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Introduction

Much research in cognitive science, and in particular arti®cial intelligence
(AI) and arti®cial life (ALife), has since the mid-1980s been devoted to the
study of so-called autonomous agents. These are typically robotic systems
situated in some environment and interacting with it using sensors and
motors. Such systems are often self-organizing in the sense that they
arti®cially learn, develop, and evolve in interaction with their environ-
ments, typically using computational learning techniques, such as arti®cial
neural networks or evolutionary algorithms. Due to the biological inspira-
tion and motivation underlying much of this research (cf. Sharkey and
Ziemke 1998), autonomous agents are often referred to as `arti®cial
organisms', `arti®cial life', `animats' (short for `arti®cial animals') (Wilson
1985), `creatures' (Brooks 1990), or `biorobots' (Ziemke and Sharkey
1998). These terms do not necessarily all mean exactly the same; some of
them refer to physical robots only, whereas others include simple soft-
ware simulations. But the terms all express the view that the mechanisms
referred to are substantially di�erent from conventional artifacts and that
to some degree they are `life-like' in that they share some of the properties
of living organisms. Throughout this article this class of systems will
be referred to as `arti®cial organisms' or `autonomous agents/robots'
interchangeably.
The key issue addressed in this article concerns the semiotic status

and relevance of such arti®cial organisms. The question is whether and to
what extent they are autonomous and capable of semiosis. This is not
straightforward since semiosis is often considered to necessarily involve
living organisms. Morris (1946), for example, de®nes semiosis as `a sign-
process, that is, a process in which something is a sign to some organism'.
Similarly, Jakob von UexkuÈ ll1 considered signs to be `of prime importance
in all aspects of life processes' (T. von UexkuÈ ll 1992), and made a clear
distinction between organisms, which as autonomous subjects respond to
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signs according to their own speci®c energy, and inorganic mechanisms,
which lack that energy, and thus remain heteronomous (for a more detailed
discussion see the following section).

Mechanisms can, of course, be involved in sign processes, in particular
computers and computer programs.2 They are, however, typically con-
sidered to lack `®rst hand semantics', i.e., `intrinsic meaning' (Harnad
1990) or `contents for the machine' (Rylatt et al. 1998), and to derive their
semantics from the fact that they are programmed, observed, and/or
interpreted by humans. Andersen et al. (1997) have argued in detail
that computers/programs, when it comes to semiosis, fall somewhere in
between humans and conventional mechanisms, but that they ultimately
derive their semiotic `capacities' from the interpretation of their designers
and users. The major di�erence, they argued, was that living systems are
autopoietic, i.e., self-creating and -maintaining, whereas machines are not
(this issue will be discussed in detail later). Hence, their `tentative
conclusion' was that

_ the di�erence between human and machine semiosis may not reside in the

particular nature of any of them. Rather, it may consist in the condition that
machine semiosis presupposes human semiosis and the genesis of the former can
be explained by the latter. (Andersen et al. 1997: 569)

Cognitive science and AI research has, in fact, since its beginning in the
1950s been dominated by the so-called computer metaphor for mind,
i.e., the view that the human mind is very much like a computer program.
This has led decades of traditional AI research to fall into the internalist
trap (Sharkey and Jackson 1994) of focusing solely on disembodied
computer programs and internal representations supposed to `mirror' a
pre-given external reality (cf. Varela et al. 1991), while forgetting about the
need for grounding and embedding these in the world they were actually
supposed to represent. Hence, for cognitive scientists the use of embodied,
situated agents o�ers an alternative, bottom-up approach to the study of
intelligent behavior in general, and internal representation and sign usage
in particular.

Arti®cial organisms, unlike computer programs equipped with robotic
capacities of sensing and moving, do interact with their environments, and
they appear to do so independently of interpretation through external
users or observers. Moreover, such systems are often self-organizing,
i.e., they `learn', `develop', and `evolve' in interaction with their environ-
ments, often attempting tomimic biological processes. Several examples of
this type of self-organization in arti®cial organisms will be discussed
throughout this article. The sign processes and functional circles by
which arti®cial organisms interact with their environments are, therefore,

702 T. Ziemke and N. E. Sharkey



typically self-organized, i.e., the result of adaptation in interaction with an
environment, rather than programmed or built-in by a designer, and thus
often not even interpretable to humans (cf. Prem 1995). Hence, unlike
computer programs, their genesis typically cannot be explained with
reference to human design and interpretation alone. Thus, it has been
argued that autonomous agents are, at least in theory, capable of pos-
sessing `®rst hand semantics' (e.g., Harnad 1990; Brooks 1991b; Franklin
1997; Bickhard 1998). Their semiotic and epistemological interest, it is
held, arises because unlike conventional machines, their use of signs and
representations is self-organized, and thus, as for living systems, largely
private and typically only meaningful to themselves. Many researchers,
therefore, no longer draw a strict line between animals and autonomous
robots. Prem (1998), for example, refers to both categories as `embodied
autonomous systems', and does not at all distinguish between living and
non-living in his discussion of semiosis in such systems.We have previously
discussed this distinction in an examination of the biological and psycho-
logical foundations of modern autonomous robotics research (Sharkey
and Ziemke 1998). In that article we investigated di�erences between the
`embodiment' of living and non-living systems, and their implications
for the possibility of cognitive processes in artifacts. In this article the
issues are further analyzed with reference to Jakob von UexkuÈ ll's theory
of meaning.
As a result of the new orientation towards agent-environment inter-

action and biological inspiration, the work of Jakob von UexkuÈ ll by
some researchers has been recognized as relevant to the study of robotics,
ALife, and embodied cognition. Examples are the works of Brooks
(1986a, 1991a); Emmeche (1990, 1992, this issue); Prem (1996, 1997, 1998);
Clark (1997); and our own recent work (Sharkey and Ziemke 1998,
2000; Ziemke 1999b). However, a detailed analysis and discussion of
UexkuÈ ll's theory, its relation to and implications for recent theories
in AI and cognitive science, is still lacking; hence, this is what we aim to
provide in this article. We believe that UexkuÈ ll's theory can contribute
signi®cantly to the ®eld by deepening the understanding of the use of signs
and representations in living beings and clarifying the possibilities and
limitations of autonomy and semiosis in arti®cial organisms.
The scene is set in the next section in a discussion of the contrasting

positions of Jacques Loeb and Jakob von UexkuÈ ll on the di�erences
between organisms and mechanisms. This leads into a discussion of
attempts by AI to endow mechanisms with some of the mental and
behavioral capacities of living organisms. Moreover, the history of dif-
ferent approaches to AI is discussed with an emphasis on the connections
to issues in semiotics, and in particular the relation to UexkuÈ ll's work.
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The following section then takes this a step further by detailing the issues
involved in the self-organization of arti®cial organisms through adaptation
of sign processes using computational evolution and learning techniques.
Then there will be a discussion of how arti®cial organisms interact with
objects and other agents in their environment by means of sign processes,
and how this distinguishes them from the conventional mechanisms
discussed by UexkuÈ ll. In the penultimate section UexkuÈ ll's theory is
compared to the closely related work of Maturana and Varela on the
biology of cognition. Using both these theoretical frameworks, we further
examine the role of the living body in the use of signs/representations.
Finally, we consider the implications of not having a living body for
the possibility and limitations of autonomy and semiosis in arti®cial
organisms.

Organisms versus mechanisms

Many of the ideas discussed in modern autonomous robotics and ALife
research can already be found in biological and psychological discus-
sions from the late nineteenth and early twentieth century. Jacques Loeb
(1859±1924) and Jakob von UexkuÈ ll (1864±1944) represented the dis-
content felt by a number of biologists about anthropomorphic explana-
tions and they both were in¯uential in developing a biological basis for
the study of animal behavior, although in very di�erent ways. After
Darwin's (1859) book, The Origin of Species, comparative psychology
had attempted to ®nd a universal key which resulted in the breaking
down of the distinction between humans and other species. This led to the
attribution of human-like mental qualities to other vertebrates and even
invertebrates. In stark contrast to this anthropomorphic approach, Loeb
developed scienti®cally testable mechanistic theories about the interaction
of organism and environment in the creation of behavior. UexkuÈ ll, on the
other hand, theorized about organism-environment interaction in terms of
subjective perceptual and e�ector worlds, and thus contradicted anthro-
pomorphic as well as purely mechanistic explanations. What united Loeb
and UexkuÈ ll was the goal to ®nd a way to explain the behavioral unity of
organisms, and their environmental embedding, based on their biology;
in their individual approaches, however, they di�ered substantially.

