = \begin{cases} 1-f & n=0 \\ f & n=1 \end{cases}$$
 $y = (x+n) \bmod 2 = x \ \text{XOR } n$

Binary Erasure Channel (BEC)

An example of a non-binary alphabet:

$$x \in A_{x} \quad 0 \xrightarrow{1-f} 0$$

$$1 \xrightarrow{f} 1$$

$$Q = \begin{bmatrix} 1-f & 0 \\ f & f \\ 0 & 1-f \end{bmatrix} \stackrel{?}{1} \stackrel{?}{1} \stackrel{?}{1}$$

With this channel corruptions are obvious

Feedback: could ask for retransmission

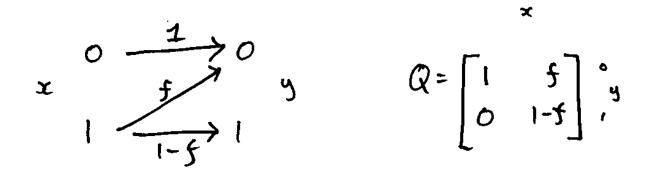
Care required: negotiation could be corrupted too

Feedback sometimes not an option: hard disk storage

The BEC is not the *deletion channel*. Here symbols are replaced with a placeholder, in the deletion channel they are removed entirely and it is no longer clear at what time symbols were transmitted.

Z channel

Cannot always treat symbols symmetrically



"Ink gets rubbed off, but never added"

Channel Probabilities

Channel definition:

$$Q_{j|i} = P(y = b_j \mid x = a_i)$$

Assume there's nothing we can do about Q. We can choose what to throw at the channel.

Input distribution:
$$\mathbf{p}_X = \begin{pmatrix} p(x=a_1) \\ \vdots \\ p(x=a_I) \end{pmatrix}$$

Joint distribution: P(x,y) = P(x) P(y | x)

Output distribution: $P(y) = \sum_{x} P(x, y)$

vector notation: $\mathbf{p}_Y = Q \mathbf{p}_X$

(the usual relationships for any two variables x and y)

A little more detail on channel probabilities:

More detail on why the output distribution can be found by a matrix multiplication:

$$p_{Y,j} = P(y=b_j) = \sum_{i} P(y=b_j, x=a_i)$$

$$= \sum_{i} P(y=b_j | x=a_i) P(x=a_i)$$

$$= \sum_{i} Q_{j|i} p_{X,i}$$

$$\mathbf{p}_Y = Q \mathbf{p}_X$$

Care: some texts (but not MacKay) use the transpose of our Q as the transition matrix, and so use left-multiplication instead.

Channels and Information

Three distributions: P(x), P(y), P(x,y)

Three observers: sender, receiver, omniscient outsider

Average surprise of receiver: $H(Y) = \sum_{y} P(y) \log 1/P(y)$ Partial information about sent file and added noise

Average information of file: $H(X) = \sum_{x} P(x) \log 1/P(x)$ Sender observes all of this, but no information about noise

Omniscient outsider experiences total joint entropy of file and noise: $H(X,Y) = \sum_{x,y} P(x,y) \log 1/P(x,y)$

Joint Entropy

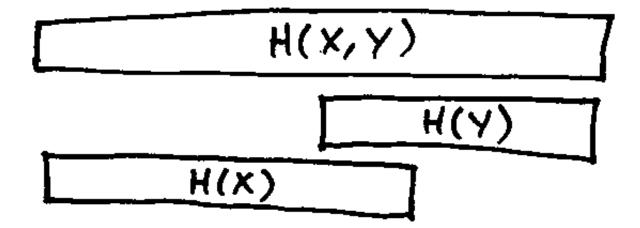
Omniscient outsider gets more information on average than an observer at one end of the channel: $H(X,Y) \ge H(X)$

Outsider can't have more information than both ends combined:

$$H(X,Y) \le H(X) + H(Y)$$

with equality only if X and Y are independent

(independence useless for communication!)

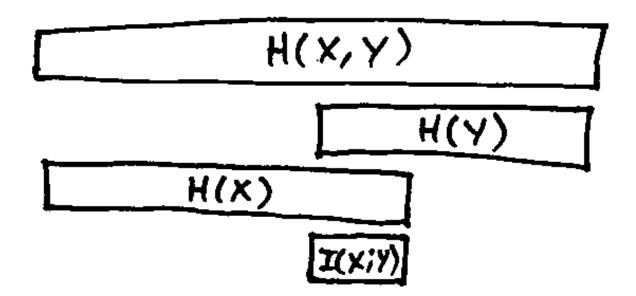


Mutual Information (1)

How much too big is $H(X) + H(Y) \neq H(X,Y)$?

Overlap:
$$I(X; Y) = H(X) + H(Y) - H(X, Y)$$

is called the mutual information



It's the average information content "shared" by the dependent X and Y ensembles. (more insight to come)

Inference in the channel

The receiver doesn't know x, but on receiving y can update the prior P(x) to a posterior:

$$P(x | y) = \frac{P(x,y)}{P(y)} = \frac{P(y | x) P(x)}{P(y)}$$

e.g. for BSC with P(x=1)=0.5, $P(x\mid y)=\begin{cases} 1-f & x=0\\ f & x=1 \end{cases}$ other channels may have less obvious posteriors

Another distribution we can compute the entropy of!

Conditional Entropy (1)

We can condition every part of an expression on the setting of an arbitrary variable:

$$H(X | y) = \sum_{x} P(x | y) \log 1/P(x | y)$$

Average information available from seeing x, given that we already know y.

On average this is written:

$$H(X | Y) = \sum_{y} P(y) H(X | y) = \sum_{x,y} P(x,y) \log 1/P(x | y)$$

Conditional Entropy (2)

Similarly

$$H(Y | X) = \sum_{x,y} P(x,y) \log 1/P(y|x)$$

is the average uncertainty about the output that the sender has, given that she knows what she sent over the channel.

Intuitively this should be less than the average surprise that the receiver will experience, H(Y).

Conditional Entropy (3)

The *chain rule* for entropy:

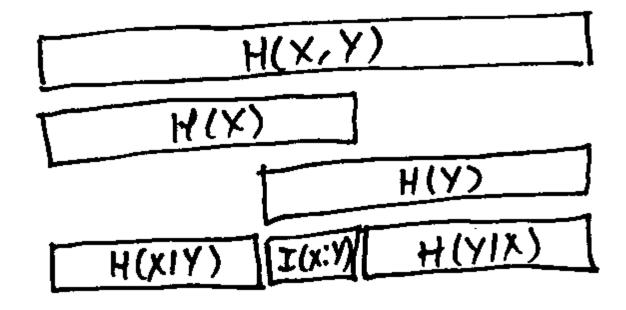
$$H(X,Y) = H(X) + H(Y | X) = H(Y) + H(X | Y)$$

"The average coding cost of a pair is the same regardless of whether you treat them as a joint event, or code one and then the other."

Proof:

$$H(X,Y) = \sum_{x} \sum_{y} p(x) p(y \mid x) \left[\log \frac{1}{p(x)} + \log \frac{1}{p(y \mid x)} \right]$$
$$= \sum_{x} p(x) \log \frac{1}{p(x)} \sum_{y} p(y \mid x) + \sum_{x} \sum_{y} p(x,y) \log \frac{1}{p(y \mid x)}$$

Mutual Information (2)



The receiver thinks: $I(X;Y) = H(X) - H(X \mid Y)$

The mutual information is, on average, the information content of the input minus the part that is still uncertain after seeing the output. That is, the average information that we can get about the input over the channel.

