
www.elsevier.com/locate/infsof

Information and Software Technology 49 (2007) 668–681
Software process improvement as emergent change: A
structurational analysis

I. Allison a,*, Y. Merali b

a School of Computing and Informatics, Nottingham Trent University, NG11 8NS, UK
b Warwick Business School, University of Warwick, CV4 7AL, UK

Available online 11 February 2007
Abstract

This paper presents a framework that draws on Structuration theory and dialectical hermeneutics to explicate the dynamics of soft-
ware process improvement (SPI) in a packaged software organisation. Adding to the growing body of qualitative research, this approach
overcomes some of the criticisms of interpretive studies, especially the need for the research to be reflexive in nature.

Our longitudinal analysis of the case study shows SPI to be an emergent rather than a deterministic activity: the design and action of
the change process are shown to be intertwined and shaped by their context. This understanding is based upon a structurational perspec-
tive that highlights how the unfolding/realisation of the process improvement (intent) are enabled and constrained by their context. The
work builds on the recognition that the improvements can be understood from an organisational learning perspective. Fresh insights to
the improvement process are developed by recognising the role of the individual to influence the improvement through facilitating or
resisting the changes. The understanding gained here can be applied by organisations to enable them to improve the effectiveness of their
SPI programmes, and so improve the quality of their software.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Software process improvement; Software quality; Software package development; Structuration theory
1. Introduction

Software process improvement (SPI) facilitates the iden-
tification and application of changes to the development
and management activities in order to improve the prod-
uct. Perry et al. [26] show that without understanding the
technological, social and organisational aspects of software
development we cannot hope to significantly improve pro-
cesses. This work therefore extends the existing literature
by investigating the effect of contextual and social factors
on the changes in software processes as they are enacted.
An explanatory theory of the SPI change process is devel-
oped from the experiences of a specific software package
organisation over a 10-year period providing an under-
standing of how and why software process improvements
occur and what the consequences of the change process
0950-5849/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.infsof.2007.02.003

* Corresponding author. Tel.: +44 115 8488357.
E-mail address: ian.allison@ntu.ac.uk (I. Allison).
are within this specific case. This understanding is based
upon a structurational perspective that highlights how
the process improvements are enabled and constrained by
their context. An emergent view of software process change
helps to understand the way the actions intertwine to
inform each other, and shape and are shaped by the con-
text they are in. The outcomes of software products and
processes emerge from this intertwining.

The paper begins by showing that in contrast to the soft-
ware engineering literature that tends to be restricted to a
rational, deterministic view of change, the on-going nature
of the software processes needs to be placed at the heart of
the analysis: opening up the facets of the change not taking
it as a given. To support this analysis a theoretical frame-
work is outlined; the framework is drawn from a combina-
tion of the case study data and elements of the existing
literature. The qualitative methods adopted in this study
and the case study methodology are explained to enable
the reader to appreciate the basis of the findings.

mailto:ian.allison@ntu.ac.uk

I. Allison, Y. Merali / Information and Software Technology 49 (2007) 668–681 669
The core of the paper is a chronological analysis of the
case. The case analysis accentuates the way in which the
changes emerge and develop through time, often differing
to intended actions or from the way in which the literature
suggests the process improvement initiative or software
engineering techniques should be instigated. This narrative
adopts the structure of the theoretical framework for the
case narrative, and evaluates the outcomes of the process
changes.

Finally, lessons are drawn from the study in three areas.
To inform SPI theory we highlight the importance of incor-
porating an understanding of the complexities of the
dynamics that occur as software processes emerge over
time. For software engineering practice, lessons are learnt
by considering how SPI programmes would benefit from
recognising the emergent nature of the improvement, and
that more fully acknowledging how the processes can sup-
port the business objectives would help to focus the
improvements. And then, for other qualitative researchers,
we highlight lessons learnt from our approach to this study
with respect to improving the relevance of such studies for
software practice.
2. Software process improvement research

Much of the current understanding of software process
improvement has been derived from the work of the Soft-
ware Engineering Institute. To support improvement pro-
grammes, the software engineering community has
developed a set of normative maturity models for organisa-
tions to follow and enable the assessment of current capa-
bility. Within such norm-based models, improvement in
the software process is considered to result in the maturing
of the activities undertaken by a software development
group [17]. Evidence shows that benefits can be achieved
as a result of this adoption [14]. Consequently, the majority
of the work to date has concentrated on developing such
models [13].

The normative models, though, are criticised for the
rigidity of the pre-defined actions and their underlying
deterministic assumptions about implementation [6]; and
for their inflexibility and the emphasis of technology rather
than people [21]. Subsequently, not all companies have
found software process improvement to be beneficial with
many abandoning SPI programmes [14]. Some leading
commercial software producers do not, therefore, follow
software process improvement according to the maturity
models or quality standards [9]. However, the software
engineering literature has tended to assume that an ability
to instigate, plan and direct all forms of change can be
taken for granted, creating ‘the illusion of manageability’
[16, p. 6]. Indeed, change is far from controllable and can
only be influenced to a limited extent; the intended purpose
of the intervention is often overcome by unexpected or
unintended outcomes. So the challenge is to understand
change not as a predictable or designed causal outcome,
but as an emergent process developed from the relationship
between people and their context.

A holistic approach is necessary to study all the relevant
factors in a given software context [26]. What is required
therefore is an integrative theory, building on research that
examines the enabling and constraining factors on quality
management practice [29]: an understanding of change that
reflects a more complex, dynamic and unpredictable world.
Yet, SPI research does not pay enough attention to the
organisational factors that enable or constrain the process
improvements. So, it is appropriate to examine whether
organisational issues arise as software development groups
move towards a more structured, process-oriented environ-
ment. In summary the main questions of this study are:

• How does the software process improvement initiative
unfold within the context of a packaged software orga-
nisation, and how does this compare to stated intent?

• What are the critical influences on the software process
improvement activity as it is enacted? How and why do
these influences enable/constrain changes to the
processes?

• In relation to adopting process innovations, how and
why do the behaviours of individuals affect the dynamics
of the software practice?

3. SPI as situated change: a structurational perspective

In order to highlight the emergence, interplay and out-
comes occurring from the software practice a contextualist
and processual perspective is adopted. Taking a processual
view enables us to attend to the unfolding interplay
between the espoused process improvement logic and the
perceived outcomes of the realised process.

A framework was devised to enable case analysis to be
more attentive to the emergent nature of the SPI activity.
The framework both provides a conceptual understanding
of the process of change drawn from the case study and
acts as a lens through which the case can be discussed. It
rests on a combination of the case study data and elements
of the existing literature. Like all models this framework is
a simplification of a complex reality intended to attune the
researcher to key concepts within this form of change activ-
ity. It is intended to be used to inform the research and is
not seen as a rigid model to be adhered to, thereby inhibit-
ing the interpretation of events. The aspects highlighted are
not intended to be a definitive or exhaustive, but these con-
cepts can sensitise the analysis of a software process
improvement initiative.

A central theme of the framework is the way that pro-
cess improvement interweaves with product development,
within their specific historical context (Fig. 1). The data
analysis therefore includes this view of practice, with expla-
nations of the changes that weave together the actions and
decisions of practitioners in the use and adoption of soft-
ware processes, and the dynamics of situated practice

Action to improve software process

Action to develop software products

Organisational context
Information systems context

informs

enacts and
reproduces

Metamorphosis through time

Environmental context

Fig. 1. An emergent view of software process improvement.

670 I. Allison, Y. Merali / Information and Software Technology 49 (2007) 668–681
within its organisational context. To achieve this under-
standing we need to analyse the content of the changes,
and how this interconnects with the context and process
of change through time [28]. Each aspect is briefly dis-
cussed below and summarised in Table 1 (see [3] for
details).

SPI research has identified three layers of the context
that shape the adoption of specific innovations: the envi-
ronment of the IS function, the organisation and the wider
business and professional context [25,31]. Here these layers
are not seen as entirely separate entities, as the edges are
blurred, rather as a way of illuminating the different aspects
of the context. Additionally, the formative context for the
changes comprises the organisational and personal history,
and the actors’ experience relevant to the software process.
So, the analysis needs to take into account the previous
experience of the organisation and the individuals
involved, as their experience of success and failure in soft-
ware development will influence the approach.