Mechanistic theories

Loeb (1918) derived his theory of tropisms (directed movement towards
or away from stimuli) by drawing lessons from the earlier scienti®c study
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of plants where considerable progress had been made on directed move-
ment through geotropism (movement with respect to gravity) (Knight
1806) and phototropism (movement with respect to light) (De Candolle
1832). Strasburger (1868) really set the ball rolling for animal behavior in
a study of the movements of unicellular organisms towards light which
he labelled phototaxis to distinguish the locomotory reactions of freely
moving organisms from the phototropic reactions of sedentary plants. The
study of chemotaxis came soon afterwards (e.g., Pfe�er 1883) to describe
attractions of organisms to chemicals. Although Loeb wanted to explain
the behavior of higher organisms, thosewith nervous systems, he continued
to use the term tropism rather than taxis to stress what he saw as the
fundamental identity of the curvature movements of plants and the
locomotion of animals in terms of forced movement.

Umwelt and counterworld

UexkuÈ ll strongly criticized the purely mechanistic doctrine `that all living
beings are mere machines' (UexkuÈ ll 1957) in general, and Loeb's work
in particular (e.g., UexkuÈ ll 1982), for the reason that it overlooked the
organism's subjective nature, which integrates the organism's components
into a purposeful whole. Thus, although his view is to some degree
compatible with Loeb's idea of the organism as an integrated unit of
components interacting in solidarity among themselves and with the
environment, he di�ered from Loeb in suggesting a non-anthropomorphic
psychology in which subjectivity acts as an integrative mechanism for
agent-environment coherence.

The mechanists have pieced together the sensory and motor organs of animals, like

so many parts of a machine, ignoring their real functions of perceiving and acting,
and have gone on to mechanize man himself. According to the behaviorists, man's
own sensations and will are mere appearance, to be considered, if at all, only as

disturbing static. But we who still hold that our sense organs serve our perceptions,
and our motor organs our actions, see in animals as well not only the mechanical
structure, but also the operator, who is built into their organs as we are into our
bodies. We no longer regard animals as mere machines, but as subjects whose

essential activity consists of perceiving and acting. We thus unlock the gates that
lead to other realms, for all that a subject perceives becomes his perceptual world
and all that he does, his e�ector world. Perceptual and e�ector worlds together

form a closed unit, the Umwelt. (UexkuÈ ll 1957: 6; ®rst emphasis added)

UexkuÈ ll (1957) used the now famous example of the tick to illustrate his
concept of Umwelt and his idea of the organism's embedding in its world

Worlds of robots and animals 705



through functional circles.3 It is three such functional circles in `well-
planned succession' which coordinate the interaction of the tick as a subject
(and meaning-utilizer) and a mammal as its object (and meaning-carrier):

(1) The tick typically hangs motionless on bush branches. When a
mammal passes by closely its skin glands carry perceptual meaning
for the tick: the perceptual signs (Merkzeichen) of butyric acid are
transformed into a perceptual cue (Merkmal ) which triggers e�ector
signs (Wirkzeichen) which are sent to the legs and make them let
go so the tick drops onto the mammal, which in turn triggers the
e�ector cue (Wirkmal ) of shock.

(2) The tactile cue of hitting the mammal's hair makes the tick move
around (to ®nd its host's skin).

(3) The sensation of the skin's heat triggers the tick's boring response
(to drink its host's blood).

UexkuÈ ll did not deny the physical/chemical nature of the organism's com-
ponents and processes, i.e., his view should not, as is sometimes done, be
considered vitalistic4 (cf. Emmeche 1990, this issue; Langthaler 1992). He
`admitted' that the tick exhibits `three successive re¯exes' each of which
is `elicited by objectively demonstrable physical or chemical stimuli'. But
he pointed out that the organism's components are forged together to
form a coherent whole, i.e., a subject, that acts as a behavioral entity
which, through functional embedding, forms a `systematic whole' with
its Umwelt.

We are not concerned with the chemical stimulus of butyric acid, any more than
with the mechanical stimulus (released by the hairs), or the temperature stimulus
of the skin. We are solely concerned with the fact that, out of the hundreds of

stimuli radiating from the qualities of the mammal's body, only three become
the bearers of receptor cues for the tick. _ What we are dealing with is not an
exchange of forces between two objects, but the relations between a living
subject and its object. _ The whole rich world around the tick shrinks and

changes into a scanty framework consisting, in essence, of three receptor cues
and three e�ector cues Ð her Umwelt. But the very poverty of this world guaran-
tees the unfailing certainty of her actions, and security is more important than

wealth. (UexkuÈ ll 1957: 11f.)

As T. von UexkuÈ ll (1997b) pointed out, the model of the functional circle
contains all the elements which are part of a sign process, and whose
interaction forms the unity of a semiosis: an organism is the subject
(or interpreter), certain environmental signals play the role of signs
(or interpretanda), and the organism's biological condition determines
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the behavioral disposition (or interpretant). The object (interpretatum), on
the other hand, can be harder to identify using common sign-theoretic
concepts, since for the organism, e.g., the tick, it does not necessarily exist
as an abstract entity, e.g., `a mammal', but might only have temporary
existence as di�erent semiotic objects and the bearer of varying meanings,
e.g., three di�erent ones in the tick's case. Hence, UexkuÈ ll sometimes
referred to the sign processes in the nervous system as a `mirrored world'
(UexkuÈ ll 1985; cf. also T. von UexkuÈ ll et al. 1993), but pointed out that
by that he meant a `counterworld ', not a 1 : 1 re¯ection of the external
environment. Thus, he wanted to emphasize that

_ in the nervous system the stimulus itself does not really appear but its place
is taken by an entirely di�erent process which has nothing at all to do with events

in the outside world. This process can only serve as a sign which indicates that in
the environment there is a stimulus which has hit the receptor but it does not
give any evidence of the quality of the stimulus. (UexkuÈ ll 1909: 192)5

T. von UexkuÈ ll et al. (1993) also point out that the notion of `counter-
world' should not be equated with a `mirror' in the narrow sense of a
re¯ection of the environment. They further elaborate that

_ in this phenomenal universe [of the counterworld], the objects of the environ-
ment are represented by schemata which are not, as in a mirror, products of the
environment, but rather `tools of the brain' ready to come into operation if the

appropriate stimuli are present in the outside world. In these schemata, sensory
and motor processes are combined _ to form complex programs controlling
the meaning-utilizing _ behavioral responses. They are retrieved when the sense

organs have to attribute semiotic meanings to stimuli. (T. von UexkuÈ ll et al.
1993: 34)

Hence, T. von UexkuÈ ll (1992: 308) concludes that an `essential problem,
which he [Jakob von UexkuÈ ll] has solved through the model of a circular
process, is the relationship between sign and behavior (perception and
operation)'.

Autonomy

The key di�erence between mechanisms and living organisms is, according
to UexkuÈ ll, the autonomy of the living. Following the work of MuÈ ller
(1840), he pointed out that `each living tissue di�ers from all machines in
that it possesses a ``speci®c'' life-energy in addition to physical energy'
(UexkuÈ ll 1982: 34), which allows it to react to di�erent stimuli with a `self-
speci®c' activity according to its own `ego-quality' (Ich-Ton), e.g., a muscle
with contraction or the optic nerve with sensation of light. Hence, each
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living cell perceives and acts, according to its speci®c perceptual or receptor
signs and impulses or e�ector signs, and, thus, the organism's behaviors
`are not mechanically regulated, but meaningfully organized' (UexkuÈ ll
1982: 26). The operation of a machine, on the other hand, is purely
mechanical and follows only the physical and chemical laws of cause and
e�ect. Furthermore, UexkuÈ ll (1928: 180)6 referred to Driesch, who pointed
out that all action is a mapping between individual stimuli and e�ects,
depending on a historically created basis of reaction (Reaktionsbasis),
i.e., a context-dependent behavioral disposition (cf. Driesch 1931).
Mechanisms, on the other hand, do not have such a historical basis of
reaction, which, according to UexkuÈ ll, can only be grown Ð and there is
no growth in machines. UexkuÈ ll (1928: 217) further elaborates that the
rules machines follow are not capable of change, due to the fact that
machines are ®xed structures, and the rules that guide their operation, are
not their `own' but human rules, which have been built into the machine,
and, therefore, also can be changed only by humans, i.e., mechanisms are
heteronomous (cf. also T. von UexkuÈ ll 1992). Machines can, therefore,
when they get damaged, not repair or regenerate themselves. Living
organisms, on the other hand, can, because they contain their func-
tional rule (Funktionsregel) themselves, and they have the protoplasmic
material, which the functional rule can use to ®x the damage auton-
omously. This can be summarized by saying that machines act according
to plans (their human designers'), whereas living organisms are acting plans
(UexkuÈ ll 1928: 301).