 $I(X;Y) = H(Y) - H(Y \mid X)$ is often easier to calculate

The Capacity

Where are we going?

I(X;Y) depends on the channel and input distribution \mathbf{p}_X

The Capacity: $C(Q) = \max_{\mathbf{p}_X} I(X;Y)$

C gives the maximum average amount of information we can get in one use of the channel.

We will see that reliable communication is possible at C bits per channel use.

Lots of new definitions

When dealing with extended ensembles, independent identical copies of an ensemble, entropies were easy: $H(X^K) = KH(X)$.

Dealing with channels forces us to extend our notions of information to collections of dependent variables. For every joint, conditional and marginal probability we have a different entropy and we'll want to understand their relationships.

Unfortunately this meant seeing a lot of definitions at once. They are summarized on pp138–139 of MacKay. And also in the following tables.

The probabilities associated with a channel

Very little of this is special to channels, it's mostly results for any pair of dependent random variables.

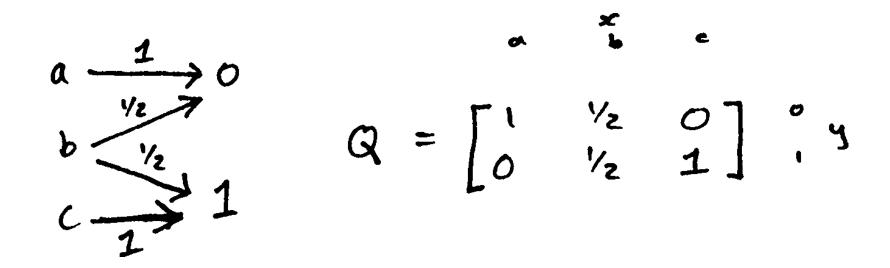
Distribution	Where from?	Interpretation / Name
P(x)	We choose	Input distribution
$P(y \mid x)$	Q, channel definition	Channel noise model Sender's beliefs about output
P(x, y)	$p(y \mid x) p(x)$	Omniscient outside observer's joint distribution
P(y)	$\sum_{x} p(x,y) = Q \mathbf{p}_X$	(Marginal) output distribution
$P(x \mid y)$	$p(y \mid x) p(x)/p(y)$	Receiver's beliefs about input. "Inference"

Corresponding information measures

H(X)	$\sum_{x} p(x) \log 1/p(x)$	Ave. info. content of source Sender's ave. surprise on seeing x
H(Y)	$\sum_{y} p(y) \log 1/p(y)$	Ave. info. content of output Partial info. about x and noise
H(X,Y)	$\sum_{x,y} p(x,y) \log 1/p(x,y)$	Ave. info. content of (x, y)
	$\sum x, y \in \mathcal{F}(x, y)$	or "source and noise". Ave. surprise of outsider
$H(X \mid y)$	$\sum_{x} p(x \mid y) \log 1/p(x \mid y)$	Uncertainty after seeing output
H(X Y)	$\sum_{x,y}^{\infty} p(x,y) \log 1/p(x \mid y)$	Average, $\mathbb{E}_{p(y)}[H(X \mid y)]$
$H(Y \mid X)$	$\sum_{x,y}^{x,y} p(x,y) \log 1/p(y x)$	Sender's ave. uncertainty about y
I(X;Y)	H(X) + H(Y) - H(X,Y)	'Overlap' in ave. info. contents
	$H(X) - H(X \mid Y)$	Ave. uncertainty reduction by y
		Ave info. about x over channel.
	$H(Y) - H(Y \mid X)$	Often easier to calculate

And review the diagram relating all these quantities!

Ternary confusion channel



Assume $\mathbf{p}_X = [1/3, 1/3, 1/3]$. What is I(X; Y)?

$$H(X) - H(X | Y) = H(Y) - H(Y | X) = 1 - 1/3 = 2/3$$

Optimal input distribution: $\mathbf{p}_X = [1/2, 0, 1/2]$

For which I(X;Y)=1, the *capacity* of the channel.

Information Theory

http://www.inf.ed.ac.uk/teaching/courses/it/

Week 7

Noisy channel coding

lain Murray, 2010

School of Informatics, University of Edinburgh

ISBNs — checksum example

On the back of Bishop's Pattern Recognition book:

ISBN: 0-387-31073-8

Group-Publisher-Title-Check

The check digit: $x_{10} = x_1 + 2x_2 + 3x_3 + \cdots + 9x_9 \mod 11$

Matlab/Octave: mod((1:9)*[0 3 8 7 3 1 0 7 3], 11)

Questions:

- Why is the check digit there?
- $\sum_{i=1}^{9} x_i \mod 10$ would detect any single-digit error.
- Why is each digit pre-multiplied by i?
- Why do mod 11, which means we sometimes need X?

Some people often type in ISBNs. It's good to tell them of mistakes without needing a database lookup to an archive of all books.

Not only are all single-digit errors detected, but also transposition of two adjacent digits.

The back of the MacKay textbook cannot be checked using the given formula. In recent years books started to get 13-digit ISBN's. These have a different check-sum, performed modulo-10, which doesn't provide the same level of protection.

Check digits are such a good idea, they're found on *many* long numbers that people have to type in, or are unreliable to read:

- Product codes (UPC, EAN, ...)
- Government issued IDs for Tax, Health, etc., the world over.
- Standard magnetic swipe cards.
- Airline tickets.
- Postal barcodes.

Noisy typewriter

See the fictitious noisy typewriter model, MacKay p148

For Uniform input distribution: $\mathbf{p}_X = [1/27, 1/27, \dots 1/27]^{\top}$

$$H(X) = \log(27)$$

$$p(x \mid y = \mathbf{B}) = \begin{cases} 1/3 & x = \mathbf{A} \\ 1/3 & x = \mathbf{B} \\ 1/3 & x = \mathbf{C} \\ 0 & \text{otherwise.} \end{cases} \Rightarrow H(X \mid y = \mathbf{B}) = \log 3$$

$$H(X \mid Y) = \mathbb{E}_{p(y)}[H(X \mid y)] = \log 3$$

$$I(X;Y) = H(X) - H(X|Y) = \log_2 \frac{27}{3} = \log_2 9$$
 bits

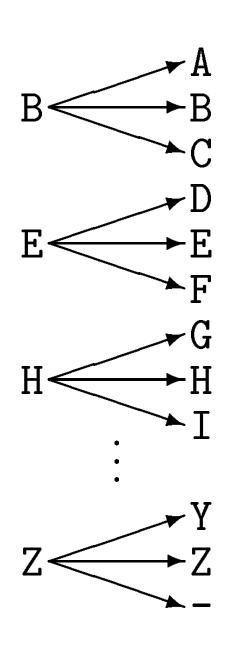
Noisy Typewriter Capacity:

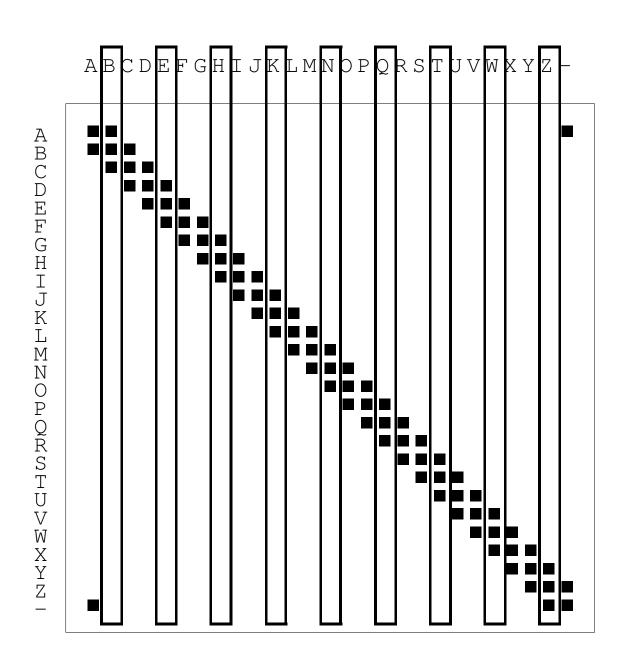
In fact, the capacity: $C = \max_{\mathbf{p}_X} I(X;Y) = \log_2 9$ bits

Under the uniform input distribution the receiver infers 9 bits of information about the input. And Shannon's theory will tell us that this is the fastest rate that we can communicate information without error.

For this channel there is a simple way of achieving error-less communication at this rate: only use 9 of the inputs as on the next slide (along with the Q matrix for the channel). Confirm that the mutual information for this input distribution is also $\log_2 9$ bits.

Non-confusable inputs





The challenge

Most channels aren't as easy-to-use as the typewriter.

How to communicate without error with messier channels?

Idea: use N^{th} extension of channel:

Treat N uses as one use of channel with

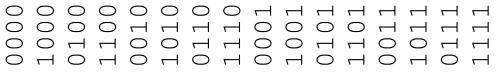
$$\mathsf{Input} \in \mathcal{A}_X^N$$

$$\mathsf{Output} \in \mathcal{A}_Y^N$$

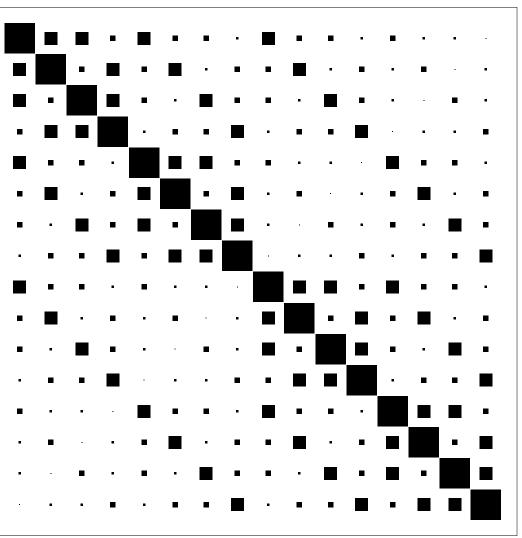
For $large\ N$ a subset of inputs can be non-confusable with high-probability.

Extensions of the BSC

(f = 0.15)







00

10

01

N = 1

N = 2

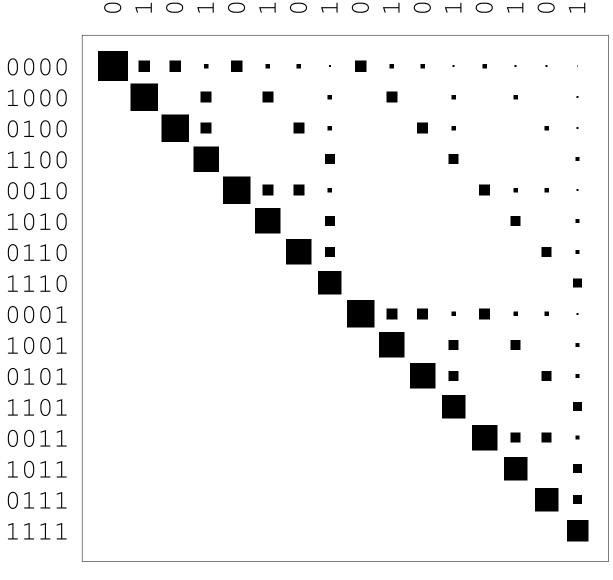
0011

0 0 0

N=4

Extensions of the Z channel

(f = 0.15)



00000011111111

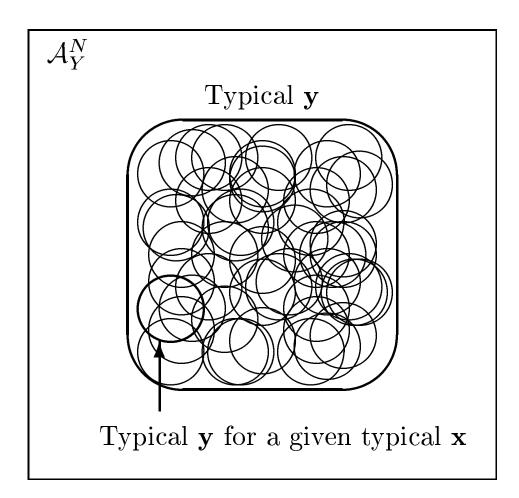
N = 2

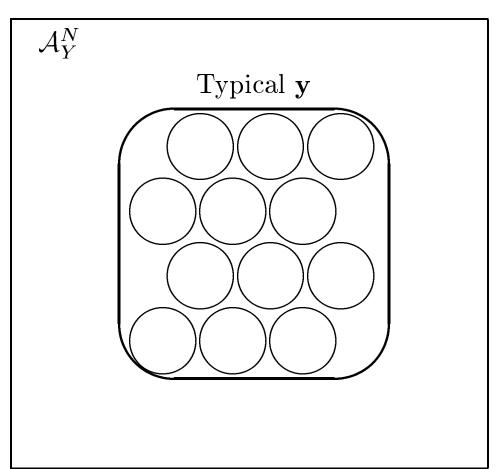
0 0 1

0 0 0

N = 4

Non-confusable typical sets





Do the 4th extensions look like the noisy typewriter?

I think they look like a mess! For the BSC the least confusable inputs are 0000 and 1111 – a simple repetition code. For the Z-channel one might use more inputs if one has a moderate tolerance to error. (Might guess this: the Z-channel has higher capacity.)

To get really non-confusable inputs need to extend to larger N. Large blocks are hard to visualize. The cartoon on the previous slide is part of how the noisy channel theorem is proved.

We know from source-coding that only some large blocks under a given distribution are "typical". For a given input, only certain outputs are typical (e.g., all the blocks that are within a few bit-flips from the input). If we select only a tiny subset of inputs, *codewords*, whose typical output sets only weakly overlap. Using these nearly non-confusable inputs will be like using the noisy typewriter.

That will be the idea. But as with compression, dealing with large blocks can be impractical. So first we're going to look at some simple, practical error correcting codes.

[7,4] Hamming Codes

Sends K = 4 source bits With N = 7 uses of the channel

Can detect and correct any single-bit error in block.

My explanation in the lecture and on the board followed that in the MacKay book, p8, quite closely.

You should understand how this block code works.

To think about: how can we make a code (other than a repetition code) that can correct more than one error?