The content of change is seen to encompass both the
adaptation of the software processes and the practice of
applying the processes in the development of software
products. The activities of developing software and
improving the processes by which it is developed are not
mutually exclusive, even though they are normally consid-
ered as separate.

Process improvement incorporates the interplay
between the two aspects of the software activity: the action
of process improvement and software development each
inform the other. Individual actors draw on the structures
within the context as they enact the software practices and
thus (re)produce the context. The process of change is
understood to occur through the linkage between action
of software practice and its context. So through time there
is a metamorphosis of the context, the actors’ understand-
ing and intentions, and the software process as it is enacted.

Similar to previous work on process related change [e.g.,
25], the process of change is understood by drawing on
Structuration theory [12]: a process theory that reconciles
agency and structure by asserting a duality of structure.
These are not separate but interconnected phenomena,
with human action occurring by drawing on social struc-
tures and in so doing reproducing the social structures.
Structural properties are therefore both, the ‘medium and
outcome of the contingently accomplished activities of sit-
uated actors’ [7, p. 132], and are considered to be enabling
as well as constraining. The emergence of the software pro-
cesses is seen to occur through a structuring process that
acts as a linkage between the context, and the content to
help to explain the process of change. Giddens’ [12] duality
of structure interlinks action and social structures through
a set of modalities: interpretive schemes that enable com-
munication through shared stocks of knowledge; facilities
for utilisation of power; and norms that are used to main-
tain structures of legitimation.

First, human communication uses interpretive schemes,
which are drawn upon to make sense of the actions as they
are played out. To undertake the interaction related to sys-
tems development and improvement actors draw on stocks
of knowledge and shared experiences to communicate
about how to undertake, and change, the software practice;
and software engineering features and defined processes act
as frameworks for learning [20]. So, related knowledge is
contested and shifting: knowledge is drawn on and changed
through action. The theory-in-use (or process-in-use) is
challenged and reinterpreted through this new experience.
Espoused theory changes initially through changing the
interpretive schemes that individuals hold and then in turn
the social structures such as the defined processes and
infrastructure. This reflection may be a speculative or
deliberate attempt to learn for the future, but it is implicit
in Giddens’ view of actors being knowledgeable and con-
tinuously reflexive.

Next, human agents also draw on facilities, such as
human and technical resources, to utilise power in interac-
tions and in so doing maintain or modify structures of
domination. To draw on (or not) personal or organisa-
tional resources in order to retain or alter existing software
approaches is within the control of all practitioners. This
position presumes that there are relations of autonomy
and dependence between actors, not simply dominant uni-
directional relations. Giddens terms this the dialectic of
control, whereby subordinates can also influence superiors.
This influence can be both in the sense that developers can
introduce initiatives and they can shape the thinking of the
managers, by inspiring them, honing their initiatives and
resisting them. Each member of the organisation has the
power to conform or challenge a suggested change. Indi-
viduals and groups may exercise power to resist in some
circumstances and not others. Resistance is often thought
to relate only to subordinates, but managers also can resist
initiatives from employees through their disinclination to
mobilise resources. So important questions in the analysis
are who resists, why they do so and how they do so.

Third, we sanction our actions by drawing upon norms
thereby creating or recreating structures of legitimation.

T
ab

le
1

C
o

n
ce

p
tu

al
m

o
d

el
o

f
th

e
th

eo
re

ti
ca

l
fr

am
ew

o
rk

C
o

n
te

xt
O

rg
an

is
at

io
n

al
h

is
to

ry
(p

as
t

su
cc

es
s/

fa
il

u
re

;
p

re
vi

o
u

s
q

u
al

it
y;

co
n

d
it

io
n

s
fo

r
ad

o
p

ti
n

g
an

d
u

si
n

g
n

ew
p

ro
ce

ss
)

E
n

vi
ro

n
m

en
t

(s
o

ft
w

ar
e

en
gi

n
ee

ri
n

g
p

ro
fe

ss
io

n
;

co
m

p
et

it
io

n
d

yn
am

ic
s;

in
fl

u
en

ce
o

f
cu

st
o

m
er

s
an

d
ve

n
d

o
rs

)
O

rg
an

is
at

io
n

al
(r

es
o

u
rc

es
;

st
ra

te
gy

;
m

im
et

ic
b

eh
av

io
u

r)
In

fo
rm

at
io

n
sy

st
em

s
fu

n
ct

io
n

(d
ev

el
o

p
m

en
t

an
d

S
P

I
in

fr
as

tr
u

ct
u

re
;

gr
o

u
p

d
yn

am
ic

s;
in

d
iv

id
u

al
at

tr
ib

u
te

s)

E
m

er
ge

n
ce

o
f

p
ro

ce
ss

an
d

p
ro

d
u

ct
s

D
ia

le
ct

ic
o

f
d

efi
n

ed
p

ro
ce

ss
an

d
p

ro
ce

ss
-i

n
-u

se
(s

o
ft

w
ar

e
d

ev
el

o
p

m
en

t
in

fo
rm

ed
b

y
th

e
p

ro
ce

ss
im

p
ro

ve
m

en
t

an
d

d
efi

n
ed

p
ro

ce
ss

es
;

p
ro

ce
ss

es
ch

an
ge

d
th

ro
u

gh
p

ra
ct

ic
e;

ap
p

li
ca

ti
o

n
o

f
sk

il
ls

an
d

k
n

o
w

le
d

ge
d

ev
el

o
p

ed
th

ro
u

gh
ex

p
er

ie
n

ce
)

P
la

n
n

ed
an

d
u

n
in

te
n

ti
o

n
al

ch
an

ge
(a

d
o

p
ti

n
g

an
d

u
si

n
g

n
ew

p
ro

ce
ss

es
;

re
fl

ec
ti

o
n

-i
n

-a
ct

io
n

;
m

at
u

ri
n

g
m

en
ta

l
m

o
d

el
s)

C
o

n
se

q
u

en
ce

s
o

f
ad

o
p

ti
n

g
(o

u
tc

o
m

es
an

ti
ci

p
at

ed
an

d
u

n
an

ti
ci

p
at

ed
;

effi
ca

cy
an

d
q

u
al

it
y

p
er

fo
rm

an
ce

o
f

o
u

tc
o

m
es

)

P
ro

ce
ss

o
f

ch
an

ge
In

te
rp

re
ta

ti
ve

sc
h

em
es

(s
to

ck
s

o
f

k
n

o
w

le
d

ge
;

so
ft

w
ar

e
en

gi
n

ee
ri

n
g

fe
at

u
re

s
as

fr
am

ew
o

rk
s

fo
r

le
ar

n
in

g)
F

ac
il

it
ie

s
(u

se
o

f
p

er
so

n
al

o
r

o
rg

an
is

at
io

n
al

re
so

u
rc

es
to

ch
an

ge
/r

et
ai

n
cu

rr
en

t
ap

p
ro

ac
h

es
;

tr
u

st
b

et
w

ee
n

m
an

ag
er

s
an

d
p

ra
ct

it
io

n
er

s)
N

o
rm

s
(t

h
e

d
efi

n
ed

p
ro

ce
ss

ac
ts

as
th

e
n

o
rm

;
p

ra
ct

is
ed

p
ro

ce
ss

b
ec

o
m

es
th

e
n

o
rm

;
n

ar
ra

ti
ve

s
o

f
m

ea
n

in
g

an
d

ac
ti

o
n

;
la

n
gu

ag
e

as
ac

ti
ve

p
ro

ce
ss

o
f

le
gi

ti
m

is
at

io
n

an
d

in
st

it
u

ti
o

n
)

I. Allison, Y. Merali / Information and Software Technology 49 (2007) 668–681 671
Norms are the rules or standards that govern appropriate
conduct, constraining and enabling action. So, software
process improvement is a constant process of negotiation,
communication and establishment of norms through the
everyday relationships enacted within the process improve-
ment programme and software development process. The
norms of the practitioners become the traditions for future
practice. Developers and managers sanction their actions
through the narratives of meaning and action [11], by
which the defined process acts as the norm and the prac-
tised process becomes the norm.