This is also closely related to what UexkuÈ ll described as the `principal
di�erence between the construction of amechanism and a living organism',
namely that `the organs of living beings have an innate meaning-quality,
in contrast to the parts of machine; therefore they can only develop
centrifugally':

Every machine, a pocket watch for example, is always constructed centripetally.
In other words, the individual parts of the watch, such as its hands, springs,
wheels, and cogs, must always be produced ®rst, so that they may be added to a
common centerpiece. In contrast, the construction of an animal, for example,

a triton, always starts centrifugally from a single cell, which ®rst develops into
a gastrula, and then into more and more new organ buds. In both cases, the
transformation underlies a plan: the `watch-plan' proceeds centripetally and the

`triton-plan' centrifugally. Two completely opposite principles govern the joining
of the parts of the two objects. (UexkuÈ ll 1982: 40)

In a later section we will discuss in detail the relation between UexkuÈ ll's
theory and Maturana and Varela's (1980, 1987) more recent work on
autopoiesis and the biology of cognition.
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Mechanistic and cybernetic models

Although UexkuÈ ll and others presented strong arguments against the
mechanistic view, a number of researchers during the ®rst half of the
twentieth century began to build machines to test mechanistic hypotheses
about the behavior of organisms. Beside the work of Loeb, inspiration was
taken in particular from Sherrington's (1906) work on re¯exes and even
earlier work on taxis (see Fraenkel and Gunn 1940 for an overview of
nineteenth-century research on di�erent forms of taxis). Loeb (1918)
himself described a heliotropic machine7 constructed by J. J. Hammond
and held that:

_ the actual construction of a heliotropic machine not only supports the mecha-

nistic conception of the volitional and instinctive actions of animals but also
the writer's theory of heliotropism, since the theory served as the basis in the
construction of the machine. (Loeb 1918)

One of the most impressive early examples of research on arti®cial
organisms came from Walter (1950, 1951, 1953), who built his two
electronic tortoises, Elmer and Elsie, of the species Machina speculatrix
between 1948 and 1950. Among other things, they exhibited phototaxis
and `hunger'; they re-entered their hutch to recharge their batteries as
required. This work combines and tests ideas from a mixture of Loeb's
tropisms and Sherrington's re¯exes.8 Although Loeb is not explicitly
mentioned in the book, the in¯uence is clear, not least from the terms
positive and negative tropisms. Walter's electromechanical creatures
were equipped with two `sense re¯exes'; a little arti®cial nervous system
built from a minimum of miniature valves, relays, condensers, batteries,
and small electric motors, and these re¯exes were operated from two
`receptors': one photoelectric cell, giving the tortoises sensitivity to light,
and an electrical contact which served as a touch receptor. Elmer and Elsie
were attracted towards light of moderate intensity, repelled by obstacles,
bright light, and steep gradients, and never stood still except when
re-charging their batteries. They were attracted to the bright light of their
hutch only when their batteries needed re-charging. These archetypes of
biologically inspired robotics exhibited a rich set of varying behaviors,
including `goal ®nding', `self-recognition', and `mutual recognition'
(Walter 1953).
Although much of this work ran somewhat counter to UexkuÈ ll's sharp

critique of the mechanistic doctrine, these early mechanistic and cybernetic
attempts at building forms of what is now called ALife were, in their
general technical conception, nevertheless, to some degree compatible
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with his view of the interaction between organism and environment
(cf. also Emmeche, this issue). In particular, organisms were modeled/
constructed as embedded in their environment by means of functional
circles, i.e., (seemingly) intelligent behavior was viewed as the outcome of
a continual interaction between organism and environment in bringing
forth e�ective behavior, and signs were viewed as playing a functional
role in this interaction. This is not to say that there are no signi®cant
di�erences between UexkuÈ ll's and the mechanists' positions (as discussed
above, of course there are), but as we will see in the following section,
these two views are actually signi®cantly closer to each other than either
of them is to the approach to the study of intelligent behavior that most
AI research was taking during the 1950±1980s, in particular its strict
distinction and separation between internal representations and external
world.

AI: From arti®cial organisms to computer programs and back

The endeavor of AI research can be characterized as the attempt to
endow artifacts with some of the mental and behavioral capacities of
living organisms. Thus, the early work on arti®cial organisms discussed
in the previous section could be seen as a forerunner of the ®eld of
AI, which began to form under that name in the mid-1950s. Somewhat
ironically, however, AI research almost completely ignored that early
biologically motivated work for about thirty years. As we will see in the
next subsection, AI researchers, initially focusing on mental capacities,
turned to the computer as a model of mind instead. It was not until the
mid-1980s that parts of the AI community returned to its roots and began
to focus on behavior and agent-environment interaction again, as will be
discussed in detail later.

A much debated concept in AI research and the other cognitive sciences
has always been the notion of representation as the connection between
agent and world. How exactly cognitive representation `works', has been,
as we will see in the following, a topic of controversy. Although the
di�erent notions of representation and their usage largely overlap with
di�erent semiotic notions of signs and their usage, semiotics has had
relatively little direct impact on cognitive science and AI research. Unfor-
tunately, there has been less interaction between the disciplines than
one might expect given the common interest in signs and representations.
We will here refer to signs and representations as roughly similar and
interchangeable notions, and particularly focus on the development of
the notion of representation in AI.
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Cognitivism and the computer metaphor for mind

During the 1940s and 1950s a growing number of researchers, like UexkuÈ ll
discontent with behaviorism as the predominant paradigm in the study of
mind and behavior, became interested in the mind's internal processes
and representations, whose study behaviorists had rejected as being
unscienti®c. This revived the central idea of cognitive psychology, namely,
that the brain possesses and processes information. This idea can be found
in the much earlier work of William James (1892). Craik, however, in his
1943 book, The Nature of Explanation, was perhaps the ®rst to suggest
that organisms make use of explicit knowledge or world models, i.e.,
internal representations of the external world:

If the organism carries a `small-scale model' of external reality and of its own

possible actions within its head, it is able to try out various alternatives, conclude
which is the best of them, react to future situations before they arise, utilize the
knowledge of past events in dealing with the present and future, and in every way

to react in a much fuller, safer, and more competent manner to the emergencies
which face it. (Craik 1943: 61)

Craik had little to say about the exact form of the internal representations
or the processes manipulating them (cf. Johnson-Laird 1989). However,
he was fairly speci®c about what he meant by a `model', namely, some-
thing that is much closer to a `mirror' of external reality than UexkuÈ ll's
notion of a `counterworld'.

By a model we _ mean any physical or chemical system which has a similar

relation-structure to that of the processes it imitates. By `relation-structure'
I [mean] _ the fact that it is a physical working model which works in the
same way as the processes it parallels, in the aspects under consideration at any

moment. (Craik 1943: 51)

At the same time computer technology became increasingly powerful.
Researchers began to realize the information processing capabilities of
computers and liken them to those of humans. Taken to extremes, this
analogy echoes one of the central tenets of cognitivism, which considers
cognition to be much like a computer program that could be run on any
machine capable of running it. In this functionalist framework of the
computer metaphor for mind, having a body, living or arti®cial, is regarded
as a low-level implementational issue. Even connectionism of the 1980s,
with its biologically inspired computation and its strong criticisms of
the cognitivist stance for its lack of concern with neural hardware, was
mainly concerned with explaining cognitive phenomena as separated
from organism-world interaction.
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Thus, the early work on the interaction between cybernetic/robotic
organisms and their environments was divorced from the dominant
themes in the mind sciences. The early biologically-oriented approaches
contrasted sharply with those of cognitivism, traditional AI, and tradi-
tional cognitive psychology. Here, mind was cut o� from body in a move
that echoes in reverse the studies of decerebrated animals carried out by
Sherrington (1906) and others. Neisser (1967), for example, in his book
Cognitive Psychology, which de®ned the ®eld, stressed that the cognitive
psychologist `wants to understand the program, not the hardware'.
According to Neisser, `the task of a psychologist trying to understand
human cognition is analogous to that of a man trying to understand how
a computer has been programmed'.

Hence, while behaviorists had treated mind as an opaque box in a
transparent world, cognitivists treated it as a transparent box in an opaque
world (Lloyd 1989). Research in cognitive science and AI, therefore,
focused on what UexkuÈ ll referred to as the `inner world of the subject'
(UexkuÈ ll 1957). The cognitivist view, largely following Craik, is that this
`inner world' consists of an internal model of a pre-given `external reality',
i.e., representations (in particular symbols) corresponding/referring
to external objects (`knowledge'), and the computational, i.e., formally
de®ned and implementation-independent, processes operating on these
representations (`thought'). Thatmeans, likeUexkuÈ ll's theory, cognitivism
was strictly opposed to behaviorism and emphasized the importance of the
subject's `inner world', but completely unlike UexkuÈ ll it de-emphasized,
and in fact most of the time completely ignored, the environmental embed-
ding through functional circles. Or in Craik's terms: cognitivism became
pre-occupied with the internal `small-scale model', and the idea that it was
to be located `in the head' alone, but completely neglected both organism
and reality.

