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Abstract—This paper reports the results of a study on the impact of a type of side

effect (SE) upon program comprehension. We applied a crossover design on

different tests involving fragments of C code that include increment and decrement

operators. Each test had an SE version and a side-effect-free (SEF) counterpart.

The variables measured in the treatments were the number of correct answers

and the time spent in answering. The results show that the side-effect operators

considered significantly reduce performance in comprehension-related tasks,

providing empirical justification for the belief that side effects are harmful.

Index Terms—Side-effect-free programs, crossover designs, program

comprehension.
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1 INTRODUCTION

A side effect is any change in program state that occurs as a by-
product of the evaluation of an expression. Side effects are often
thought to impede program comprehension, although hitherto,
this appears to be a belief that has not been examined empirically.
This paper is concerned with a type of side effect in C programs
and their effect upon program comprehension.

The C programming language standard defines side effects in a
very broad manner ([9, Section 5.1.2.3]): “Accessing a volatile
object, modifying an object, modifying a file, or calling a function
that does any of those operations are all side effects, which are
changes in the state of the execution environment. Evaluation of an
expression may produce side effects.” In this paper, we adopt a
more restricted view, considering only auto-increment and auto-
decrement operators. A side effect will be taken to be: “Any change
in the value of a variable which occurs when an expression is
evaluated, other than an assignment expression-statement.”

A side-effect-free program is one which contains no side effects.
This defines side effects to occur in expressions like “x++,” “- -v,”
“(x+1,y=x+3),” and “x==2 && y=2*x.” Assignment statements
in C are assignment expression-statements. To be side-effect free,
assignment expressions are allowed to change only the value of the
variable on the lefthand side of the assignment; the righthand side
must not change the value of any variables.

Our basic research enquiry is centered around the question:
“Are side-effect-free programs more understandable than pro-
grams with side-effects?” This paper uses a side effect removal
algorithm, LinSERT [6], to produce side-effect-free versions of C
program fragments which contain side effects. The tool is used to

avoid the potential source of bias inherent in human selection of
side-effect-free programs. LinSERT’s algorithm was designed to
remove side effects, not to produce readable code. Indeed, there
are cases when, subjectively, one could argue that the results
obtained by LinSERT are not ideally readable. However, this
observation only serves to strengthen the results obtained.

1.1 Related Work

Side effects are widely believed to inhibit program understanding,
with a consequent detrimental impact upon software maintenance
and evolution. For example, Kernighan and Pike [10] suggest that
side effects should only be used in very special situations, where
well-understood side effect idioms are employed to improve a
program’s performance. Other authors, for example, [1], advise
caution, suggesting that the programmer should carefully consider
“the tradeoff between increased speed and decreased maintain-
ability that results when embedded assignments are used in
artificial places.”

The study of side effects is related to studies concerning the
effects on program comprehension of the syntactic presentation of
the program code, which in turn affects readability. Miara et al.
[15] showed that indentation has a significant effect on compre-
hension for both experienced and novice programmers. Oman and
Cook [19] studied the effect on program comprehension of source
code formatting and commenting. Related to the issue of studying
a language construct, we may be in a similar situation to other
assertions about potential dangers of some practices. The first of
the “considered harmful” saga began with the seminal work of
Dijkstra [4], which spun a new and fresh approach to program-
ming, as well as a decade of fruitful discussions. The type of side
effects that we are dealing with here can be also labeled as one in
the list of activities suggested “harmful.” In some cases, the
practices have the form of a “taboo” [14]. The activity of reading
code plays a basic role in the development and maintenance
activities; therefore, any improvement in the procedures, methods,
languages, and tools for increasing the comprehensibility of the
code will have direct effects on the progress of the software
building activities [7].

In the rest of the paper, we present the details of the experiment
and its analysis. In Section 2, we describe the experiment, the
design, hypotheses, and other elements. Section 3 presents the
analysis of the data. Finally, Section 4 states the conclusions.