Divergent interests could result in structural conflict as
power is central to all software development activity within
the organisation, so changes occur through a negotiation
process within and across communities-of-practice. The
balance between control and autonomy helps to influence
the SPI action. Software processes and methods used
within the group are drawn upon as norms, and in so doing
recreate structures of legitimation. The norms that develop
are legitimated through the shared language of the commu-
nity-of-practice developed from mutual knowledge of their
traditions.

The separation of these modalities is only for analytical
purposes, as they occur together in practice. Incorporating
these modalities into an analytical framework therefore
sensitises the researcher to these unconscious features link-
ing the process of change to the emergent contextual struc-
tures. The enactment of, and changes to, the software
processes are seen to embody the modalities of the structur-
ing process.

Giddens [12] does not see actions as isolated phenomena
but sees them as a flow of events, with agency taking place
with knowledge and practical consciousness. Actions are
purposive and intentional, but an agent is not always con-
scious of all the consequences of their action. These conse-
quences become conditions of new actions, therefore
structures change constantly but in unpredictable ways.
So an agent’s actions are always bound by the unacknowl-
edged conditions and unintended consequences of action.
The framework recognises this on-going dialectic between
the defined processes and the processes in use that shape
the software practice. How this framework was applied
within the research is discussed further below.

4. Research methodology

4.1. Case strategy

The research methodology was developed with the pur-
pose of ensuring the work had relevance and rigour. Case
studies are ideal for achieving the research aims as they
capture the knowledge and views of practitioners, with lon-
gitudinal case studies helping to show how the contextual
relationships develop and evolve. A single-case strategy is
adopted here with the emphasis on the richness of the data
collection over a significant period. Single cases are an
effective means for communicating conceptual develop-

672 I. Allison, Y. Merali / Information and Software Technology 49 (2007) 668–681
ments to practice [5]. Interpretive research is particularly
applicable in complex real-life situations and can give a
deeper understanding of the underlying processes of organ-
isational change. The case study methodology was based
on Pettigrew’s [27,28] principles of longitudinal study and
processual analysis. Following Eisenhardt [10], the research
stages were structured to enfold the literature, rather than
being theory led.

A dialectical hermeneutic perspective [23] was adopted
in support of Structuration theory to understand the influ-
ences, both realised and hidden, and the consequences of
any action, both intentional and unintentional. Dialectical
hermeneutics builds on hermeneutics (the analysis of the
meaning of a text) but also recognises the dialectic between
text and interpreter. Hermeneutics is used to explore the
socially constructed contexts of organisations by interpret-
ing the underlying sense from the ethnographic data. This
is a reflexive, iterative approach to deriving meaning, from
the historical context of the phenomena. By looking
beyond the actors’ own interpretations it helps to under-
stand the influences, both realised and hidden, and the con-
sequences of any action, both intentional and
unintentional. By extending the interpretive paradigm to
include thinking from the critical theorists, as dialectical
hermeneutics does, it is possible to understand the con-
straining and influencing aspects of the context and to ana-
lyse the result of actions beyond the intentions stated by
the actors.

By combining these theories and research approaches
the situated action of the SPI programme within the case
is analysed through time, highlighting the emergent nature
of the software process changes and the context that they
occur within. The enabling and constraining features of
the context will be highlighted to show how they shape
the action, and in turn are reproduced through that action.
The reasons for the changes will be drawn out to identify
the intentions, both stated and unconscious, and the out-
comes intended or unintended to help to understand why
the changes occur and their efficacy.

So, this strategy allows contextual factors to be consid-
ered in the analysis. By moving beyond a simple descrip-
tion of the incidents within a case study to challenge the
existing literature the approach is vital to facilitate findings
that are relevant to a wider body. The following sections
will highlight the selection of the case study and the specific
approaches used, detailing the methods applied and show
how these relate to the dialectical hermeneutic perspective.
4.2. Case selection

The case organisation, InfoServ (a pseudonym), is a
leading global information services company. In 1980,
InfoServ’s UK sales were £3 million, rising to over £60
million by 1990. Following a number of acquisitions, it
has over 13,000 employees now with an annual turnover
of £1.2 billion. The rate of growth indicates the strength
of the company and its ability to adapt to the demands
of its market.

This study focuses on the 25 person Market Analysis
Package (MAP) software team based in the GeoMarketing
(UK) division over a 10-year period. The division is the
smallest in the organisation, with approximately 200 per-
sonnel and £10 million turnover now. The division com-
bine data and software products for the market analysis
purposes. The MAP product is the division’s flagship prod-
uct and with nearly 200 customers contributes half of their
income. It is a PC-based geographical information system
developed primarily in Visual C++ that supports statistical
analysis of customer or prospect data.

Rather than making the unit of analysis a specific organ-
isational group, the continuous software process improve-
ment activity is used as a theoretical boundary to guide
the data collection and analysis, and allowing the case to
be compared at a later date with another improvement ini-
tiative even where the organisational forms are different
[22,27].
4.3. Data collection

A mixture of in-flight and historical data was captured
through participant-observation for over a year. This
engaged research gave wide-ranging access to a variety of
people and data sources, allowing contrasts and congruen-
cies between and within social groups to be identified by
taking the different views into account. Data have been
drawn from across the organisational strata and sub-
groups, avoiding the tendency to concentrate on a manage-
ment or development group perspective.

The role was undertaken overtly, also enabling open
interviews to be conducted, attendance at meetings, access
to a wide range of documents, notes to be taken immedi-
ately and interviews to be taped for later transcription. A
journal was used to note thoughts, observations, ideas,
events, etc. This approach provided access to the insiders’
world of meaning and enabled the development of a more
holistic response to the events [18,24].

A set of 29 formal semi-structured interviews of all the
software development team and their line management
were undertaken. Standard interview questions ensured a
systematic coverage of material, whilst the openness of
the interviews allowed the interviewer to respond to any
gaps, misunderstandings or follow up required. This inter-
action makes the interview more ‘interpretively active’ [15,
p. 114] allowing the researcher to pursue tracks as they
emerge, and to challenge the perceptions and values of
the respondents as is consistent with a critical interpretive
study.

Also, a set of 27 informal review meetings were held
with the software managers to discover their intentions
for, and reactions to, product and process developments.
These meetings were based on a generic structure but the
questions emerged from the context of the current events,

I. Allison, Y. Merali / Information and Software Technology 49 (2007) 668–681 673
so there was no pre-determined set wording or detailed
topics.

Documents were collected from the company in two
principal categories: those specific to the software develop-
ment and process activities, and those general to the orga-
nisation and its products. These provided information
about the activities of the software team, their stated intent,
and the outcomes. Software metrics collected by the soft-
ware group were also acquired for use in the analysis of
the perceived efficacy of the SPI activities.

4.4. Data analysis and interpretation

The initial conceptualisation began with making notes in
the margins. During this stage the material was read to
identify nuances and to reflect on what the significant pat-
terns were through the study. The analysis stage developed
through an iterative coding and pattern generation process.
So the initial process analysed the interview, journal, meet-
ing and quantitative data for patterns and themes.

Time-based analysis was conducted to show the tempo-
ral relationship between different parts of the data [22]. The
analysis included identifying patterns between problems
identified with the processes, actions planned and taken
(or not taken), and outcomes, both intended and unin-
tended. For different key process areas the relationship
between the context and the actions in the software process
improvement and software development were identified
through time. It was from these data displays that the
emergent framework was developed.

The reflexive nature of the analysis enabled the theoret-
ical framework to mature. Our engagement with the mean-
ing of the case encourages the dialectic between the
researchers’ own frames of meanings and those found in
the data, thus challenging the positions that are taken for
granted, the perceptions and values of the participants
and our own pre-constructed perspectives of software pro-
cess improvement through pre-determined change. The
rejection of early frameworks ensured an original rather
than a pre-conceived framework was created. This
approach was akin to Pettigrew’s [28] cycles of deduction
and induction, which he claims is where the real creative
process takes place. The iterative nature of the methods
is key to the success of case research [19]. The analysis iden-
tified patterns of data from different sources that pointed to
common themes and facets, and to contrasts.