[N,K] Block codes

[7,4] Hamming code was an example of a block code

We use $S=2^K$ codewords (hopefully hard-to-confuse)

Rate: # bits sent per channel use:

$$R = \frac{\log_2 S}{N} = \frac{K}{N}$$

Example, repetition code R_3 :

 $N\!=\!3$, $S\!=\!2$ codewords: 000 and 111. R=1/3.

Example, [7,4] Hamming code: R = 4/7.

Some texts (not MacKay) use $(\log_{|\mathcal{A}_X|} S)/N$, the relative rate compared to a uniform distribution on the non-extended channel. I don't use this definition.

Noisy channel coding theorem

Consider a channel with capacity $C = \max_{\mathbf{p}_X} I(X;Y)$

[E.g.'s, Tutorial 5: BSC, $C = 1 - H_2(f)$; BEC C = 1 - f]

No feed back channel

For any desired error probability $\epsilon > 0$, e.g. 10^{-15} , 10^{-30} . . .

For any rate R < C

- 1) There is a block code (N might be big) with error $< \epsilon$ and rate $K/N \ge R$.
- 2) We cannot transmit without error at rates > C.

Capacity as an upper limit

It is easy to see that errorless transmission above capacity is impossible for the BSC and the BEC. It would imply we can compress any file to less than its information content.

BSC: Take a message with information content $K + NH_2(f)$ bits. Take the first K bits and create a block of length N using an error correction code for the BSC. Encode the remaining bits into N binary symbols with probability of a one being f. Add together the two blocks modulo 2. If the error correcting code can identify the 'message' and 'noise' bits, we have compressed $K + NH_2(f)$ bits into N binary symbols. Therefore, $N > K + NH_2(f) \Rightarrow K/N < 1 - H_2(f)$. That is, R < C for errorless communication.

BEC: we typically receive N(1-f) bits, the others having been erased. If the block of N bits contained a message of K bits, and is recoverable, then K < N(1-f), or we have compressed the message to less than K bits. Therefore K/N < (1-f), or R < C.

Linear [N,K] codes

Hamming code example of linear code: $\mathbf{t} = G^{\top}\mathbf{s} \mod 2$

Transmitted vector takes on one of 2^K codewords

Codewords satisfy M = N - K constraints: $H\mathbf{t} = 0 \mod 2$

Dimensions:

$$egin{array}{ll} \mathbf{t} & N imes 1 \ G^{ op} & N imes K \ \mathbf{s} & K imes 1 \ H & M imes N \end{array}$$

For the BEC, choosing constraints H at random makes communication approach capacity for large N!

Required constraints

There are $E \approx Nf$ erasures in a block

Need E independent constraints to fill in erasures

H matrix provides M = N - K constraints.

But they won't all be independent.

Example: two Hamming code parity checks are:

$$t_1 + t_2 + t_3 + t_5 = 0$$
 and $t_2 + t_3 + t_4 + t_6 = 0$

We could specify 'another' constraint:

$$t_1 + t_4 + t_5 + t_6 = 0$$

But this is the sum (mod 2) of the first two, and provides no extra checking.

H constraints

Q. Why would we choose H with redundant rows?

A. We don't know ahead of time which bits will be erased. Only at decoding time to we set up the M equations in the E unknowns.

For H filled with $\{0,1\}$ uniformly at random, we expect to get E independent constraints with only M=E+2 rows.

Recall $E \approx Nf$. For large N, if f < M/N there will be enough constraints with high probability.

Errorless communication possible if f < (N-K)/N = 1-R or if R < 1-f, i.e., R < C.

A large random linear code achieves capacity.

Details on finding independent constraints:

Imagine that while checking parity conditions, a row of H at a time, you have seen n independent constraints so far.

$$P(\text{Next row of } H \text{ useful}) = 1 - 2^n/2^E = 1 - 2^{n-E}$$

There are 2^E possible equations in the unknowns, but 2^n of those are combinations of the n constraints we've already seen.

Expect number of wasted rows before we see E constraints:

$$\sum_{n=0}^{E-1} \left(\frac{1}{1 - 2^{n-E}} - 1 \right) = \sum_{n=0}^{E-1} \frac{1}{2^{E-n} - 1} = 1 + \frac{1}{3} + \frac{1}{7} + \dots$$

$$<1+\frac{1}{2}+\frac{1}{4}+\cdots<2$$

(The sum is actually about 1.6)

Packet erasure channel

Split a video file into K=10,000 packets and transmit

Some might be lost (dropped by switch, fail checksum, . . .)

Assume receiver knows the identity of received packets:

- Transmission and reception could be synchronized
- Or large packets could have unique ID in header

If packets are 1 bit, this is the BEC.

Digital fountain methods provide cheap, easy-to-implement codes for erasure channels. They are $\mathit{rateless}$: no need to specify M, just keep getting packets. When slightly more than K have been received, the file can be decoded.

Digital fountain (LT) code

Packets are sprayed out continuously Receiver grabs any K'>K of them (e.g., $K'\approx 1.05K$) Receiver knows packet IDs n, and encoding rule

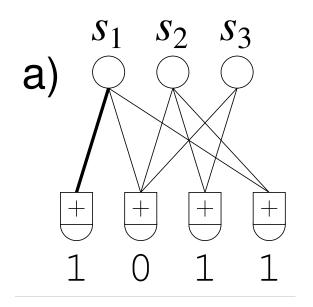
Encoding packet n:

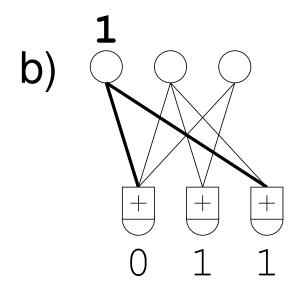
Sample d_n psuedo-randomly from a degree distribution $\mu(d)$ Pick d_n psuedo-random source packets Bitwise add them mod 2 and transmit result.

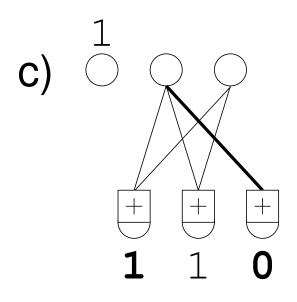
Decoding:

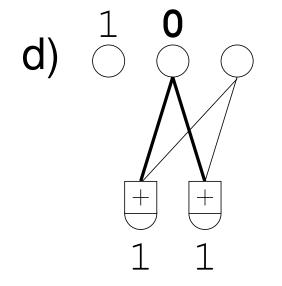
1. Find a check packet with $d_n=1$ Use that to set corresponding source packet Subtract known packet from all checks Degrees of some check packets reduce by 1. GoTo 1.