An example of the cognitivist correspondence notion of representation
was given by Palmer (1978), who characterized a representational system as
including the following ®ve aspects: (1) the represented world, (2) the
representing world, (3) what aspects of the represented world are being
modeled, (4) what aspects of the representing world are doing the
modeling, and (5) what the correspondences between the two worlds are.
Thus, the cognitivist view of the relation between internal model and
external world was as illustrated in Figure 1, i.e., representation was seen
as internal mirror of an observer-independent, pre-given external reality
(cf. also Varela et al. 1991).

During the 1970s traditional AI's notion of representation, as illus-
trated in Figure 1, came under attack. Dreyfus (1979) pointed out that
AI programs represented descriptions of isolated domains of human
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knowledge (`micro-worlds') `from the outside'. That means, they were not
`situated' in them due to the fact they always lacked a larger background
of, e.g., bodily skills or cultural practices, which might not be formalizable
at all. In a similar vein Searle (1980) pointed out that, because there are no
causal connections between the internal symbols and the external world
they are supposed to represent, purely computational AI systems lack
intentionality.9 In other words, AI systems do not have the capacity to
relate their internal processes and representations to the external world.
It can be said in semiotic terms that what AI researchers intended was
that the AI system, just like humans or other organisms, would be the
interpreter in a triadic structure of sign (internal representation/symbol),
external object, and interpreter. What they missed out on, however, was
that, due to the fact that, inUexkuÈ ll's terms, the `inner world of the subject'
was completely cut o� from the external world by traditional AI's
complete disregard for any environmental embedding through receptors
and e�ectors, the interpreter could not possibly be the AI system itself.
Hence, as illustrated in Figure 2, the connection or mapping between
representational domain and represented world is really just in the eye
(or better: the mind) of the designer or other observers.
The problem illustrated in Figure 2 is now commonly referred to as the

symbol grounding problem (Harnad 1990). A number of other authors,
however, have pointed out that the grounding problem is not limited to

Figure 1. The idea of traditional AI representation as a direct mapping between internal repre-

sentational entities, e.g., symbols and objects in the external world. Adapted from Dor�ner

(1997)
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symbolic representations, and should, therefore, be referred to as the
problem of representation grounding (Chalmers 1992), concept grounding
(Dor�ner and Prem 1993), or the internalist trap (Sharkey and Jackson
1994). Searle, however, did not suggest that the idea of intelligent machines
would have to be abandoned. In fact, he argued that humans are such
machines and that themain reason for the failure of traditional AI was that
it is concerned with computer programs, but `has nothing to tell us about
machines' (Searle 1980), i.e., physical systems causally connected to their
environments. That means, instead of accusing AI of being materialistic
(for its belief that [man-made] machines, could be intelligent), Searle

Figure 2. `What ``really'' happens in traditional AI representation' (Dor�ner 1997). There are

direct mappings between objects in the world and the designer's own internal concepts, and

between the designer's concepts and their counterparts in the AI system's representational

domain. There is, however, no direct, designer-independent, connection between the AI system

and the world it is supposed to represent, i.e., the AI system lacks `®rst hand semantics' or

`contents for the machine'. Adapted from Dor�ner (1997: 101)
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actually accused AI of dualism, for its belief that disembodied, i.e., body-
less and body-independent, computer programs could be intelligent.

New AI: Situated and embodied agents

One of the developments of AI and cognitive science in the 1980s was
a growing interest in the interaction between agents and their environ-
ments. A number of researchers questioned not only the techniques used
by traditional AI, but its top-down approach and focus on agent-internal
reasoning in general. They suggested a bottom-up approach, also referred
to as `New AI ' or `Nouvelle AI ', as an alternative to the (purely) com-
putationalist framework of cognitivism. In particular, Brooks (1986b,
1990, 1991a) put forward his behavior-based robotics approach and
Wilson (1985, 1991) formulated the animat approach to AI. These
approaches agree that AI should be approached from the bottom up; ®rst
and foremost through the study of the interaction between autonomous
agents and their environments by means of perception and action. For a
more detailed review see Ziemke (1998). In this approach, agents equipped
with sensors and motors are typically considered physically grounded as
Brooks explains:

Nouvelle AI is based on the physical grounding hypothesis. This hypothesis states

that to build a system that is intelligent it is necessary to have its representations
grounded in the physical world. _ To build a system based on the physical
grounding hypothesis it is necessary to connect it to the world via a set of sensors

and actuators. (Brooks 1990: 6)

These key ideas are also re¯ected by commitments to `the two cornerstones
of the new approach to Arti®cial Intelligence, situatedness and embodi-
ment' (Brooks 1991b: 571). The ®rst commitment, to the study of agent-
environment interaction rather than representation, is re¯ected in the
notion of situatedness: `The robots are situated in the world Ð they do
not deal with abstract descriptions, but with the here and now of the
world directly in¯uencing the behavior of the system' (571). The second
commitment was to physical machines, i.e., robotic agents rather than
computer programs, as the object of study, as re¯ected in the notion
of embodiment: `The robots have bodies and experience the world
directly Ð their actions are part of a dynamic with the world and have
immediate feedback on their own sensations' (571).
Thus AI has come (or returned) to an UexkuÈ llian view of semantics,

in which signs/representations are viewed as embedded in func-
tional circles along which the interaction of agent and environment is

Worlds of robots and animals 715



organized/structured. Or, as T. von UexkuÈ ll (1982) put it: `_ signs are
instructions to operate. They tell the subject (as navigational aids do the
seaman) what is to be done, i.e., they give instructions on how to operate'
(17). In AI this led to a de-emphasis of representation in the sense of
an explicit internal world model mirroring external reality (Brooks 1991a).
Instead representations are in the bottom-up approach viewed as deictic,
i.e., subject-centered, indexical-functional representations (e.g., Agre
and Chapman 1987; Brooks 1991b) or `behavior-generating patterns'
(Peschl 1996), i.e., signs that play their role in the functional circle(s) of
agent-environment interaction.

Brooks (1986a, 1991a) was also, to our knowledge, the ®rst AI
researcher to take inspiration directly from UexkuÈ ll's work, in particular
the concept of Merkwelt or perceptual world. He pointed out that the
internal representations in AI programs really were designer-dependent
abstractions, based on human introspection, whereas `as UexkuÈ ll and
others have pointed out, each animal species, and clearly each robot
species with its own distinctly nonhuman sensor suites, will have its own
di�erentMerkwelt' (Brooks 1991a: 144). If, for example, in anAI program
we had internal representations describing chairs as something one
could sit or stand on, that might be an appropriate representation for
a human, it would, however, probably be entirely meaningless to a
computer or awheeled robot which could not possibly sit down or climb on
top of a chair. Similarly, UexkuÈ ll (1982) had pointed out, several decades
earlier, that the concept of `chair' as `something to sit on' could apply to
entirely di�erent objects for a dog than for a human.

Brooks, therefore, approached the study of intelligence through the
construction of physical robots, which were embedded in and interacting
with their environment by means of a number of so-called behavioral
modules working in parallel, each of which resembles an UexkuÈ llian
functional circle. Each of these behavioral modules is connected to certain
receptors from which it receives sensory input (e.g., one module might
be connected to sonar sensors, another to a camera, etc.), and each of
them, after some internal processing, controls some of the robot's
e�ectors. Further, these modules are connected to each other in some
hierarchy, which allows certain modules to subsume the activity of others,
hence this type of architecture is referred to as subsumption architecture
(Brooks 1986b). Thus, a simple robot with the task of approaching light
sources while avoiding obstacles, could be controlled by three behavioral
modules: one that makes it move forward, a second that can subsume
forward motion and make the robot turn when detecting an obstacle with
some kind of distance sensors, and a third that can subsume the second
and make the robot turn towards the light when detecting a light source
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using some kind of light sensor. Thus, using this kind of control archi-
tecture, the robot is guided by a combination of taxes working together
and in opposition, an idea that can be traced back to the work of Fraenkel
and Gunn (1940), who in turn were strongly in¯uenced by Loeb.
A common criticism of Brooks' original subsumption architecture

is that it does not allow for learning. Hence, this type of robot, although
operationally autonomous (cf. Ziemke 1998) in the sense that during run-
time it interacts with the environment on its own, i.e., independent of an
observer, still remains heteronomous in the sense that the largest parts of
its functional circles, namely the processing between receptors and
e�ectors, and, thereby, the way it interacts with the environment, is still
pre-determined by the designer. A number of researchers have, therefore,
pointed out that a necessary element of an arti®cial agent's autonomy
would be the capacity to determine and adapt, at least partly, the mecha-
nisms underlying its behavior (Boden 1994; Steels 1995; Ziemke 1996b,
1998). Di�erent approaches to achieve this are discussed in detail in the
next section.