Further analysis of the literature was undertaken to
review how the case supported and challenged the existing
materials, thus augmenting the theoretical framework with
social theory. The selection of the literature followed from
the data and had resonance with the tentative theoretical
concepts. For instance, Structuration theory gave a richer
understanding of how intended and unintended outcomes
related to stated motivation, and developed a deeper
understanding of how the actors’ norms were changed in
relation to the processes and how these were shared
through action. This interpretation of the facts occurred
through reflection about the data, as part of the construc-
tion of the theory. Once the framework had matured and
stabilised, detailed codes were defined based on the model
in Table 1 and used to fully re-analyse the data to ensure
consistency.

To generalise from one case is always open to criticism
because it is just a single instance in a substantial popula-
tion of possible cases. However, placing these findings in
a well-established theoretical framework, such as Structur-
ation theory, enables other researchers to relate this work
to other cases and findings. To ensure that the account is
plausible two forms of feedback have been sought: on the
case accuracy and interpretations, and on the framework
and analysis. Informants have reviewed the accuracy of
the case study data and agreed the interpretation of the
data.

5. SPI at InfoServ: a chronological analysis

5.1. Chronlogical analysis

A chronological approach is adopted to analyse the
emergent nature of the processes and their interplay with
the context and software product development. In this sec-
tion, a narrative of events is used to show how changes
emerged through situated practice bringing about a meta-
morphosis in the context and the software processes. The
account highlights factors in the company and external
contexts that impacted on the progression of process
improvement and product development. The nuances of
how and why the processes changed are discussed in detail
below by drawing on structurational concepts. The rich-
ness of the original case data means that the data presented
here is only a sub-set of the full case, but it reflects the anal-
ysis of the whole. The following section then discusses the
findings in terms of the theoretical perspective.

The case study is split into three periods, coinciding with
three distinctive product and process development episodes
occurring within the case: the early years of development
forms the historical context (period 1); and then the action
– context linkage is discussed over the process formalisa-
tion (period 2) and the SPI initiative (period 3) using the
framework as a structure for the discussion. Each of the
latter sections highlights the contextual shaping of actions,
the emergence of products and processes through action,
and how the changes occurred by drawing on features from
Structuration theory.

Table 2 summarises the key actions and the context in
which they occurred across these periods. The context is
represented as layered, as per the framework, with the IS
layer split into general IS function and software process
layers for ease of clarification. The actions related to prod-
uct development and process improvement inform each
other through time. The arrows indicate that actions are
enabled and constrained by the context(s) and thus enact
and reproduce these social structures; the placing of the
arrows is not intended to be significant.

T
ab

le
2

E
m

er
ge

n
ce

o
f

p
ro

ce
ss

es
an

d
p

ro
d

u
ct

s P
er

io
d

1
(5

+
ye

ar
s)

P
er

io
d

2
(3

ye
ar

s)
P

er
io

d
3

(2
ye

ar
s)

P
o

st
p

er
io

d
3

C
o

n
te

xt
E

xt
er

n
al

M
S

W
in

d
o

w
s

b
ec

o
m

es
n

o
rm

;
T

ic
k

IT
in

tr
o

d
u

ce
d

;
ri

se
o

f
O

O
C

o
m

p
et

it
o

r
W

in
d

o
w

s
p

ro
d

u
ct

in
tr

o
d

u
ce

d
;

o
u

ts
o

u
rc

in
g

b
ec

o
m

es
m

o
re

p
o

p
u

la
r

R
is

e
o

f
co

m
p

o
n

en
t-

b
as

ed
d

ev
el

o
p

m
en

t
co

n
ce

p
t;

m
u

lt
im

ed
ia

d
ev

el
o

p
m

en
t

to
o

ls
O

O
m

et
h

o
d

s
an

d
C

A
S

E
to

o
ls

re
fi

n
ed

O
rg

an
is

at
io

n
al

S
P

E
C

T
R

U
M

cl
as

si
fi

ca
ti

o
n

;
ce

n
tr

al
is

ed
IS

M
o

ve
to

b
ec

o
m

e
IS

O
90

00
ac

cr
ed

it
ed

M
er

ge
r

w
it

h
U

S
I;

le
an

sa
le

s
p

er
io

d
;

p
re

ss
u

re
fo

r
n

ew
fu

n
ct

io
n

al
it

y
M

o
ve

to
w

ar
d

s
in

te
rn

et
p

ro
d

u
ct

s

IS
fu

n
ct

io
n

D
ec

en
tr

al
is

ed
P

C
d

ev
el

o
p

m
en

t;
p

ro
je

ct
o

ve
rr

u
n

R
ec

ru
it

m
en

t
o

f
n

ew
IS

st
aff

;
L

ac
k

o
f

ex
p

er
ie

n
ce

o
f

O
O

/C
+

+
in

te
am

P
o

rt
fo

li
o

o
f

p
ac

k
ag

e
p

ro
d

u
ct

s
cr

ea
te

d
;

S
P

I
in

fr
as

tr
u

ct
u

re
es

ta
b

li
sh

ed
S

w
it

ch
p

er
so

n
n

el
fr

o
m

M
A

P
d

ev
el

o
p

m
en

t
to

p
o

rt
fo

li
o

P
ro

ce
ss

st
ru

ct
u

re
s

N
o

fo
rm

al
p

ro
ce

ss
es

o
r

ch
an

ge
co

n
tr

o
l

Q
u

al
it

y
m

an
u

al
;

st
an

d
ar

d
s

d
efi

n
ed

;
O

O
li

fe
cy

cl
e

d
efi

n
ed

P
ro

ce
ss

re
d

efi
n

ed
,

n
ew

st
an

d
ar

d
s;

p
ro

ce
ss

–a
ct

io
n

te
am

s
N

ew
p

ro
ce

ss
es

d
efi

n
ed

S
tr

u
ct

u
re

/a
ct

io
n

li
n

k
ag

e

A
ct

io
n

s
P

ro
d

u
ct

d
ev

el
o

p
m

en
t

D
O

S
sy

st
em

b
ec

o
m

es
am

o
rp

h
o

u
s/

d
is

te
n

d
ed

N
ew

W
in

d
o

w
s

p
ro

d
u

ct
u

si
n

g
la

ye
re

d
ar

ch
it

ec
tu

re
M

A
P

p
ro

d
u

ct
st

ab
il

is
ed

&
en

h
an

ce
d

;
d

ev
el

o
p

n
ew

p
ro

d
u

ct
s

vi
a

su
p

p
li

er
s

M
aj

o
r

re
le

as
e

o
f

M
A

P
2

w
it

h
d

at
a

m
in

in
g

to
o

l
is

‘m
o

st
st

ab
le

ye
t’

P
ro

ce
ss

im
p

ro
ve

m
en

t
In

d
iv

id
u

al
ad

-h
o

c
p

ro
ce

ss
es

D
ev

el
o

p
Q

M
b

u
t

ap
p

li
ca

ti
o

n
va

ri
ab

le
;

O
O

ap
p

ro
ac

h
p

ar
ti

al
ly

ad
o

p
te

d
R

ed
efi

n
it

io
n

o
f

p
ro

ce
ss

;
S

P
I

fo
rm

al
is

ed
ac

ro
ss

th
e

te
am

;
p

ro
ce

ss
re

fi
n

ed
P

ro
gr

es
s

w
it

h
fo

rm
al

S
P

I
ac

ti
o

n
s

sl
o

w
;

n
ew

p
ro

ce
ss

ch
an

ge
s

674 I. Allison, Y. Merali / Information and Software Technology 49 (2007) 668–681
5.2. Period 1: historical context

The historical context exhibited strong financial growth
from an innovative approach to product development. The
development of a PC-based DOS software package had
helped to expand the market share for the company. The
market strength of the product formed structures of dom-
ination, allowing the divisional Board of Directors to draw
on internal resources to persuade the organisational man-
agement to allow them to set up their own development
team. As the software team grew, the division’s expertise
in programming was enhanced during this period, but typ-
ical of many PC developments of this era the methods used
remained ad hoc.

A reactive business strategy was a key feature of the
dynamic between the organisational context and the on-
going software development. The software development
was characterised by changes to the products in response
to opportunities and client requests. Traditions from previ-
ous developments were used to legitimise the informal and
reactive approach during development.