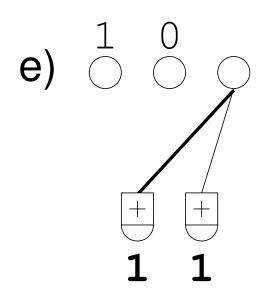
LT code decoding

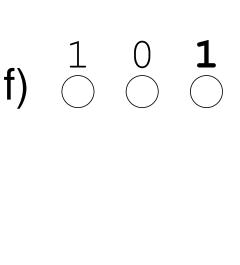












Soliton degree distribution

Ideal wave of decoding always has one d=1 node to remove

"Ideal soliton" does this in expectation:

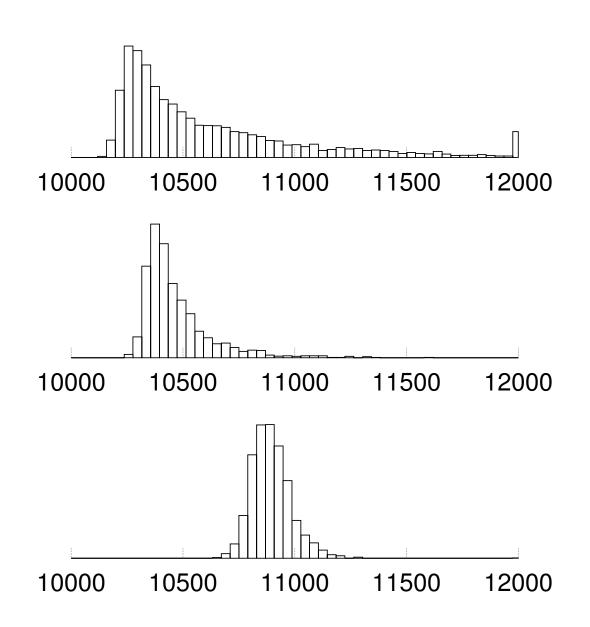
$$\rho(d) = \begin{cases} 1/K & d = 1\\ 1/d(d-1) & d = 2, 3, \dots, K \end{cases}$$

(Ex. 50.2 explains how to show this.)

A robustified version, $\mu(d)$, ensures decoding doesn't stop and all packets get connected. Still get $R \to C$ for large K.

A Soliton wave was first observed in 19 C Scotland on the Union Canal.

Number of packets to catch



K = 10,000 source packets

Numbers of transmitted packets required for decoding on random trials for three different packet distributions.

Reed-Solomon codes (sketch mention)

Widely used: e.g. CDs, DVDs, Digital TV

k message symbols ightarrow coefficients of degree $k{-}1$ polynomial

Evaluate polynomial at > k points and send

Some points can be erased:

Can recover polynomial with any k points.

To make workable, polynomials are defined on Galois fields.

Reed-Solomon codes can be used to correct bit-flips as well as erasures: like identifying outliers when doing regression.

Information Theory

http://www.inf.ed.ac.uk/teaching/courses/it/

Week 8

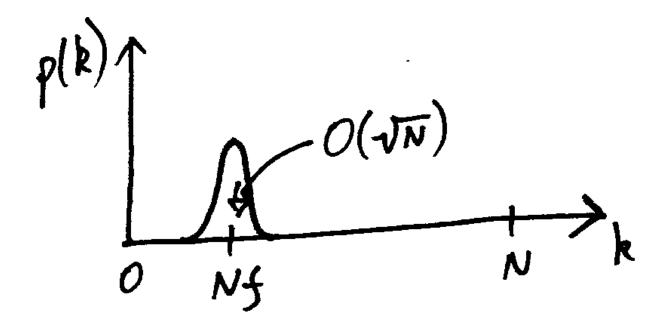
Noisy channel coding theorem and LDPC codes

lain Murray, 2010

School of Informatics, University of Edinburgh

Typical sets revisited

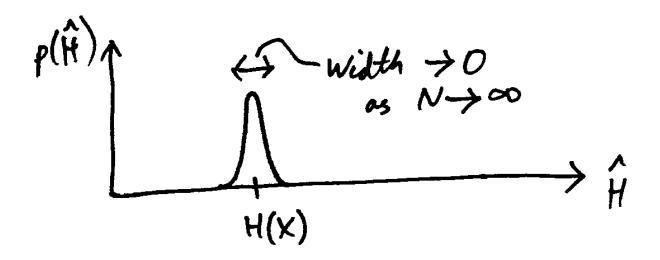
Week 2: looked at $k = \sum_i x_i$, $x_i \sim \text{Bernoulli}(f)$



Saw number of 1's is almost always in narrow range around expected number. Indexing this 'typical set' was the cost of compression.

Typical sets: general alphabets

More generally look at $\hat{H} = \frac{1}{N} \sum_i \log \frac{1}{P(x_i)}$, $x_i \sim P$



Define typical set: $\mathbf{x} \in T_{N,\beta}$ if $\left| \frac{1}{N} \log \frac{1}{P(\mathbf{x})} - H(X) \right| < \beta$

For any β , $P(\mathbf{x} \in T_{N,\beta}) > 1 - \delta$, for any δ if N big enough

See MacKay, Ch. 4

Source Coding Theorem

(MacKay, p82–3 for details)

Almost all strings have prob. less than $2^{-N(H(X)-\beta)}$

Therefore typical set has size $\leq 2^{N(H(X)+\beta)}$

For large N can set β small

Index almost all strings with $\log_2 2^{NH(X)} = NH(X)$ bits

We now extend ideas of typical sets to joint ensembles of inputs and outputs of noisy channels. . .

Jointly typical sequences

For
$$n = 1 \dots N$$
: $x_n \sim \mathbf{p}_X$

Send ${\bf x}$ over extended channel: $y_n \sim Q_{\cdot|x_n}$

Jointly typical:

$$(\mathbf{x}, \mathbf{y}) \in J_{N,\beta}$$
 if $\left| \frac{1}{N} \log \frac{1}{P(\mathbf{x}, \mathbf{y})} - H(X, Y) \right| < \beta$

There are $\leq 2^{N(H(X,Y)+\beta)}$ jointly typical sequences

Chance of being jointly typical

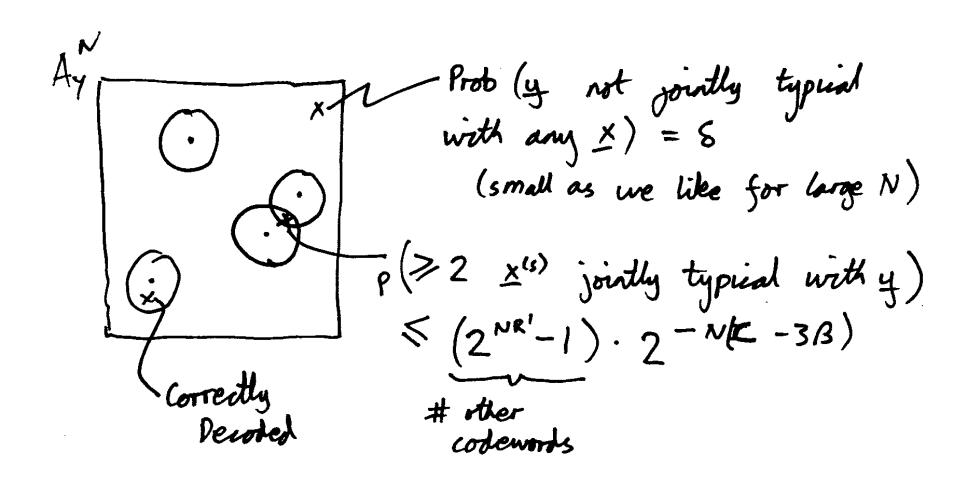
 (\mathbf{x},\mathbf{y}) from channel are jointly typical with prob $1-\delta$ $(\mathbf{x}',\mathbf{y}')$ generated independently are rarely jointly typical

$$\begin{split} P(\mathbf{x}',\mathbf{y}' \in J_{N,\beta}) &= \sum_{(\mathbf{x},\mathbf{y}) \in J_{N,\beta}} P(\mathbf{x}) \, P(\mathbf{y}) \\ &\leq |J_{N,\beta}| \, 2^{-N(H(X)-\beta)} \, 2^{-N(H(Y)-\beta)} \\ &\leq 2^{N(H(X,Y)-H(X)-H(Y)+3\beta)} \\ &\leq 2^{-N(I(X;Y)-3\beta)} \\ &\leq 2^{-N(C-3\beta)}, \quad \text{for optimal } \mathbf{p}_X \end{split}$$