Self-organization of sign processes in arti®cial organisms

Much research e�ort during the 1990s has been invested into making
robots `more autonomous' by providing them with the capacity for
self-organization. Typically these approaches are based on the use of
computational learning techniques to allow agents to adapt the internal
parameters of their control mechanisms, and, thus, the functional circles
by which they interact with their environment. Di�erent adaptation
techniques are described in the next subsection, and it is illustrated how
such techniques can allow autonomous agents to adapt their internal
sign processes in order to self-organize their sensorimotor interaction,
e.g., to determine which environmental stimuli they should respond to,
and how. Another subsection then takes this one step further and describes
how adaptation techniques have been used to allow groups/populations
of agents to self-organize communication among themselves. The dif-
ferences between conventional mechanisms and arti®cial organisms are
then summarized and discussed in the third subsection.
A `word of warning': It may seem that much of the following discussion

presupposes that robots can have ®rst hand semantics and experience or
that they have genuine autonomy, experience, and perception or that the
type of learning and evolution we discuss is the same as those in living
organisms. That is an incorrect impression, as will be discussed in further
detail in the next section (cf. also Sharkey and Ziemke 1998). However,
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instead of marking each term with quotes or quali®cations such as `it
has been argued that', we have put in this disclaimer so that we can simplify
and improve the ¯ow of the discussion.

Robot adaptation

As mentioned above, robot adaptation is typically approached by making
the control mechanism, mapping sensory signals to motor commands,
adaptive. In particular so-called arti®cial neural networks (ANNs), also
referred to as connectionist networks, have been used as `arti®cial nervous
systems' connecting a robot's receptors to its e�ectors (for collections on
this topic see, e.g., Bekey and Goldberg 1993; Brooks et al. 1998; Ziemke
and Sharkey 1999). The robots used in this type of research are often
mobile robots (see Figure 3 for a typical example), typically receiving
sensory input from, for example, infrared (distance) sensors or simple
cameras, and controlling the motion of their wheels by motor outputs.

Figure 3. The Khepera, a wheeled miniature mobile robot commonly used in adaptive robotics

research (manufactured by K-Team SA; for details seeMondada et al. 1993). The model shown

here is equipped with infrared sensors and a simple camera
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`Arti®cial nervous systems' for the control of such robots and di�erent
learning and evolution techniques for their adaptation will be explained
brie¯y in the following subsections, together with examples of their use
in the self-organization of sign processes in arti®cial organisms.

Arti®cial neural networks. For the understanding of the argument
here it su�ces to know that an ANN is a network of a (possibly large)
number of simple computational units, typically organized in layers
(cf. Figure 4, but note that the number of layers, units, and connection
weights can vary greatly). Each unit (or arti®cial neuron) receives a number
of numerical inputs from other units it is connected to, calculates from
the weighted sum of the input values its own numerical output value
according to some activation function, and passes that value on as input
to other neurons, and so on. The feature of ANNs that allows them to
learn is the fact that each connection between two units carries a weight,
a numerical value itself, that modulates the signal/value sent from one
neuron to the other. Hence, by weakening or strengthening of the connec-
tion weight, the signal ¯ow between individual neurons can be adapted,
and through coordination of the individual weight changes, the network's
overall mapping from input to output can be learned.
A number of learning techniques and algorithms have been applied to

training neural networks, which vary in the degree of self-organization that
they require from the network. During supervised learning ANNs are
provided with inputs and correct target outputs in every time step, i.e., the
network is instructed on which inputs signal to use and which output
signals to produce, but how to coordinate the signal ¯ow in between input

Figure 4. A typical feed-forward arti®cial neural network (ANN). Each circle represents a unit

(or arti®cial neuron), and each solid line represents a connection weight between two units.

Activation is fed forward only, i.e., from input layer via a hidden layer to the output layer
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and output is up to the network's self-organization. Hence, internal
representations (both hidden unit activations and connection weights are
commonly interpreted as representations, cf. Sharkey 1991) could be
considered to be signs (or their modulators) private to the network and
often opaque to outside observers. Thus, unlike traditional AI, connec-
tionists do not promote symbolic representations that mirror a pre-given
external reality. Rather, they stress self-organization of an adaptive ¯ow of
signals between simple processing units in interaction with an environ-
ment, which is compatible with an interactive (Bickhard and Terveen 1995;
Bickhard 1998) or experiential (Sharkey 1997) view of representation
(see also Clark 1997; Dor�ner 1997), and thus o�ers an alternative
approach to the study of cognitive representation and sign use.

Nonetheless, in most connectionist work of the late 1980 and early
1990s, the `environment' was reduced to input and output values (cf. Clark
1997; Dor�ner 1997), i.e., networks were not, like real nervous systems,
embedded in the context of an organism and its environment. Thus,
although in a technically di�erent fashion, connectionists were, like
cognitivists, mainly concerned with explaining cognitive phenomena
as separated from organism-world interaction. Hence, they initially
focused on modeling isolated cognitive capacities, such as the transforma-
tion of English verbs from the present to the past tense (Rumelhart and
McClelland 1986) or the pronunciation of text (Sejnowski and Rosenberg
1987), i.e., `micro-worlds' in Dreyfus' (1979) sense (cf. above discussion).
Or in UexkuÈ ll's terms: Early connectionism was only concerned with
the self-organization of the subject-internal part of the functional circle
(where input units might be roughly likened to receptors and output units
to e�ectors). Making the connection between inputs, outputs and internal
representations and the actual world they were supposed to represent, was
again left to the mind of the observer, similar to the situation illustrated
in Figure 2.

Arti®cial nervous systems. The situation changes fundamentally as soon
as ANNs are used as robot controllers, i.e., `arti®cial nervous systems'
mapping a robot's sensory inputs to motor outputs. Then the network
can actually, by means of the robot body (sensors and e�ectors), interact
with the physical objects in its environment, independent of an observer's
interpretation or mediation. Hence, it could be argued that its internal
signs/representations, now formed in physical interaction with the world
they `represent' or re¯ect, can be considered physically grounded in the
sense explained by Brooks above. Accordingly, the robot controller is
in this case part of a complete functional circle (or several circles, as will
be discussed below). As an example of this view, imagine a wheeled
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robot moving about in a room with boxes lying on the ¯oor and pictures
hanging on the wall. The robot might be equipped with infrared sensors as
receptors sensitive to the perceptual cues of, for example, the re¯ectance
patterns of solid objects in its environment. Thus, the walls and the
boxes on the ¯oor would be part of the robot's own perceptual world
(Merkwelt), cf. Brooks (1986a). Their meaning to the robot would be
that of an `obstacle', since they limit the robot's motion, assuming the
robot has the goal to keep moving while avoiding collisions. Upon
detection of the perceptual cue `solid object at short range' through the
distance sensors (receptors) corresponding signs would be transferred to
the network's input layer (the robot's `perceptual organ'). Signs would
be transformed and passed on through the internal weights and units
of the ANN controlling the robot, and eventually certain signs would
reach the output layer (the robot's `operational organ'), which in turn will
transfer signs corresponding to the desired level of activation to the motors
controlling the robot's wheels (its e�ectors). This would make the robot, if
trained correctly, move and turn away from the obstacle. Hence, the
obstacle or part of it would disappear from the robot's sensor range, such
that the receptors would now receive a new perceptual cue, and so on.
The pictures on the wall, on the other hand, would remain `invisible' to

the robot; they are not part of its perceptual world, and they carry no
meaning for it. Thus, the robot may be considered to be embedded in its
own Umwelt, consisting of its perceptual world (Merkwelt), consisting of
solid objects (or their absence), carrying the meanings `obstacle' and
`free space' respectively, and its operational world of motor-controlled
wheeled motion. The `inner world' of the robot would be the ANN's inter-
nal sign ¯ow and interactive representations, and unlike in the cases of
traditional AI programs and Brooks' subsumption architecture, the inner
world would here be a self-organized ¯ow of private signs embedded in
agent-environment interaction.
Thus learning in ANN robot controllers can be viewed as the creation,

adaptation, and/or optimizationof functional circles in interactionwith the
environment. Although the above example illustrated only one such circle,
we can, of course, easily imagine several functional circles combined/
implemented in a single ANN, e.g., if we additionally equipped the robot
with a light and added light sources to the environment, we might have
three functional circles: one that makes the robot move forward when
encountering `free space', one that makes it turn/avoid when encountering
`obstacles', and one that makes it approach when detecting the light.