5.3. Case history period 2: formalisation of the software
process

5.3.1. Contextual shaping of software change

In addition to the formative context from the previous
development there were three external contextual factors
that influenced the software practice at InfoServ during this
period: the spread of ISO 9000 across all industries; the
actions of competitors in releasing a Windows product;
and following the early industry growth in the use of
object-oriented (OO) methods, there was a lack of expertise
and supporting tools in the profession. These external fac-
tors interacted and blurred with organisational factors and
with the customers’ demands for new products.

The software product and processes were also shaped by
the process capability of the team, which can be under-
stood as an element of that social structure that changes
through learning in action. The OO capabilities within
the IS function varied; the new ideas were understood to
different degrees depending on prior skills and experience.
The software practice reflected this capability: techniques
were not used as intended, and for many developers unfa-
miliarity with the techniques and tools restricted their use
to novice level. The outcome of these capabilities was seen
in the vagaries of the MAP product. However, during the
development of the product the developers’ knowledge of
OO grew through observation, training, and their learn-
ing-in-action.

5.3.2. Emergence of process and products

The establishment of new procedures, the inclusion of
new techniques for software design and development, and
the use of new development tools each intertwined to form
a changing development environment. The emergence of
this environment occurred not only through the intended

I. Allison, Y. Merali / Information and Software Technology 49 (2007) 668–681 675
documentation of a new procedure or standard for the
quality manual, but also through the interpretation of these
defined approaches in practice. As developers implemented
the system their interpretation of the defined processes
evolved. For example, software inspections initially fol-
lowed the theory-led definition in the quality manual, but
by the end of the period practice had changed this process
by removing, altering and adding elements.

Accordingly, during this period the software processes
were enacted through a constant process of negotiation
between the developers, the technical architect, and the
software management. The different competencies, charac-
teristics and experiences of the software team shaped their
actions. The combination of the organisation’s experience
with software, the lack of experience of process-based
development, and the commercial pressure shaped the
attempt to change the development approach.

The enacted processes did not always follow the defined
version. The process-in-use changed during the develop-
ment and the organisational understanding of the espoused
process had shifted through the on-going organisational
inquiry, negotiated practice, and shared learning. Through
this on-going, changing software practice, the structures of
software development and business context emerged. The
actions reinforced, or altered, the context at all levels.

5.3.3. Process of change

These changes in the process can be understood by ref-
erence to the duality of context–action interaction as ana-
lysed through the modalities in Structuration theory.

The historical context formed the backdrop for the
introduction of the new ideas, and so traditions acted to
sanction previous approaches, but also the experiences of
others such as the new project manager and technical archi-
tect, contrasted with this sufficiently to retain the principles
of the new processes and the overall intent to move
towards these processes. They changed the software pro-
cesses through their own capability, and related social
structures. The developers’ willingness to support the
changes increased as they began to trust the project man-
ager. The technical architect too was able to legitimate
the new processes by appealing to the successes in his pre-
vious work. These knowledgeable actors, in Giddens’
terms, drew on relevant interpretive schemes to communi-
cate their experiences.

An example of how the Board drew on facilities for
power structure was seen as a new project manager was
recruited with the authority to introduce new development
practices. He used his own and team resources to facilitate
the introduction of new methods. The organisational move
towards ISO 9000 accreditation supported these changes.
The division’s management ‘wanted to keep in with [the
standards] and look like [they] were supporting them and
not against them as some of the other divisions might
be’.1 This politically sensitive situation acted as a structure
1 Developer Interview.
of domination, enabling the recruitment to be shaped so as
to support the new approaches, thus sanctioning the pro-
ject manager’s agenda for change. He was able to commu-
nicate the intent to change by drawing on the shared
understanding expressed through the ISO 9000 initiative,
and to legitimate the definition of the software process by
calling on the perceived industry norms of development
methodology use to deliver quality systems.

An interesting example of the dialectic of control; and
the interplay of resource, norms and interpretive schemas
was evidenced in the way the organisational context
affected the software processes through the reaction to
the pressure of the competitive environment. In this pro-
ject, once their main competitor launched the Windows
version of their product, the pressure on the organisation
dramatically increased. The pressure sanctioned some
developers to dispense with aspects of the defined process,
who saw them as a burden. So, some developers partially
reverted to their previous approaches with which they were
confident drawing on their shared knowledge of the previ-
ous approaches as norms to legitimate this reversion. The
unanticipated outcome of this action is evident in a subse-
quent lack of modularity, in problems in implementing
abstraction in a tiered architecture, and in product defects.
One team, however, pursued the defined process as their
team leader’s experience contrasted with this team norm.
So whilst the espoused process had changed during this
period, the processes-in-use varied by developers and
through time.

5.4. Case history period 3: software process improvement

5.4.1. Contextual shaping of software change

The historical context of the software function had been
shaped by the outcomes of the intentional and adaptive
actions within the previous development. The delay in
moving to the Windows-based product had challenged
InfoServ’s dominant market position. The resultant com-
mercial pressure remained evident throughout the period
until MAP version 2 was released.

The significant factors arising in the professional envi-
ronment were the changing approaches to sourcing and
delivery of IS provision, and the continuing changes to
the PC technology and applications, with the side-affect
of web-based systems being established for a variety of
business uses. Whilst these changes did not affect the
MAP product directly, a resultant growth of the division’s
software product portfolio reflected these opportunities
and thereby influenced actions in the team.

5.4.2. Emergence of process and products

The software management felt that it was important to
continue to refine the processes for developing and manag-
ing the development. So, the MAP team initiated a set of
improvement actions and, in due course, this became a
software process improvement programme. These actions,
whilst partly planned can also be seen to incorporate

676 I. Allison, Y. Merali / Information and Software Technology 49 (2007) 668–681
improvised and unplanned activities. InfoServ did not use
maturity models in the definition of the process changes.
To undertake the SPI project, the division devised and fol-
lowed an approach which closely resembled the SEI’s
IDEAL model [21]. Specific needs were explicitly identified
and solutions proposed as part of the organisational
improvement activity; these solutions were then designed,
disseminated and evaluated. Workshops and process action
teams were used to identify changes. Actions were planned
based on perceived needs. Actions were planned related to
project planning, software development processes, and
quality assurance and control.

By allowing team members to do the actions according
to their own priorities meant that progress was variable.
Some of these actions produced intended outcomes such
as the definition of new process areas, enhancements in
the software inspection process, and the introduction of
automated testing and post-release review meetings. How-
ever, other stated actions were altered through practice or
abandoned in favour of other priorities. The planned
actions and outcomes from the formal SPI project were
therefore only part of the story. Improvements occurred
through the on-going practice and improvisations of the
practitioners as they identified and sought to solve per-
ceived problems, or found and shaped an external solution
to solve a problem previously identified.

An example, of the process-in-use changing through
practice was the introduction of a beta test process to
address the need for client involvement. The idea of using
beta testing began to form when the team released early
versions of the product to the international offices to enable
them to perform sales demonstrations, and comments
about the software were received in response. This response
caused an unanticipated impact upon the development
team, as they had to react to suggestions and defects. In
due course, the concept of beta releases was gradually
incorporated and then formalised, but this had not been
the intention of the initial action.

In addition, some of the new ideas were drawn from out-
side of the organisation but they were only brought into the
development practice when the idea complemented the per-
ceived need, such as the introduction of Critical Chain for
project planning and control as a way to reduce project
overruns.

Two years after the initial instigation of the SPI project
the software management stated that the SPI initiative was
at an end, but the study followed the development group
for two further years and observed the unfolding of the
existing initiatives, and interlinked new developments in
the processes and the product portfolio.

5.4.3. Process of change

Again, we can see these emergent changes as having
occurred through a structuring process as defined by Gid-
dens. First, interpretive schemes are drawn upon to make
sense of the actions as they are played out, and in so doing
change the social structures of the process as defined
through language. In the example of the beta test from
above, in an attempt to respond to the unanticipated effects
of releasing prototypes of the software early to key clients
and to justify the resource required by the developers, the
software management began to change the language,
describing it as a beta testing process. In so doing, this
change in interpretive scheme reformed the structures of
signification thereby redefining the software life cycle. In
due course, the espoused process changed, but only after
the process-in-use had become the norm.