2 FORMAL EXPERIMENT

2.1 Crossover Designs for the Experiment

We considered two types of programs, SEF versus SE programs,
and we planned a parallel study between two groups. In order to
have the two groups getting both treatments (SEF and SE), we
performed a crossover design in which the two groups received
both treatments but in different order. Applying just one treatment
for each subject would have the drawback that the variation of the
measurements between subjects could distort the true effect of the
treatment. By taking measures of each individual in both
treatments, we avoid this variability, although we may incur other
problems, such as detecting other effects apart from the treatment.

Crossover designs, in which each subject receives a sequence of
treatments (repeated measures), are a well-known type of
experimental design, used in clinical and medical studies [5], [8],
[12]. The most widely used design of this type is the two treatment,
two-period (two-round) crossover design. This structure repre-
sents, for instance, first, the administration of two drugs to the two
groups and then, after withdrawal, the reverse application of the
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treatments. However, these well-known designs present several
problems, both in their use of terminology and in their analysis of

data [3].

2.2 Factors and Dependent Variables

We will examine the existence of the usual effects of a crossover

design: the treatment effects (TREAT), the sequence or order of
application of the treatments (GROUP), the effects of the period (or

round) of application (PERIOD), and the residual effect of the first

period (or round) into the second (CARRYOVER). The group or
sequence effect, GROUP, measures the residual difference between

the two sequences of application: 1) SEF then SE; 2) SE then SEF.
The period effect, PERIOD, measures the existence of differences

due to the two rounds of treatment (due to learning, maturation, or

other causes). The paramenter treatment, TREAT, is the direct
effect of applying SEF or SE. The carryover effect, CARRYOVER, is

the residual effect of applying the treatment after the first period.
This effect has to be included in the equations modeling the second

period. In clinical studies, it represents the residual effects of the

treatment of the first period which persist into the second period,
contaminating the effects of the second treatment. For the sake of

clarity, PERIOD effects are not considered as CARRYOVER effects,
although, in several texts, both effects are named as residual or

carryover effects, indistinctly.
We designed two separate sets of questions (set of questions A

for Tests 1 and 3, set of questions B for Test 2) with a different level

of difficulty. The dependent variables that are measured as
response to the questions are the number of correct answers

(SCORE) and the time spent in answering them (TIME).
Fig. 1 depicts the crossover designs used in the three days. In

each crossover design, the effects due to the treatment variable
TREAT (SEF versus SE) are not confounded: neither with the

effects of GROUP nor with the PERIOD effect (maturation or

learning effects). Therefore, we can measure the GROUP effects
(order of presentation) and the learning effects. However, as

mentioned above, there is confusion with some interactions. The
crossover design for the second day is similar to that of the first

day, but the order of the tests was reversed in each group and used

the set of questions B.

2.3 Experimental Procedure

The material prepared, the two different sets of questions having
each one the two aspects SEF-SE, was delivered on two different

days. On the first day, Test 1 (with the set of questions A) was
carried out, and Test 2 (with the set of questions B) was completed

on the second day (one week later). On each day, the sequence of

treatments was presented to the two different groups of students
and the experimental design corresponds to a crossover design of
repeated measures in the dependent variables. There are two
options in the treatment, SEF or SE, implying two sequences of
treatments and two periods of treatment (each day). In the
repetition of the experiment with experienced subjects (Test 3),
only the material corresponding to the set of questions A was
delivered.

The obvious problem with this design (in the current setting) is
that, by taking the two versions of the experimental material, using
the same subjects on the same day consecutively, we could incur
the risk that, in the second period, some effects of the first period
could remain. Either after the first version of the test, the subjects
could perform better because they are more acquainted with the
process or they could perform worse due to fatigue or other
nuisance factors. We have not investigated in detail the psycho-
logical processes that could be involved in this situation. Instead,
we analyzed the possibility of the existence of design effects, as
suggested by the experimental design literature [3]. The expected
duration of the tests was low (less than one hour) and the existence
of those effects should not be overestimated.