Random typical set code

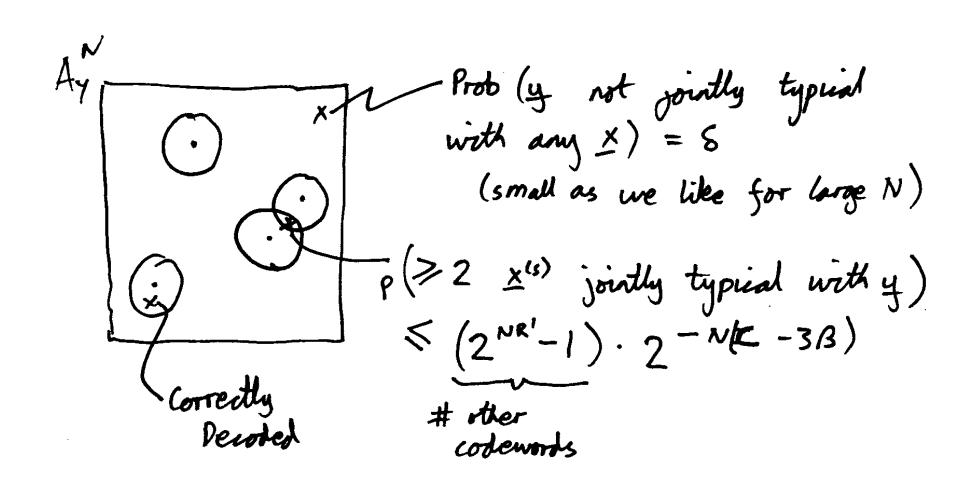
Randomly choose $S=2^{NR'}$ codewords $\{\mathbf{x}^{(s)}\}$

Decode $\mathbf{y} \rightarrow \hat{s}$ if $(\mathbf{y}, \mathbf{x}^{(\hat{s})}) \in J_{N,\beta}$ and no other $(\mathbf{y}, \mathbf{x}^{(s')}) \in J_{N,\beta}$



Error rate averaged over codes

Set rate $R' < C - 3\beta$. For large N prob. confusion $< \delta$ Total error probability on average $< 2\delta$



Error for a particular code

We randomly drew all the codewords for each symbol sent.

Block error rate averaged over all codes:

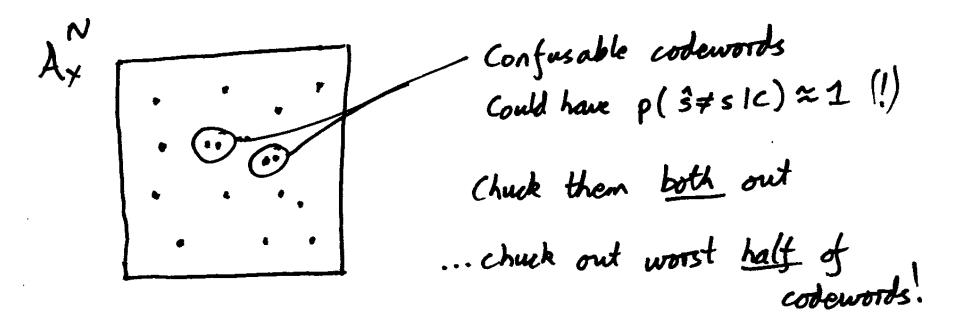
$$\langle p_B \rangle \equiv \sum_{\mathcal{C}} P(\hat{s} \neq s \mid \mathcal{C}) P(\mathcal{C}) < 2\delta$$

Some codes will have error rates more/less than this

There exists a code with block error:

$$p_B(\mathcal{C}) \equiv P(\hat{s} \neq s \mid \mathcal{C}) < 2\delta$$

Worse case codewords



Maximal block error: $p_{BM}(\mathcal{C}) \equiv \max_s P(\hat{s} \neq s \mid s, \mathcal{C})$ could be close to 1.

 $p_{BM} < 4\delta$ for expurgated code.

Now have $2^{NR'-1}$ codewords, rate = R' - 1/N.

Noisy channel coding theorem

For N large enough, can shrink β 's and δ 's close to zero.

For large N a code exists with rate close to C with error close to zero. (As close as you like for large enough N.)

In week 7 we showed that it is impossible to transmit at rates greater than the capacity without non-negligible probability of error for particular channels. This is also true in general.

Code distance

Distance,
$$d \equiv \min_{s,s'} |\mathbf{x}^{(s)} - \mathbf{x}^{(s')}|$$

E.g., d=3 for the [7,4] Hamming code

Can always correct $\lfloor (d-1)/2 \rfloor$ errors

Distance of random codes?

$$\left|\mathbf{x}^{(s)} - \mathbf{x}^{(s')}\right| pprox rac{N}{2}$$
 for large N

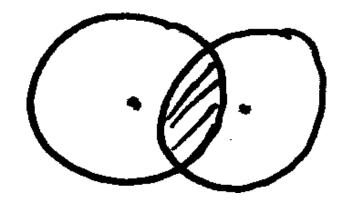
Not guaranteed to correct errors in $\geq \frac{N}{4}$ bits

With BSC get pprox Nf errors, and proof works for $f>\frac{1}{4}$

Distance isn't everything

Distance can sometimes be a useful measure of a code

However, good codes have codewords that aren't separated by twice the number of errors we want to correct

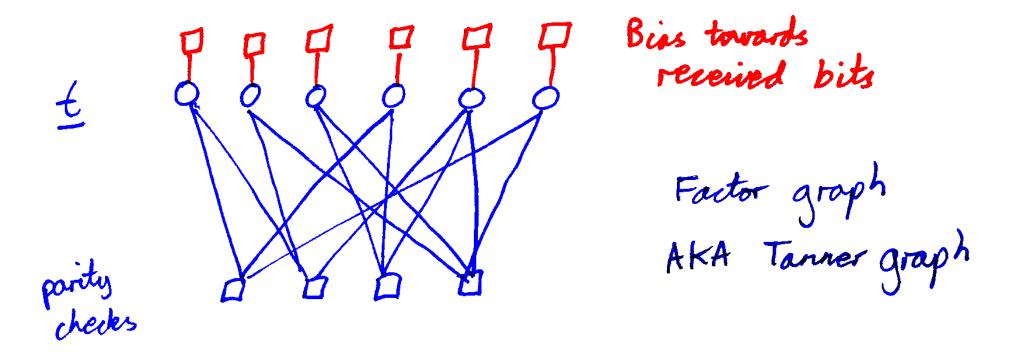


In high-dimensions the overlapping volume is tiny.

Shannon-limit approaching codes for the BSC correct almost all patterns with Nf errors, even though they can't strictly correct all such patterns.

Low Density Parity Check codes

LDPC codes originally discovered by Gallagher (1961) Sparse graph codes like LDPC not used until 1990s.