Individual motives were seen to be significant in shaping
the activity as they related to how people were willing to
use personal or organisational resource, but these motives
did not always equate to the publicly stated intent. The
project manager stated that the purpose of formalising
the SPI initiative was ‘to concentrate on continuous
improvement. [I want] people to focus on things which will
enable me to get better and better’.1 This stated reason was
perhaps sufficient to legitimate the change, but only shows
part of the underlying motive, which can be identified
through the manager’s actions and statements. As partly
indicated by the nature of the above statement, his motives
were related to strengthening his group’s position in the
organisation. This motive was in direct reaction to the con-
tinued questioning of the other sections of the division, and
senior directors, about the ability of the team to produce
good quality software. To change the structures of domina-
tion, the software management needed to react to this
developing political situation. To legitimate these actions,
they drew on the professional norms that valued structured
approaches in developing quality software.

Similarly, as improvisations arose from needs identified
during the development, as individuals reflexively moni-
tored their own action the champion of the idea would
legitimate it through a personal success or external norms.
In each case the communication drew on structures of sig-
nification – language that others could relate to. A com-
mon pattern with such changes was that the person
championing the introduction considered them relevant
and valuable. When someone saw a clear purpose in
introducing a new technique, or revising a current
method, they were prepared to apply their own resource
and the team’s resources to its introduction (either
directly through delegation or by winning others round
through negotiation). By recognising the relevance of
changes in their approach the practised process was then
recreated as the norm, and thus the interpretive schemes
shifted through time.

Conversely, when structures of signification had not
been shared, say in the case of external knowledge, then
the idea’s relevance was more difficult to communicate,
as shown in an initiative to introduce component-based
design that eventually failed. In this example, developers
and managers alike acted to resist changes – sometimes
in contrast to their own stated purpose – by withholding
resource and drawing on structures of domination to main-
tain the current norm. So processes changed through an

I. Allison, Y. Merali / Information and Software Technology 49 (2007) 668–681 677
on-going negotiation between individuals that reinforced
or changed the existing structures.

5.5. Evaluation of the software process improvement project

outcomes

At the end of the process improvement programme its
progress was reviewed to establish the future direction. A
summary of the review is provided here to evaluate the effi-
cacy of the changes.

Despite slow progress on the official SPI actions, signif-
icant progress was achieved through changes that emerged
through practice and individual reflection. The project
had a significant impact on the processes, the resultant
products, and therefore the business. There were a num-
ber of unplanned, improvised changes. Some of these
changes were to address problems identified at the begin-
ning of the SPI initiative, others were to address new
issues that had arisen since that meeting, but many simply
arose from the on-going activity of developing the soft-
ware and were formalised. By having the process
improvement initiative it had encouraged the team to be
more reflective so during the course of the project the pro-
cess had been reformed.

It is, of course, difficult to tell the impact of SPI to the
exclusion of other factors, but it is possible to identify ben-
efits that occurred over the course of the project:

• Reduction in defects in releases
• Improved perceived product quality
• Increased productivity/reduced time to market
• Reduction in cost of rework/testing
• Improvement in meeting schedules
• Accuracy in predicted cost
• Return on investment in SPI

Based on the cost of defect rework and time spent on
SPI activities, a conservative estimate of the return on
investment was 6.5, which is in the middle of the range of
examples from other cases [35]. More importantly, it was
the indirect perception of such metrics around the organi-
sation that was most important. The view of all the busi-
ness directors was very positive, recognising the business
impact that the process improvement had.
Table 3
Summary of process capability by time

Perceived level of competenc

Level 2: managed 7 process areas Not implemented
Informal
Defined
Implemented

Level 3: defined 13 process areas Not implemented
Informal
Defined
Implemented
In terms of the division’s process capability, an informal
assessment was made of their position at the beginning of
each of the three periods. This assessment takes each pro-
cess area at levels 2 and 3 of the CMM and makes a simple
assessment of the capability. The judgements are: not
implemented; informally implemented; defined but not
always implemented; implemented. It can be seen from
the summary provided in Table 3 that there was a gradual
move towards the process areas being informally applied
and/or defined, and then fully implemented. So by the
end of the SPI project the division had improved its imple-
mentation of software processes areas across levels 2 and 3
of the CMM.

6. Discussion: lessons for theory, practice and research

This section draws out the lessons from the case and our
research methods in three areas. First, we reflect on the the-
oretical developments from the analysis. We show how the
use of Structuration theory augments the current SPI liter-
ature. Consequently, we highlight the way in which the case
supports the view of SPI as situated change with the soft-
ware processes emerging through the on-going software
product development. From these theoretical develop-
ments we propose lessons for software engineering practice
that acknowledge the adaptive, reflective perspective by
moving towards an agile view of SPI. We then reflect on
our research approach to enable other qualitative software
engineering researchers to exploit and build on our
approach.

6.1. Lessons for software process theory

6.1.1. Insights from using the structurational perspective

It has been shown that to look back at SPI projects as a
simple planned change tends to give an overly neat,
ordered view. Such views of software activity imply a pic-
ture of fake rationality [34]. By employing Structuration
theory as the basis for the analytical lens, the case expli-
cates the dynamics of emergence in process improvement.
By imposing the temporal dimension the structurational
perspective enables us to articulate the currents and eddies
of the micro-level space-time dynamics of the process with
the macro-level flow of events over time. The structuration-
e Period 1 Period 2 Period 3

5 2 1
1 1 2
1 3 0
0 1 4

3 3 3
6 2 2
4 4 1
0 4 7

678 I. Allison, Y. Merali / Information and Software Technology 49 (2007) 668–681
al frame makes explicit the complex interplay of the
agency-structure inter-relationship as it co-evolves with
the exercise of agent autonomy.

The actions of agents can be understood as purposive
and intentional as situated in a given time-space locality.
However the intended and unintended consequences of
multiple agents become conditions of new actions: struc-
tures change constantly but in unpredictable ways.
Improvement in software processes can be seen to be
‘simultaneously rational and unpredictable; planned but
emergent; purposeful but opaque’ [8, p. 137].

The complexity of the relationships, the learning inten-
sive nature of the change and the political motives that
shaped the behaviour of the actors have been shown as
important facets of the process of change. The agent’s
power can be seen to be instantiated in their action, for
example: using or not using the process; giving or with-
holding support through resources; the use of language
to promote or counter the existing process norm.

As the narrative demonstrates, the metamorphosis of
interpretive schemes is confluent with transitions between
legitimisation structures and dialectics of control. The legit-
imisation structures draw on ‘‘norms’’ selectively, recruiting
different internal and external facilities over time (demon-
strating the co-evolution of interpretive schemes, agency
and structure). The norms shaped the retention of existing
ideas or the introduction of new ideas, with the process-in-
use informing, guiding, and organising future practice. Such
norms thereby sustained existing approaches.

These habits and traditions were drawn on by agents to
sanction their actions. However, actors were not passively
moulded by their culture, fitting with Giddens [12] view
that agency takes place with knowledge and practical con-
sciousness. Agents’ capacity to choose (and their ‘‘bounded
rationality’’) can result in divergent co-evolutionary paths
as is illustrated in Section 5.3.3 where there is apparently
a ‘‘bifurcation’’ under pressure – one set of agents revert
to past practice using that as the ‘‘reference norm’’ whilst
the other set continue with the new practice.

Such resistance has been noted as a feature of SPI
programmes [32]; here it was seen that both managers
and developers drew on their resources and structures of
domination to resist changes in line with their motives.
The norms changed as they were challenged through
experience, negotiation within the group, and through the
introduction of new ideas from other sources. The norms
of the practitioners become the traditions for future
practice.

So overall, the changes to the software processes were
shown to emerge through the reflexive nature of the
software developers, shaped by the context and traditions
of the organisation. The theoretical framework helped to
highlight how the enacted processes form the norms
for future practice and recreate the context for future devel-
opments. The improvement was understood as a negoti-
ated process of change, occurring through a structuring
process. The reasons for undertaking the SPI project and
related actions were more complex than initial rhetoric
suggests.