2.4 Materials and Threats to the Experiment

The materials provided were an initial exam for classifying the
ability of the subjects and the two actual set of questions A (simple
C fragments) and B (more complex programs) (see Fig. 2 for some
samples and the companion Web page for the full documents),
with two versions each (SEF and SE), delivered in the two days,
with students of the third and fourth year of the BS degree in
computer science as experimental subjects. The subjects were split
into two groups. A second set of experienced professionals took
only the first set of questions A. The level of expertise in the
experienced group was mixed; it was split into two subgroups
with similar characteristics, using self-assessment.

The threats to the experiment were carefully considered by
creating groups with equal skills, by measuring the possible
learning effects (PERIOD), and by taking into account the effects of
the CARRYOVER from the first period into the second. The issues
of history, plagiarism, and generalization of the results were also
considered in the design.

2.5 Hypotheses

The statistical hypotheses derived from the general question stated
in the introduction which are explored here are:

1. Null hypotheses for the treatments in the tests: There is no
significant difference between the means of the SCOREs
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Fig. 1. Layout of the complete experiment. Each of the three bold-edged zones is a test formulated as a crossover design.



obtained in Test 1, using the set of questions A, with
respect to the effects of the two levels of the treatment: SEF
and SE versions (H0ÿT1ÿSCOÿTREAT). The same null hypoth-
esis is stated for the TIMEs (H0ÿT1ÿTIMÿTREAT). Similarly,
for Test 2, we test the null hypotheses H0ÿT2ÿSCOÿTREAT

and H0ÿT2ÿTIMÿTREAT.
2. Null hypotheses for the periods and for the groups: We

state that there is no significant difference between the

means of the SCOREs obtained in the tests with respect to

the two different PERIODs of treatment (H0ÿT1ÿSCOÿPERIOD)

and (H0ÿT2ÿSCOÿPERIOD) and with respect to the two

GROUPs (equivalent to testing the CARRYOVER effects,

H0ÿT1ÿSCOÿGROUP, and H0ÿT2ÿSCOÿGROUP). The same null

hypotheses are stated for the TIMEs in both tests

(H0ÿT1ÿTIMÿPERIOD, H0ÿT2ÿTIMÿPERIOD, H0ÿT1ÿTIMÿGROUP,

and H0ÿT2ÿTIMÿGROUP).

Test 3 has the corresponding set of hypotheses.

2.6 Power Analysis and Sample Size

As prescribed in experimental design, the identification of the

sample size, the effect size, and the desired power is a requirement

before conducting the experiment [11], [13], [17]. We performed an

“a priori” power analysis, exploring the relationships among the

sample size (n), the effect size (f), the significance level (�), and the

desired power (1ÿ �) since we could not change, for instance, the

sample size n.
We have to remember that � is the probability of committing a

type I error. That is, to reject, incorrectly, the null hypothesis when

it is true. As the process of transforming SE into SEF is performed

automatically, the cost that we would incur when committing a

type I error can be safely downsized (no human cost is involved in

the transformation process). The type I error means to assume that

SEF and SE programs have different effects when they actually

have not. When automation is unavailable, the cost involved is the

additional effort, if there is any, of side-effect-free coding. On the

other hand, committing a type II error, that is, to accept,
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incorrectly, the null hypothesis when it is false, would imply that
we will be wasting human effort as we would be using the
SE versions instead of taking advantage of their SEF counterparts.
The commission of a type II error, represented by �, means to
assume that there are not differences between SEF and SE when in
fact there are.