Prior over codewords $P(\mathbf{t}) \propto \mathbb{I}(H\mathbf{t} = \mathbf{0})$ Posterior over codewords $P(\mathbf{t} \mid \mathbf{r}) \propto P(\mathbf{t}) Q(\mathbf{r} \mid \mathbf{t})$

Why Low Density Parity Check (LDPC) codes?

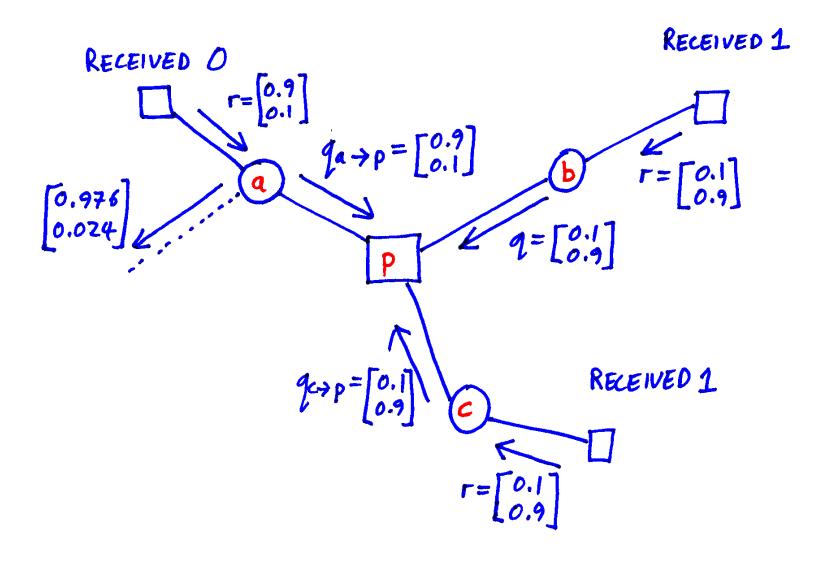
The noisy channel coding theorem can be reproved for randomly generated linear codes. However, not all ways of generating low-density codes, with each variable only involved in a few parity checks and vice-versa, are very good.

For some sequences of low-density codes, the Shannon limit is approached for large block-lengths.

For both uniformly random linear codes, or random LDPC codes, the results are for optimal decoding: $\hat{\mathbf{t}} = \operatorname{argmax}_{\mathbf{t}} P(\mathbf{t} \mid \mathbf{r})$. This is a hard combinatorial optimization problem in general. The reason to use low-density codes is that we have good approximate solvers: use the sum-product algorithm (AKA "loopy belief propagation") — decode if the thresholded beliefs give a setting of \mathbf{t} that satisfies all parity checks.

Sum-Product algorithm

Example with three received bits and one parity check



p336 MacKay, p399 Bishop "Pattern recognition and machine learning"

Sum-Product algorithm notes:

Beliefs are combined by element-wise multiplying Two types of messages: variable \rightarrow factor and factor \rightarrow variable Messages combine beliefs from all neighbours except recipient

Variable \rightarrow factor:

$$q_{n\to m}(x_n) = \prod_{m'\in\mathcal{M}(n)\setminus m} r_{m'\to n}(x_n)$$

Factor \rightarrow variable:

$$r_{m\to n}(x_n) = \sum_{\mathbf{x}_m \setminus n} \left(f_m(\mathbf{x}_m) \prod_{n' \in \mathcal{N}(m) \setminus n} q_{n' \to m}(x_{n'}) \right)$$

Example $r_{p\to a}$ in diagram, with sum over $(b,c) \in \{(0,0), (0,1), (1,0), (1,1)\}$ $r_{p\to a}(0) = 1 \times 0.1 \times 0.1 + 0 + 0 + 1 \times 0.9 \times 0.9 = 0.82$ $r_{p\to a}(1) = 0 + 1 \times 0.1 \times 0.9 + 1 \times 0.9 \times 0.1 + 0 = 0.18$

More Sum-Product algorithm notes:

Messages can be renormalized, e.g. to sum to 1, at any time.

I did this for the outgoing message from a to an imaginary factor downstream. This message gives the relative beliefs about about the settings of a given the graph we can see:

$$b_n(x_n) = \prod_{m' \in \mathcal{M}(n)} r_{m' \to n}(x_n)$$

The settings with maximum belief are taken and, if they satisfy the parity checks, used as the decoded codeword.

The beliefs are the correct posterior marginals if the factor graph is a tree. Empirically the decoding algorithm works well on low-density graphs that aren't trees. Loopy belief propagation is also sometimes used in computer vision and machine learning, however, it will not give accurate or useful answers on all inference/optimization problems!

We haven't covered efficient implementation which uses Fourier transform tricks to compute the sum quickly.

Information Theory

http://www.inf.ed.ac.uk/teaching/courses/it/

Week 9

Hashes and lossy memories

lain Murray, 2010

School of Informatics, University of Edinburgh

Course overview

Source coding / compression:

- Losslessly representing information compactly
- Good probabilistic models \rightarrow better compression

Noisy channel coding / error correcting codes:

- Add redundancy to transmit without error
- Large psuedo-random blocks approach theory limits
- Decoding requires large-scale inference (cf Machine learning)

Other topics in information theory

- Cryptography: not covered here
- Over capacity: using fewer bits than info. content
 - Rate distortion theory
 - Hashing

Rate distortion theory (taster)

- **Q.** How do we store N bits of information with N/3 binary symbols (or N uses of a channel with C = 1/3)?
- **A.** We can't without a non-negligible probability of error. But what if we were forced to try?

Idea 1:

- Drop 2N/3 bits on the floor
- Transmit N/3 reliably
- Let the receiver guess the remaining bits

Expected number of errors: $2N/3 \cdot 1/2 = N/3$

Can we do better?

Reversing a block code

Swap roles of encoder and decoder for $\left[N,K\right]$ block code

E.g., Repetition code R_3

Put message through decoder first, transmit, then encode

110111010001000
ightarrow 11000
ightarrow 1111111000000000

111 and 000 sent without error. Other six blocks lead to one error. Error rate $= 6/8 \cdot 1/3 = 1/4$, which is < 1/3

Slightly more on MacKay p167-8, much more in Cover and Thomas.

Rate distortion theory plays little role in practical lossy compression systems for (e.g.) images. It's a challenge to find practical coding schemes that respect perceptual measures of distortion.

Hashing

Hashes reduce large amounts of data into small values

(obviously the info. content of a source is not preserved in general)

Computers, humans and other animals can do amazing things, very quickly, based on tiny amounts of information.

Understanding how to use hashes can make progress in cognitive science and practical information systems.

Some of this is long-established computer science

A surprising amount is fertile research ground

Hashing motivational examples:

- Many animals can do amazing things. While:
- http://www.google.com/technology/pigeonrank.html was a hoax. The paper on the next slide and others like it are not.
- It isn't just pigeons. Amazingly humans can do this stuff too. Paul Speller demonstrated that humans can remember to distinguish similar pictures of pigeons over many minutes(!). http://www.webarchive.org.uk/wayback/archive/20100223122414/http://www.oneandother.co.uk/participants/PaulSpeller
- How can we build systems that rapidly recall arbitrary labels attached to large numbers of rich but noisy media sources? YouTube has recently done this on a *very* large scale for copyright enforcement.
- Some web browsers rapidly prove that a website isn't on a malware black-list without needing to access an external server, or needing an explicit list of all black-listed sites. (False positives can be checked with a request to an external server.)