6.1.2. Process metamorphosis: change through situated

action

Whilst the literature recognises the emergent nature of
software development practice [20,33], the dynamics of
emergence is under-explored. In this paper, we have used
the structurational lens to elucidate the dynamics of emer-
gence in the case example.

When software practitioners ‘understand and appreciate
the process, they are empowered to use their discretion and
adapt the process to meet the needs of both the situation
and their customers’ [1, p. 34]. There is a dynamic relation-
ship between our beliefs and our actions: knowledge is
acquired through action by practice and habit [36]. Actors
made sense of their action by imposing their own
worldview, interpreting the application of specific methods
according to their perspective. As such, organisations are
continuously changing through active implementation
and reflection on their theory-in-use, rather than simply
implementing the espoused theory (or defined processes)
[30]. As small, often unplanned, improvisations continue
through time then significant changes occur [26].

The emergent properties of actions and outcomes mean
that they cannot be known a priori, but it does not mean
that there is no intended design for an action. Rather,
design and emergence coexist. Emergence accounts for
divergence between intended and realised design [30].

6.1.3. Emergence of the process: the product–process
dynamic

The case narrative demonstrates the on-going dialectic
between the defined processes and the processes in use that
shape the software practice. Throughout the study, the
processes were seen to change through an on-going
dynamic with the product development. Software develop-
ment was informed by the process improvement activity.
The means developers used to create software artefacts
are were drawn from the context, and through the applica-
tion of skills and knowledge developed through previous
experience. The context of software development included
the defined and routine processes, which were (re)created
through the actions and experiential learning in the devel-
opment activity.

Changes were therefore realised through the actions of
developers as they developed the products, and ideas for
changes originated through reflection-in-action. The defini-
tion of new process models and the introduction of meth-
ods from external sources acted as a form of intended
design, but the actuality of the change was seen through
the implementation of these designs in practice. So whilst
it may appear that the change was as intended, it consisted
of practices that emerged gradually. The emergence is not
simply a random process, but something that occurs to
achieve an intended vision where the detail of that designed
future is not fully understood at the time of the action. An

I. Allison, Y. Merali / Information and Software Technology 49 (2007) 668–681 679
actor’s commitment helps to focus their sensemaking for
sustained action [36].

6.2. Lessons for software engineering practice

6.2.1. Improvement through planned and adaptive change

The case data show that without running the SPI project
according to the theory, and without even following their
own plan, a number of successful changes were made that
over time were perceived to make a significant impact on
the capability of the group. The resultant products reflected
this improvement. The development of the products was
influenced by the process capability of the group, a conse-
quence of their actions from the previous software develop-
ment. The product strategy shaped the process
improvement by heightening the attention of the team on
certain aspects of their work and influencing the processes
as they were enacted.

It could be argued that the variance from SPI theory was
the reason for the lack of success on the actions identified
from the initial SPI meeting. However, despite the non-
conformity to traditional models, improvements occurred
in the process that benefited the organisation. This does
not invalidate the existing models, but it does show that
the process of improvement is more than simply following
a prescribed model.

Within the case the processes can be seen to have chan-
ged through a combination of planned and adaptive activ-
ity according to situated factors: ideas for planned changes
were triggered by a perceived product need, process
improvements were overcome by immediate demands for
product development, and on-going changes emerging
from the product development activity.

The process of improvement needs to account for reac-
tive, reflective changes if the processes are to be improved
not just extemporised. There is a need to promote sustain-
able development of the processes by integrating the expe-
riences of the developers, their learning through action,
and sharing that learning. The learning processes that
informed the SPI activity were ongoing, not simply deliv-
ered via training. Rather it was when a need was clearly
answered, often serendipitously, within a training event
that it was incorporated into the practice. Changes in the
process-in-use at InfoServ were seen to occur through dif-
ferent forms of innovation. Finding a way to facilitate this
level of inventiveness within the software process is an
important lesson from this case study. The theoretical
development provides a step towards that understanding
through the recognition of the situated nature of the
improvement.

6.2.2. Linking improvement in software products and process

to business objectives

The project at InfoServ was not coupled with the busi-
ness objectives. Indirectly the objectives were taken into
account through the software management team’s aware-
ness of the business priorities. However, to have identified
specific business goals or targets, such as reducing the time
to market, less variability of the product release against the
planned deadline, or reducing the cost of reuse, would have
enabled the tasks to be better aligned to these goals and the
benefits of the SPI project would have been evident to the
Board. Relevant business goals such as these are important
for what Bach [4] calls true process improvement: the adop-
tion of specific processes that happen to be in a maturity
model does not mean that the business will be any more
competitive. A customer-based perspective is the best
judgement for a commercial software organisation; if they
do not continue to pay the licence fee, or the level of com-
plaints rise, or the market share reduces then the com-
pany’s product quality is insufficient for its purpose. At
InfoServ, whilst there was no internal assessment of these
business targets, the sales continued to grow, customer
complaints dropped (as defined by the defect count and
help desk statistics), and their market leadership was
strengthened.

To support this more situated, market-oriented perspec-
tive, we need to develop an agile approach to SPI so that
the process improvement reflects the needs of the given
context [2]. An agile approach to SPI would be responsive
and flexible to local needs, encourage innovation in the
process, build SPI projects around those who are moti-
vated, encourage self-organising competent teams, and
promote sustainable development of the processes.

6.3. Lessons for qualitative software engineering research

The research approach adopted throughout has been
reflexive. The analysis has been interpreted to draw out
inferences beyond the actors’ own interpretations and from
what has been left unsaid; underlying, unconscious motives
and unforeseen consequences have been identified; the
actions and interpretations are critiqued; the hegemony
of software engineering is reconsidered to avoid ‘narrowing
down’ the conclusions to fit existing theory, and the
researchers’ own biases are recognised and challenged.

Relevance can be achieved by selecting appropriate top-
ics that are of interest to and develop outputs that can
influence practitioners [5]. The topic was identified directly
from the case scenario but also through the recognition of
the growing importance placed on process capability by
software organisations. SPI has been well researched but
the problems have not been resolved. Here the case is used
to identify a fresh understanding of process improvement.

To develop research that is useful to the software engi-
neering community the research was designed to be the-
ory-based and context-rich. Here we build on existing
research not in a theory-led fashion, but by ‘enfolding’
the literature in during the analysis. The theory developed
is based upon Structuration theory that is widely used in
the information systems literature. The case study
approach has allowed the capture of in-depth data, allow-
ing the subsequent use of ‘thick description’ in the case
analysis. The emergent framework and subsequent lessons

680 I. Allison, Y. Merali / Information and Software Technology 49 (2007) 668–681
for practitioners are designed to enable the communication
of the findings to other settings.

7. Conclusion

In the software engineering domain the processes to be
changed are often seen to be driven by an external reference
point, such as a maturity model, and theorised as occurring
consistently across all members of an organisation. Yet this
literature has been criticised because it fails to understand
the micro-dynamics of software practice. This paper there-
fore adds to a limited, but growing, body of work exploring
the organisational issues of SPI.

Here the on-going relationship between software process
improvement and product development is seen as a con-
stant and fundamental aspect of software practice. The lon-
gitudinal, processual case research helps to disentangle
facets involved in the emergence of the processes over time.
It has been shown that systems development and process
improvement is the outcome of a complex process of inter-
action and communication shaped by the context of the
actors. This interaction has been seen as occurring through
a structuring process. In contrast to the dominant deter-
ministic views in the SPI literature, the problems with
implementing SPI are understandable if we consider it to
be organisationally situated.

A theoretical model is used, drawing on the broader
organisational literature, which proposes that the change
is not linear through time, nor is it uniform across all actors
or all tasks, and that it cannot always be pre-planned or
foreseen. The analytical framework provided a useful lens
through which the process of change has been reviewed
as occurring through a structuring process. The analysis
revealed how the changes occurred through a structuring
process, linking action with its context and the context with
the actions.