Recurrent ANNs. As long as we are using a feed-forward network,
i.e., a network in which activation is only passed in one direction, namely
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from input to output units, the mapping from input to output will always
be the same (given that the network has already learned and does not
modify its connection weights anymore). Hence, the controlled robot
will be a `trivial machine' (cf. T. von UexkuÈ ll 1997a), i.e., independent
of past or input history, same inputs will always be mapped to same
outputs. In semiotic terms this corresponds to a semiosis of information
where the input corresponds to the sign, the input-output mapping
to the interpretant (or causal rule), and the output to the signi®ed
(T. von UexkuÈ ll 1997a).

However, if we add internal feedback through recurrent connections
to the network, as exempli®ed in Figure 5, it becomes a `non-trivial'
machine. That means, the mapping from input to output will vary with
the network's internal state, and thus the machine, depending on its
past, can e�ectively be a `di�erent' machine in each time step. An analogy
in semiotic terms could be a semiosis of symptomization (cf. T. von
UexkuÈ ll 1997a) where the interpretant varies and the system's input-
output behavior can inform an observer about the current interpretant.
For the robot itself this means that it no longer merely reacts to `external'
stimuli, but it interprets signs according to its own internal state. Meeden
(1996), for example, trained a toycar-like robot using a recurrent controller
network (of the type illustrated in Figure 5a; originally introduced by

Figure 5. Recurrent arti®cial neural networks (RANNs), using (a) ®rst-order feedback, and

(b) second-order feedback. Solid arrows indicate that each unit in the ®rst layer of units (layers

are surrounded by dotted lines) is connected to each unit in the second layer. The dashed arrow in

(a) represents a copy-back connection. That means, hidden unit activation values at time step t

are fed-back and re-used as extra-inputs at time step (t+1). In (b) the function network weights,

i.e., the connection weights between and input and output/state units, embodying the (current)

sensorimotor mapping, can be adapted dynamically via a feedback loop (through the context

network weights)
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Elman 1990) to periodically approach and avoid a light source while
avoiding other obstacles. Information on whether to avoid or to seek
the light at a particular point in time was not available/accessible to the
robot from the environment (in some of the experimental setups). Instead
the control network developed in the learning process an internal dynamic,
i.e., a way of utilizing its own feedback signs, that allowed it to form
a purely internal hidden unit representation of its current goal. That
means, here the functional circles connecting robot (subject) and light
source (object), and thus the light cue's meaning, do actually vary with
time, not completely unlike the varying level of hunger e�ects the meaning
a piece of food has for an animal.
The recurrent networks discussed so far utilize ®rst-order feedback.

That means, as illustrated in Figure 5a, previous activation values are used
as extra inputs to certain neurons (typically at the input layer) in later
time steps (typically the next). Hence, the network output is in each time
step computed as a result of the current input and the context of an
internal state (referred to as `context units' in Figure 5a). A second-order
networks, on the other hand, is exempli®ed in Figure 5b. Here second-
order (i.e., multiplicative) feedback (through state units and context
network weights), is used to dynamically adapt the connection weights
between input and output units (the function network weights). Thus, the
mapping from sensory input to motor output can e�ectively be adapted
from time step to time step, depending on an internal state (referred to as
`state units' in Figure 5b). For a detailed description of di�erent variations
of this type of network and examples of its use for robot adaptation
see Ziemke (1996a, 1996c, 1997, 1999a).
Hence, in this type of controller the sensorimotor mapping, and thus

the controlled agent's behavioral disposition (or interpretant), dynamically
changes with the agent's internal state. Ziemke (1999a), for example,
documents experiments in which a Khepera robot, controlled by a
second-order network, encounters identical objects inside and outside
a circle, but has to exhibit two very di�erent responses to the exact same
stimuli (approach inside the circle, and avoidance outside). The problem is
that the robot cannot sense whether or not it currently is inside or outside
the circle, but only senses the boundary line while passing it on its way
in or out. The robot learns/evolves to solve the problem by dynamically
adapting its behavioral disposition (interpretant), i.e., its behavioral/
motor biases and the way it responds to stimuli from the objects it
encounters. This means that, depending on its current behavioral dis-
position, the robot attributes di�erent meanings to the object stimuli,
such that the exact same stimulus can adopt very di�erent functional tones
(cf. UexkuÈ ll 1957) in di�erent contexts.
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Reinforcement learning. For complex tasks robots are typically not
trained using supervised learning techniques. This has two reasons: (a) In
order to allow for a maximum of robot autonomy, it is often desirable
to reduce designer intervention to aminimum of feedback/instruction, and
(b) it is often not even possible to provide a robot with an exact target
output in every time step, for much the same reason why it is impossible
to tell a child learning to ride a bike how exactly to move its legs, arms, and
body at every point in time. For such tasks, the robot, much like the
child, simply has to ®gure out for itself how exactly to solve a problem,
i.e., how to organize and adapt its sign processes in interaction with the
environment. Hence, robots are often trained using reinforcement learning
or evolutionary adaptation techniques.

During reinforcement learning (RL), an agent is provided only with
occasional feedback, typically in terms of positive and negative reinforce-
ment, e.g., in the case ofMeeden's robot when hitting an obstacle (`bad') or
achieving a light goal (`good'). From this feedback the agent can adapt
its behavior to the environment in such a way as to maximize its positive
reinforcement and minimize its negative reinforcement. Reinforcement, in
this context, is simply de®ned as a stimulus which increases the probability
of the response upon which it is contingent.

Walter (1951) was the ®rst to use RL techniques for the training of
robots. By grafting the Conditioned Re¯ex Analogue (CORA), a learning
box, onto Machina speculatrix (cf. discussion above), he created Machina
docilis, the easy learner. M. docilis had built-in phototaxis, i.e., a light
elicited a movement response towards it which he referred to as `an
unconditioned re¯ex of attraction'. When a light was repeatedly paired
with the blowing of a whistle, M. docilis became attracted to the sound
of the whistle and exhibited a phonotaxic response. In a separate series
of experiments, Walter repeatedly paired the sound of the whistle with
obstacle avoidance and thus trained the robot to `avoid' the sound of
the whistle. He also demonstrated extinction of conditioned pairings by
presenting the conditioned stimulus repeatedly without pairing it with the
unconditioned stimulus. There was also a slower decay of the conditioned
response if it was not used for some time. Walter's experiments show how
a simple learningmechanism can extend the behavior of a robot by bringing
its re¯exes under the control of substituted environmental e�ects.

Evolutionary adaptation. The use of evolutionary techniques is an
approach to `push' the designer even further `out of the learning loop'
and aims to let robots learn from the interaction with their environment
with a minimum of human intervention (cf. Nol® 1998). Evolutionary
methods are abstractly based on theDarwinian theory of natural selection.
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Thus, feedback is no longer instructive as in reinforcement and supervised
learning, but only evaluative. Typically, a population of individuals
(e.g., robot controllers) is evolved over a large number of generations, in
each of which certain individuals are selected according to some ®tness
function, and `reproduced' into the next generation, using recombinations
and slight mutations mimicking natural reproduction. Due to the selective
pressure the average ®tness in the population is likely to increase over
generations, although the individuals typically do not learn during their
`lifetime'. The very idea of evolving robots was well illustrated by
Braitenberg (1984) who likened evolution to the following scenario: There
are a number of robots driving about on a table top. At approximately
the same rate that robots fall o� the table, others are picked up randomly
from the table, one at a time, and copied. Due to errors in the copying
process, the original and the copy might di�er slightly. Both are put
back onto the table. Since the ®ttest robots, those who stay on the table
longest, are most likely to be selected for `reproduction' the overall
®tness of the robot population is likely to increase in the course of the
`evolutionary' process.
A concrete example of evolutionary robotics research is the work of

Husbands et al. (1998) who evolved RANN robot controllers for a
target discrimination task, which required a mobile robot, equipped with
a camera, to approach a white paper triangle mounted on the wall, but to
avoid rectangles. In these experiments both the network topology and
the visual morphology (or receptive ®eld), i.e., which parts/pixels of the
camera image the controller network would use as inputs, were subject to
the evolutionary process. The analysis of the experimental runs showed
that structurally simple control networks with complex internal feed-
back dynamics evolved which made use of low bandwidth sensing (often
only two pixels of visual input were used) to distinguish between the
relevant environmental stimuli. Thus, in these experiments both the
internal ¯ow of signals and use of feedback, as well as the `external'
sign use, i.e., which environmental stimuli to interpret as signs of what,
are the result of an arti®cial evolutionary process. The evolved sign
processes are di�cult to analyze and understand in detail, due to the
fact that they are private to the robot and in many cases radically di�er
from the solutions the human experimenters would have designed.
Husbands et al. point out that this `is a reminder of the fact that
evolutionary processes often ®nd ways of satisfying the ®tness criteria
that go against our intuitions as to how the problem should be ``solved'' ',
(Husbands et al. 1998: 206).
The in¯uence of the human designer can be reduced even further

using co-evolutionary methods. Nol® and Floreano (1998), for example,
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co-evolved two RANN-controlled robots to exhibit predator- and prey-
behavior. The `predator', a Khepera robot equipped with an extra camera
(cf. Figure 3) which allowed it to observe the prey from a distance, had to
catch (make physical contact with) the `prey', another Khepera robot,
equipped only with short-range infrared sensors but also with the potential
tomove faster than the `predator'. By simply evolving the two `species' with
time-to-contact as a ®tness and selection criterion, quite elaborate pursuit-
and escape-strategies evolved in the respective robots. The predator
species, for example, in some cases developed a dynamics that allowed it to
observe and interpret the prey's current behavior as a symptom of its
current behavioral disposition, and thus of its behavior in the immediate
future, such that it would only `strike' when it had a realistic chance of
catching the prey `o� guard'.