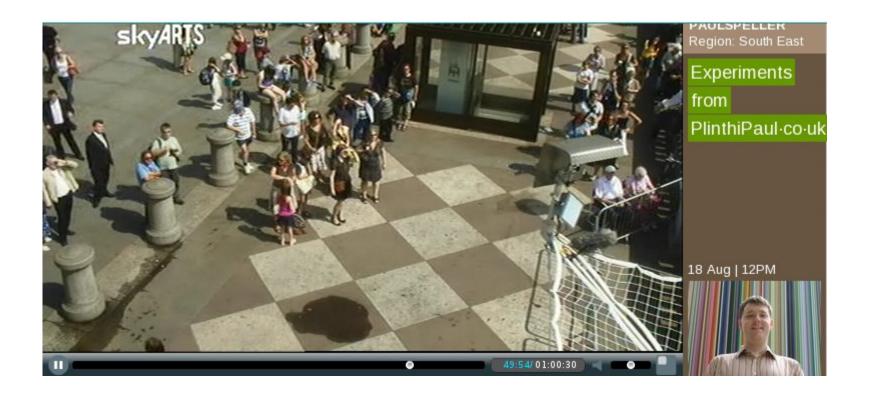
Pigeon Visual Memory Capacity

William Vaughan, Jr., and Sharon L. Greene Harvard University

This article reports on four experiments on pigeon visual memory capacity. In the first experiment, pigeons learned to discriminate between 80 pairs of random shapes. Memory for 40 of those pairs was only slightly poorer following 490 days without exposure. In the second experiment, 80 pairs of photographic slides were learned; 629 days without exposure did not significantly disrupt memory. In the third experiment, 160 pairs of slides were learned; 731 days without exposure did not significantly disrupt memory. In the fourth experiment, pigeons learned to respond appropriately to 40 pairs of slides in the normal orientation and to respond in the opposite way when the slides were left-right reversed. After an interval of 751 days, there was a transient disruption in discrimination. These experiments demonstrate that pigeons have a heretofore unsuspected capacity with regard to both breadth and stability of memory for abstract stimuli and pictures.

Remembering images

Remembering images



'Safe browsing'

Reported Attack Page!

This web page at has been reported as an attack page and has been blocked based on your security preferences.

Attack pages try to install programs that steal private information, use your computer to attack others, or damage your system.

Some attack pages intentionally distribute harmful software, but many are compromised without the knowledge or permission of their owners.

Get me out of here! Why was this page blocked?

Ignore this warning

Information retrieval

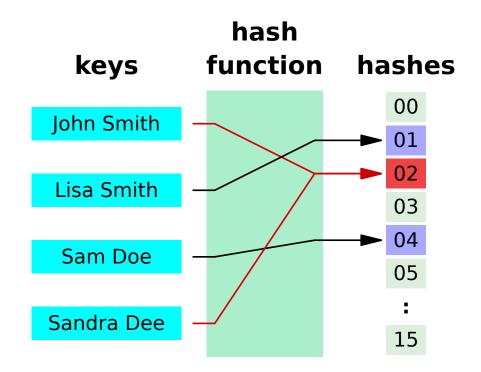
Information retrieval

Information retrieval

Hash functions

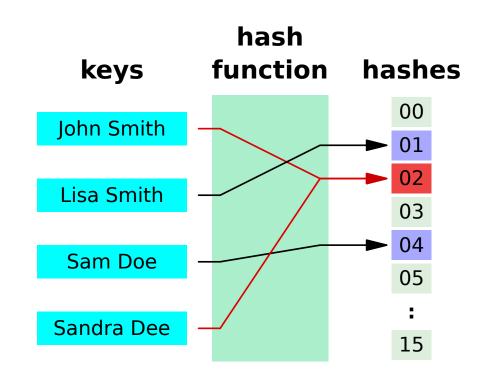
A common view:

file $\rightarrow b$ bit string (maybe like random bits)



Many uses: e.g., integrity checking, security, communication with feedback (rsync), indexing for information retrieval

Hash Tables



Hash indexes table of pointers to data

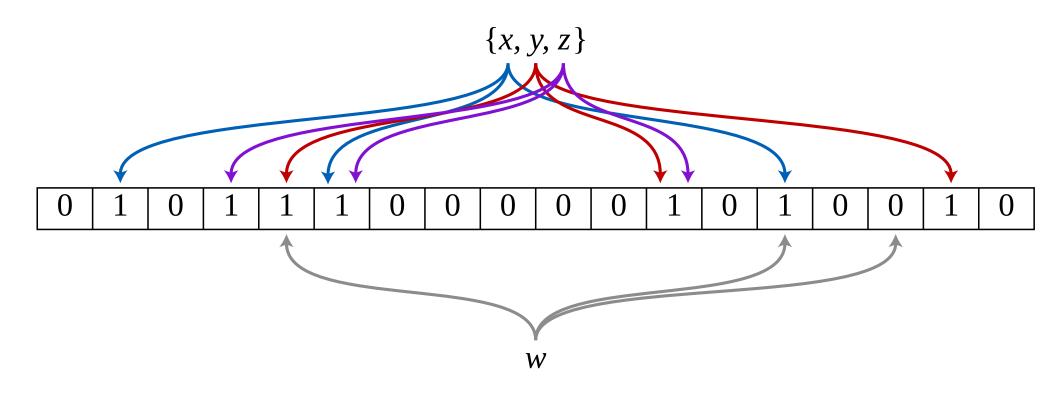
When hash table is empty at index, can *immediately* return 'Not found'

Need to resolve conflicts. Ways include:

- List of data at each location. Check each item in list.
- Put pointer to data in next available location.
 Deletions need 'tombstones', rehash when table is full
- 'Cuckoo hashing': use > 1 hash and recursively move pointers out of the way to alternative locations.

Bloom Filters

Hash files multiple times (e.g., 3) Set (or leave) bits equal to 1 at hash locations



Immediately know haven't seen w: ≥ 1 bits are zero

Notes on Bloom filters

- Probability of false negative is zero
- Probability of false positive depends on number of memory bits, M, and number of hash functions, K.
- For fixed large M the optimal K (ignoring computation cost) turns out to be the one that sets $\approx 1/2$ of the bits to be on. This makes sense: the memory is less informative if sparse.
- Other things we've learned are useful too. One way to get a low false positive rate is to make K small but M huge. This would have a huge memory cost... except we could compress the sparse bit-vector. This can potentially perform better than a standard Bloom filter (but the details will be more complicated).
- Google Chrome uses (or at least used to use) a Bloom filter with K=4 for its safe web-browsing feature.

Hashing in Machine Learning

A couple of example research papers

Semantic Hashing (Salakhutdinov & Hinton, 2009)

- Hash bits are "latent variables" underlying data
- 'Semantically' close files \rightarrow close hashes
- Very fast retrieval of 'related' objects

Feature Hashing for Large Scale Multitask Learning,

(Weinberger et al., 2009)

- 'Hash' large feature vectors without (much) loss in (spam) classification performance.
- Exploit multiple hash functions to give millions of users personalized spam filters at only about twice the cost (time and storage) of a single global filter(!).