The dialectical hermeneutic analysis of this case has
demonstrated the complexity of the changes that are
involved in the improvement of software processes. The
changes were shown to emerge through the reflexive nature
of the software developers, shaped by the context and tra-
ditions of the organisation. The changes incorporated
planned, improvised and adaptive actions of the developers
– so the process changes through anticipated and unantic-
ipated outcomes of the reflexive actions of the actors. Sec-
ond, emergence happens at an organisational level. The
context shifts through the outcomes of the actions. The sit-
uated practice of the individual becomes the process-in-use,
which forms the norms that shape the on-going practice.
As these practices become routinised they become estab-
lished as the espoused process, changing the values and
knowledge of the organisation. It is therefore necessary
to understand the changing theory-in-use by studying the
process changes as they occur.

The paper therefore makes significant contributions to
software engineering theory and practice by: revealing the
nature of SPI activity within a packaged software organisa-
tion; developing a theory of SPI as a form of emergent
change adding to recent developments in the SPI field;
and extending existing qualitative research methods by
elaborating on the previous use of a critical interpretive
strategy. This perspective has been incorporated into a the-
oretical framework that highlights the intertwining between
software development and process improvement. The
framework provides a lens through which other cases can
be analysed. It is, however, necessary to further evaluate
the framework. From this theoretical perspective it is antic-
ipated that a more agile view of SPI is required if organisa-
tions are to leverage the emergent nature of the process
improvement activity.

References

[1] I. Aaen, J. Arent, L. Mathiassen, O. Ngwenyam, Mapping SPI ideas
and practices, in: L. Mathiassen, J. Pries-Heje, O. Ngwenyama
(Eds.), Improving Software Organizations, Addison-Wesley, Upper
Saddle River, NJ, 2002, pp. 23–46.

[2] I. Allison, Towards an agile approach to Software Process Improve-
ment: addressing the changing needs of software products, Commu-
nications of the IIMA 5 (1) (2005) 67–76.

[3] I. Allison, Y. Merali, Software process improvement: towards an
emergent perspective, in: M. Levi, A. Martin, C. Schweighart (Eds.),
Proceedings of 8th UKAIS Conference, University of Warwick, 9–11
April, 2003.

[4] J. Bach, The Immaturity of the CMM, American Programmer 7 (9)
(1994) 13–18.

[5] I. Benbasat, R.W. Zmud, Empirical research in information systems:
the practice of relevance, MIS Quarterly 23 (1) (1999) 3–16.

[6] T.B. Bollinger, C. McGowan, A critical look at software capability
evaluations, IEEE Software 8 (4) (1991) 25–41.

[7] P. Cassell, The Giddens Reader, Macmillan Press, Basingstoke, 1993.
[8] C.U. Ciborra, A theory of information systems based on improvisa-

tion, in: W.L. Currie, R. Galliers (Eds.), Rethinking Management
Information Systems, Oxford University Press, Oxford, 1999, pp.
136–155.

[9] R. Conradi, A. Fugetta, Improving software process improvement,
IEEE Software 19 (4) (2002) 92–99.

[10] K.M. Eisenhardt, Building theories from case study research,
Academy of Management Review 14 (4) (1989) 532–550.

[11] R. Fincham, Narratives of success and failure in systems develop-
ment, British Journal of Management 13 (2002) 1–14.

[12] A. Giddens, The Constitution of Society, Polity Press, Cambridge,
1984.

[13] B.H. Hansen, J. Rose, G. Tjornehoj, Prescription, description, reflec-
tion: the shape of the software process improvement field, International
Journal of Information Management 24 (2004) 457–472.

[14] J. Herbselb, D. Zubrow, D. Goldenson, W. Hayes, M. Paulk,
Software quality and the capability maturity model, Communications
of the ACM 40 (6) (1997) 30–40.

[15] J.A. Holstein, J.F. Gubrium, Active interviewing, in: D. Silverman
(Ed.), Qualitative Research: Theory Method and Practice, Sage
Publications, London, 1997, pp. 113–129.

[16] D.M. Hosking, N. Anderson, Organizational Change and Innova-
tion: Psychological Perspectives and Practices in Europe, Routledge,
London, 1992.

[17] W.S. Humphrey, Managing the Software Process, Addison-Wesley,
Reading, MA, 1989.

[18] D.L. Jorgensen, Participant Observation, Sage Publications Inc,
Newbury Park, CA, 1989.

[19] H.K. Klein, M.D. Myers, A set of principles for conducting and
evaluating interpretive field studies in information systems, MIS
Quarterly 23 (1) (1999) 67–94.

I. Allison, Y. Merali / Information and Software Technology 49 (2007) 668–681 681
[20] L.Mathiassen, Reflective Systems Development (1998), Online at
http://www.cs.auc.dk/~larsm/rsd.html, 2006 (accessed 05.03.06).

[21] B. McFeeley, IDEAL: A User’s Guide For Software Process
Improvement (CMU/SEI-96-HB-001), Software Engineering Insti-
tute/ Carnegie Mellon University, Pittsburgh, PA, 1996.

[22] M.B. Miles, A.M. Huberman, Qualitative Data Analysis: An
Expanded Sourcebook, 2nd ed., Sage Publications, Inc., Thousand
Oaks, CA, 1994.

[23] M.D. Myers, Dialectical hermeneutics: a theoretical framework for
the implementation of information systems, Information Systems
Journal 5 (1) (1994) 51–70.

[24] J. Nandhakumar, M. Jones, Too close for comfort? Distance and
engagement in interpretive information systems research, Information
Systems Journal 7 (2) (1997) 109–131.

[25] W.J. Orlikowski, CASE tools as organizational change: investigating
incremental and radical changes in systems development, MIS
Quarterly 17 (3) (1993) 309–340.

[26] D.E. Perry, N.A. Staudenmayer, L.G. Votta, People, organizations,
and process improvement, IEEE Software 11 (4) (1994) 36–45.

[27] A.M. Pettigrew, Longitudinal field research on change: theory and
practice, Organizational Science 1 (3) (1990) 267–292.

[28] A.M. Pettigrew, What is processual analysis? Scandinavian Journal of
Management 13 (4) (1997) 337–348.
[29] T. Ravichandran, A. Rai, Quality management in systems develop-
ment: an organizational system perspective, MIS Quarterly 24 (3)
(2000) 381–415.

[30] P.M. Senge, The puzzles and paradoxes of how living companies
create wealth: why single-valued objective functions are not quite
enough, in: M. Beer, N. Nohria (Eds.), Breaking the Code of Change,
Harvard Business School Press, Boston, MA, 2000, pp. 59–82.

[31] E.B. Swanson, Information systems innovation among organizations,
Management Science 40 (9) (1994) 1069–1092.

[32] K. Thompson, P. McParland, Software process maturity (SPM) and
the information systems developer, Information and Software Tech-
nology 35 (6/7) (1993) 331–338.

[33] D. Truex, R. Baskerville, H. Klein, Growing systems in emergent
organizations, Communications of the ACM 42 (6) (1999)
117–123.

[34] D. Truex, R. Baskerville, J. Travis, Amethodical systems develop-
ment: the deferred meaning of systems development methods,
Accounting, Management, and Information Technology 10 (2000)
53–79.

[35] R. Van Solingen, Measuring the ROI of software process improve-
ment, IEEE Software 21 (2004) 32–38.

[36] K.E. Weick, Sensemaking in Organizations, Sage Publications Inc,
Thousand Oaks, CA, 1995.

http://www.cs.auc.dk/~larsm/rsd.html

	Software process improvement as emergent change: A structurational analysis
	Introduction
	Software process improvement research
	SPI as situated change: a structurational perspective
	Research methodology
	Case strategy
	Case selection
	Data collection
	Data analysis and interpretation

	SPI at InfoServ: a chronological analysis
	Chronlogical analysis
	Period 1: historical context
	Case history period 2: formalisation of the software process
	Contextual shaping of software change
	Emergence of process and products
	Process of change

	Case history period 3: software process improvement
	Contextual shaping of software change
	Emergence of process and products
	Process of change

	Evaluation of the software process improvement project outcomes

	Discussion: lessons for theory, practice and research
	Lessons for software process theory
	Insights from using the structurational perspective
	Process metamorphosis: change through situated action
	Emergence of the process: the product-process dynamic

	Lessons for software engineering practice
	Improvement through planned and adaptive change
	Linking improvement in software products and process to business objectives

	Lessons for qualitative software engineering research

	Conclusion
	References