The examples discussed so far have only been concerned with the
evolution/adaptation of arti®cial nervous systems. Recently, however,
researchers have begun to apply evolutionary methods also to the con-
struction of physical structures and robot morphologies (in simulation)
(e.g., Funes and Pollack 1997; Lund et al. 1997), in some cases in
co-evolution with controllers (Cli� and Miller 1996; Lund and Miglino
1998). Cli� and Miller (1996), for example, simulated the co-evolution of
`eyes' (optical sensors) and `brains' (ANN controllers) of simple robotic
agents which pursued and evaded each other in a two-dimensional plane.
The co-evolution of both body and `brain' of arti®cial organisms aims to
overcome what Funes and Pollack called the `chicken and egg' problem
of the approach: `Learning to control a complex body is dominated by
inductive biases speci®c to its sensors and e�ectors, while building
a body which is controllable is conditioned on the pre-existence of a
brain' (1997: 358). For a detailed discussion of the epistemological implica-
tions of robotic devices which evolve/construct their own hardware see
Cariani (1992).

In summary, we have seen a number of examples of arti®cial organisms
self-organizing (a) their internal usage of signs (their `inner world'), in the
form of ANN connection weights, (b) the way they respond to stimuli
from the environment, and in some cases (c) the way they dynamically self-
adapt their behavioral disposition, i.e., the way they make use of internal
sign usage to adapt their response to `external' stimuli. Thus, in many of
these examples, it is left up to a process of self-organization, to determine
which of the objects in the environment become carriers of meaning, and
what exactly their meaning is to the agent. The next section will take this
one step further, and illustrate how adaptive techniques have been used by
populations of agents to facilitate the self-organization of communication
between them.
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Self-organized communication in autonomous agents

Traditional AI research initially focused on endowing computers with
human-level cognitive capacities, of which natural language communi-
cation was by many considered to be of particular relevance. Alan Turing
(1950), a key ®gure in the development of the very idea of AI, in fact,
suggested the (later) so-called Turing test as a criterion for machine
intelligence. In this test a machine would have to carry on a natural
language conversation on arbitrary every day topics with a human judge
for a certain period of time, via some teletype-terminal so the judge could
not see whether he is communicating with a machine or a human being.
If, after that time, the judge could not reliably identify the machine as a
machine, it would, according to Turing, have to be considered to possess
human-level intelligence. This test was considered a valid criterion of
intelligence by most AI researchers at least until the 1980s, and many
AI systems simulating human communication were built. Most famous
among them was perhaps Weizenbaum's (1965) ELIZA system, which
simulated a human psychiatrist.
From the arguments of Dreyfus, Searle, and others (cf. above), however,

it became clear that, of course, in these conversations the AI system
performed purely syntactic transformations of the symbols it was fed,
without even a clue of their actual meaning. That means the AI system
processed a language (`natural' to the human observer) without actually
understanding it. On some re¯ection this is not too surprising, after all
what could a conversation about the objects of human experience (like
tables, chairs, etc.) possibly mean to a computer system completely lacking
this type of experience? In UexkuÈ ll's and Brooks' terms, even if a computer
program had a perceptual world, it would be very unlikely to contain,
for example, chairs since certainly it could not sit on them or make any
other meaningful use of them.
The study of communication has, therefore, been addressed in a

radically di�erent way inAI andALife research since about the mid-1990s.
Now communication is studied from the bottom up, i.e., using auton-
omous agents that can actually `experience' and interact with their
environment. Moreover, artifacts are no longer expected to learn human
language, but their own language, i.e., a language that is about `the world
as it appears to them' and that helps them to communicate with other
agents (no longer humans) in order to better cope with that world.

In the spirit of the bottom-up approach, these communication systems must be

developed by the robots themselves and not designed and programmed in by an
external observer. They must also be grounded in the sensori-motor experiences
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of the robot as opposed to being disembodied, with the input given by a human
experimenter and the output again interpreted by the human observer. (Steels and
Vogt 1997: 474)

Cangelosi and Parisi (1998), for example, have in computer simulations
studied the evolution of a `language' in a population of ALife agents that
`live' in a simulated world containing edible and poisonous mushrooms,
of which they have to ®nd the former but avoid the latter in order to ensure
survival. The agents were controlled by ANNs which received as input
`sensory' information about mushrooms nearby and produced as output
`motor' commands that controlled the agent's motion. Additionally,
each agent could output communication signals, which other agents
could receive as additional input. The scenario was set up such that
agents would pro®t from communicating, i.e., every agent approaching
a mushroom required the help of another agent telling it whether the
mushroom was edible or not. The results showed that after 1,000
generations of arti®cial evolution the agents had indeed evolved a simple
`language' of signals that allowed them to communicate about the world
they `lived' in, i.e., the approach and avoidance of the mushrooms they
encountered.

Experiments on the development of `language' and `meaning' in groups
of robotic agents through `adaptive language games' have been carried
out by Steels (1998; see also Steels and Vogt l997; Steels and Kaplan
1999). In the experimental setup used by Steels and Vogt (1997), a number
of mobile robots moved around in a physical environment of limited
size, containing some additional objects. The robots acquired a common
`vocabulary' of word-meaning pairs (where the meaning of a word is taken
to be the sensory feature set it is associated with) through `adaptive
language games', which work roughly as follows. Whenever two robots
meet they ®rst perform a simple `dance' in the course of which they turn
360 degrees and scan the view of their environment. They agree on some
sensory feature set, e.g., a box nearby, and both focus on it. Then both
robots check if they already have a `word' for the object/feature set they
see. If only one of them has, it tells the other, which now learns the new
word. If neither of them has a word for the object, they `make one up', and
both learn it. If both already know di�erent words for the object, one
of them forgets the old word and learns a new one from the other robot.
After that the robots begin roaming the environment separately again.
Since there are several robots, a common `language' develops and
eventually spreads to the whole population through the accumulative
transfer, creation, and adaptation of a common vocabulary as a result of
the development and interaction of individual lexica of word-meaning
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pairs in the course of the one-to-one language games performed by the
robots. For a discussion of the semiotic dynamics resulting from this
kind of experiment, e.g., the emergence and dampening of synonymy and
polysemy; see also Steels and Kaplan (1999).
Thus, in both these examples autonomous agents are not `forced' to

learn a human language they could not, due to their radically di�erent
physiology, possibly understand. Instead they develop, in a process of
self-organization, their own language from the interaction with their
environment and other agents, i.e., a language that is speci®c to their
`species', in the sense that it is based on their own experience and serves
their own purposes, and thus is not necessarily interpretable to human
observers (cf. Dor�ner and Prem 1993; Prem 1995).
It could, however, be argued (cf. Prem 1998), that this type of approach

to the evolution/development of language is misguided in that it is typically
based on the old symbol/representation grounding idea of hooking
independently existing external objects to abstract internal labels/signs
(cf. Figure 1). An example is the above work of Steels and Vogt in which
the sensory feature set that a word is associated with is taken to be its
meaning. In Jakob von UexkuÈ ll's view of signs, however, as Thure von
UexkuÈ ll (1982) put it: `Signs are instructions to operate' which `tell the
subject _ what is to be done', i.e., signs derive their meaning from the role
they play in the functional circles of the interaction between a subject and
its object(s). Communication should, therefore, perhaps ®rst and foremost
be addressed as giving agents the possibility to in¯uence each others'
behavior. That means, they should be able to communicate signals that
help them to interact or coordinate their behavior instead of learning a
vocabulary without actual functional value for the interaction between
agent and environment (cf. Ziemke 1999b), as in the above case of Steels
and Vogt, where the agents never actually use those object labels for
anything more than just the labeling of objects.