In the “a priori” power analysis, we followed the approach of
Stevens ([20]). One of our constraints was the absence of previous
data about the effect size and the second one was that our sample
size was fixed (no more than 18 subjects); therefore, we explored
the combinations of n, Cohen’s f [2], � (set at 0.1), and 1ÿ � (set at
0.8) that could render the experiment valid. A more precise
analysis was carried out in the “a posteriori” analysis, once we had
all the actual data, by following the approach of Yue and Roach
[22], who provide a formula for computing n. The final results
provide values for n ranging from 1 to 3, with extreme values
around 12, which are below the number of subjects we used.
Therefore, the results of the tests can be statistically trusted,
according to both approaches to power analysis.

3 STATISTICAL ANALYSIS

By performing an analysis of repeated measures in the factors
TREAT (direct effect), PERIOD and GROUP ([18, pp. 435-440]), we
obtained the results summarized in Table 1, using the F statistic
(computed with � ¼ 0:1), which has high F-values in the SCORE
variables of the treatments. Other variables that are presented are
the significance of the F-test (Sig.), the effect size, �2

p (computed in
SPSS), and the observed power of the test. Fig. 3 shows the
comparative results obtained in the three experimental tests.

The null hypotheses for Test 1 that are not rejected are
H0ÿT1ÿSCOÿGROUP (F = 0.729, p = 0.406), H0ÿT1ÿSCOÿPERIOD, and
H0ÿT1ÿTIMÿGROUP (see Table 1). In the variable TIME, there are

learning effects due to PERIOD (H0ÿT1ÿTIMÿPERIOD is rejected with

F = 8.096, p = 0.012), implying that, once the experiment began,

some kind of “learning” or ability in the subjects was increased

and affected the time measured in the second period, given the

syntactical differences of the versions. The treatment has sig-

nificant results for SCORE and TIME (both H0ÿT1ÿSCOÿTREAT and

H0ÿT1ÿTIMÿTREAT are rejected). Therefore, the conclusion is that the

use of SEF has a clear impact on the SCORE.
For Test 2 (see Figs. 3c and 3d), the situation remains similar to

Test 1: There is a statistically significant difference between the two

treatments SEF and SE with respect to both SCORE and TIME. The

treatment is acting directly on SCORE (H0ÿT2ÿSCOÿTREAT is rejected

with F = 34.892, p = 0.000) as there are no residual effects detected.

There are residual effects in PERIOD (H0ÿT2ÿTIMÿPERIOD is rejected)

with respect to the TIME variable.
The set of questions A were repeated with more experienced

people in Test 3 (see Figs. 3e and 3f). This group did not receive

any previous training about the experimental procedures. With the

values reported in Table 1, we can make the following inferences:

1. There are neither GROUP (or CARRYOVER) effects in
SCORE nor in TIME.

2. There are no PERIOD effects in SCORE (F = 0.267, p =
0.614), but there are PERIOD effects in the response
variable TIME (F = 7.163, p = 0.019).

3. There are clear effects of the treatment on the variable
SCORE and the null hypothesis of no effects is rejected.
The null hypothesis for TIME is also rejected, but there are
learning effects.

The conclusion is that the behavior of the experienced subjects

is similar to that of the more inexperienced and the SEF code was

more understandable than the corresponding SE counterparts.

3.1 Discussion

We have rejected the null hypothesis for the nonexistence of effects

of the treatment SEF versus SE. In the analysis, we have examined

the existence of the different residual effects of the crossover

designs. We did not find any carryover effects of the crossover. The

boxplots of Fig. 3 graphically show the differences in the treatment

effects in the three settings, in both SCORE and TIME.

However, an unexpected effect that was found was that there is

a recurrent period effect in the TIME measure in the crossover

design of each day and in the repetition. In clinical or drug studies,

similar effects are justified by the action of the drug under test. In

our case, it is unknown what the mechanism is (possibly

psychological or some kind of “concentration” in the task) that

causes the times spent in the second period to be affected by the

activities of the first one. The study of this question lies beyond the

scope of this article.

4 CONCLUSIONS AND FUTURE WORK

The purpose of this research was to study the potential benefits of

using side-effect-free programs in place of side-effecting counter-

parts. We designed two different sets of questions which were

presented to the experimental subjects in two versions. The first

one contained elementary questions about SE programs. We have

observed more correct answers and in less time in the SEF version.

The set of questions B had greater complexity than the set of

questions A, but we have observed similar results. The repetition

of Test 1 corroborated the initial conclusions. The transformation of

the SE code into SEF code was performed automatically by means

of the LinSERT tool, but there remains the question, to be explored

in the future, of what the differences would be if the SE programs

had been transformed manually.
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TABLE 1
ANOVA Results for Test 1, Test 2, and Test 3



This work does not try to add a new taboo to the software

engineering community [14], but to add sound conclusions, based

on solid empirical practice [21], to the list of heuristics which tend

to reduce the complexity of software [16]. It is noteworthy to see

how such a simple program fragment can have strong effects on

comprehension. The results show that there is a clear and

significant degradation of performance for these limited (intrapro-

cedural) forms of side effect. More complex forms of side effects,

such as interprocedural side effects, may produce similar (or

worse) degradation in performance, but this remains a topic for

future investigation. A side lesson is that the constructs, or

building blocks, used when defining a new programming

language should be tested. From the experimental viewpoint, the

cost involved in assessing the use of a new language by a

community of programmers is low compared to the benefits

obtained by avoiding the risky effects of some programming

practices.
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Comments on “The Confounding Effect
of Class Size on the Validity of

Object-Oriented Metrics”

William M. Evanco

Abstract—It has been proposed that size should be taken into account as a

confounding variable when validating object-oriented metrics. We take issue with

this perspective since the ability to measure size does not temporally precede the

ability to measure many of the object-oriented metrics that have been proposed.

Hence, the condition that a confounding variable must occur causally prior to

another explanatory variable is not met. In addition, when specifying multivariate

models of defects that incorporate object-oriented metrics, entering size as an

explanatory variable may result in misspecifed models that lack internal

consistency. Examples are given where this misspecification occurs.

Index Terms—Object-oriented metrics, software defects, defect-proneness,

statistical modeling.

æ

1 INTRODUCTION

IN [1], El Emam et al. raise issues regarding the validation of object-
oriented metrics. The claim is made that to properly validate these
metrics, we must statistically control for size since size is often
correlated with the metrics. We wish to dispute this claim.

Software size, for example as measured by source lines of code,

is one of the earliest measures of software characteristics. It is a

metric that is easily collected during compile time and is well

defined for most programming languages [12]. As such, some

analysts regard it as sacrosanct and a benchmark against which all

other metrics must be compared. The issues that El Emam et al.

have raised with regard to object-oriented metrics are not new,

having been posed in the past for metrics characterizing

procedural languages. For example, many of the software

characteristic measures, such as cyclomatic complexity and

Halstead volume, have been shown to be highly correlated with

source lines of code [6].
In a similar vein, El Emam et al. examine the Chidamber and

Kemerer object-oriented metrics [3] as well as a subset of the

Lorenz and Kidd metrics [11] on the basis of a large C++

telecommunications system. They demonstrate, that many of the

OO metrics having a significant relationship to defect-proneness

(see [1, Fig. 3]) also have a significant association with source lines

of code as measured by the Spearman correlation coefficient (see

[1, Table 4]). A C++ class is regarded as defect-prone if it exhibits

one or more defects during the operational phase. They point out

that “studies to date have relied exclusively on univariate analysis

to test the hypothesis that the product metrics are associated with

fault-proneness or the number of faults.” According to them, if

software size is regarded as a confounding effect, then this

measure must enter into any statistical analysis looking at the

impact of some object-oriented metric on fault-proneness. After

size is entered as a confounding variable, if the object-oriented

metric has a parameter value that is statistically significant, then, in

their view, the metric is a “valid” object-oriented measure of

defect-proneness.
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