How arti®cial organisms di�er from conventional mechanisms

We have now seen a number of examples of autonomous agents and
their self-organization. Together these examples illustrate that arti®cial
organisms, although certainly mechanisms in the technical sense, in a
number of points radically di�er from the type of mechanism that UexkuÈ ll
discussed, and, in fact, exhibit some of the properties that he ascribed to
organisms alone. This subsection summarizes the di�erences between
arti®cial organisms and other mechanisms. The following section will then
complement this one by taking an in-depth look at the di�erences between
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arti®cial and living organisms, and the implications for their respective
autonomy and capacity for semiosis.

Firstly, the use of `arti®cial nervous systems' in combination with
computational learning techniques allows autonomous agents to adapt to
their environment. In particular, due to their use of memory the behavioral
disposition of autonomous agents varies over time. Thus, although they
do not `grow' in the physical sense, they do adapt to their environment,
such that they do, in fact, have a `historical basis of reaction' (cf. the
arguments of Driesch and UexkuÈ ll discussed above). Self-organized
arti®cial organisms thus no longer react in a purely physical or mechanical
manner to causal impulses. Instead their reaction carries a `subjective'
quality, in the sense that the way they react is not determined by built-in
rules (alone), but is speci®c to them and their history of `experience' and
self-organization.

Secondly, and closely related to the previous point, arti®cial organisms
are clearly involved in sign processes, and they `make use' of signs
`themselves', unlike the mechanisms UexkuÈ ll discussed. Furthermore,
unlike computer programs which are to some degree also capable of
semiosis (cf. Andersen et al. 1997 and the discussion in the introductory
section), the sign processes of arti®cial organisms are typically (a) not
(fully) determined by their human designers, (b) independent of inter-
pretation through external observers (at least at the operational level),
and (c) in many cases not even interpretable to humans through a close
look at the internal processes (despite the fact that these are much easier
to observe than in the case of a living organism). Much of the sign usage of
such systems is, therefore, due to their self-organization, indeed private
and speci®c to them. Arti®cial organisms, therefore, have been argued to
have a certain degree of epistemic autonomy (Prem 1997; cf. also Bickhard
1998), i.e., like living organisms they are `on their own' in their interaction
with their environment.

Thirdly, the use of self-organization, especially evolutionary tech-
niques, does nowadays (to some degree) allow the construction of robot
controllers, and to some degree even robot bodies (in simulation),
following centrifugal principles. In the context of robot controllers, Nol®
formulated the concept as `adaptation is more powerful than decomposi-
tion and integration' (Nol® 1997a, 1997b). Here controllers are not, as in
Brooks' subsumption architecture or conventional robot design, broken
down into behavioral or functional modules by a designer, but the task
decomposition is the result of a process of adaptation, which distributes
behavioral competences over subsystems in a modular architecture.
Similarly, as mentioned above, in some of the ®rst author's work
(e.g., Ziemke 1996a, 1999a), the control of a robot is broken into a number
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of functional circles in a process of dynamic adaptation and di�erentiation.
In these cases the control mechanism is not constructed along centripetal
principles, i.e., not broken down into sub-tasks or -competences by a
designer to be integrated later, but instead constructed making use of
what might be called centrifugal task decomposition. That means, a single
control mechanism breaks itself down into a number of sub-mechanisms
in a process of adaptation and di�erentiation. Similar principles have
even been applied to the co-evolution of physical structures and robot
morphologies with controllers (e.g., Cli� and Miller 1996; Lund and
Miglino 1998). Here robot body and controller are no longer treated
as isolated elements to be constructed separately, but instead they are
co-evolved in an integrated fashion as the result of the evolution of a single
arti®cial genotype. The use of centrifugal principles (although not under
that name) has during the 1990s become a `hot topic' in ALife research,
and there are various approaches to the combination of evolution, devel-
opment, and learning in the self-organization of arti®cial organisms.
Another example is the work of Vaario and Ohsuga (1997) on `growing
intelligence' which integrates processes of development, learning, natural
selection, and genetic changes in simulated arti®cial organisms.

The role of the living body

Having illustrated the principles of arti®cial organisms and their self-
organization and having outlined the di�erences between such systems
and conventional mechanisms in the previous section, we will now turn to
the di�erences between arti®cial and living organisms. The next subsection
presents a brief comparison between UexkuÈ ll's theory and the work of
Maturana and Varela on autopoiesis and the biology of cognition. The
implications of the lack of a living body for the autonomy of arti®cial
organisms and their sign processes are then considered in the second
subsection.

UexkuÈll versus Maturana and Varela

As discussed above, the (re-) turn to arti®cial organisms in AI research can
be seen as a rejection of the purely computationalist framework of
traditional cognitive science. Instead, work on ALife and autonomous
robots has to some degree taken inspiration from the work of Humberto
Maturana and Francisco Varela, who have since the late 1960s developed
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their theories on the biology of cognition and autopoiesis (e.g., Maturana
1969; Varela 1979; Maturana and Varela 1980, 1987) which has more
recently also lead to the formulation of an enactive cognitive science
(Varela et al. 1991). To summarize their work goes beyond the scope of this
article. It is, however, worth pointing out the relation to the unfortunately
less known, but closely related and much earlier work of Jakob von
UexkuÈ ll in a number of points, in particular since Maturana and Varela
apparently themselves were not aware of UexkuÈ ll's work.

Maturana and Varela's work is strictly opposed to the cognitivist
framework of traditional cognitive science, and instead is aimed at under-
standing the biological basis of cognition. They propose a way of `seeing
cognition not as a representation of the world ``out there'', but rather as
an ongoing bringing forth of a world through the process of living itself '
(Maturana and Varela 1987: 11). This somewhat unconventional use of
the term `cognition' may be clari®ed by Bourgine and Varela's (1992)
characterization of the cognitive self (similar to UexkuÈ ll's notion of
`subject') as the `speci®c mode of coherence, which is embedded in the
organism':

_ the cognitive self is the manner in which the organism, through its own self-
produced activity, becomes a distinct entity in space, though always coupled to its

corresponding environment from which it remains nevertheless distinct. A distinct
coherent self which, by the very same process of constituting itself, con®gures an
external world of perception and action. (Bourgine and Varela 1992: xiii)

Similar to UexkuÈ ll's emphasis of the subjective nature of living organisms,
Maturana and Varela (1987) point out that `all cognitive experience
involves the knower in a personal way, rooted in his biological structure'.
In particular they characterize living organisms, as well as the cells they
consist of, as autopoietic unities, i.e., self-producing and -maintaining
systems, and like UexkuÈ ll they point out that living systems, cannot be
properly analyzed at the level of physics alone, but require a biological
phenomenology:

_ autopoietic unities specify biological phenomenology as the phenomenology

proper to those unities with features distinct from physical phenomenology. This
is so, not because autopoietic unities go against any aspect of physical phenom-
enology Ð since their molecular components must ful®ll all physical laws Ð but

because the phenomena they generate in functioning as autopoietic unities depend
on their organization and the way this organization comes about, and not on the
physical nature of their components (which only determine their space of

existence). (Maturana and Varela 1987: 51)
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Maturana and Varela distinguish between the organization of a system
and its structure. The organization, similar to UexkuÈ ll's notion of a
building-plan (Bauplan), denotes `those relations that must exist among
the components of a system for it to be a member of a speci®c class'
(Maturana and Varela 1987: 47). Living systems, for example, are char-
acterized by their autopoietic organization. An autopoietic system is a
special type of homeostatic machine for which the fundamental variable
to be maintained constant is its own organization. This is unlike regular
homeostatic machines, which typically maintain single variables, such as
temperature or pressure. A system's structure, on the other hand, denotes
`the components and relations that actually constitute a particular unity,
and make its organization real' (Maturana and Varela 1987: 47). Thus
the structure of an autopoietic system is the concrete realization of
the actual components (all of their properties) and the actual relations
between them. Its organization is constituted by the relations between
the components that de®ne it as a unity of a particular kind. These relations
are a network of processes of production that, through transformation and
destruction, produce the components themselves. It is the interactions
and transformations of the components that continuously regenerate and
realize the network of processes that produced them.
Hence, according toMaturana and Varela (1980), living systems are not

at all the same as machines made by humans as some of the mechanistic
theories would suggest. Machines made by humans, including cars and
robots, are allopoietic. Unlike an autopoietic machine, the organization of
an allopoietic machine is given in terms of a concatenation of processes.
These processes are not the processes of production of the components that
specify the machine as a unity. Instead, its components are produced by
other processes that are independent of the organization of the machine.
Thus the changes that an allopoietic machine goes through without losing
its de®ning organization are necessarily subordinated to the production of
something di�erent from itself. In other words, it is not truly autonomous,
but heteronomous. In contrast, a living system is truly autonomous in the
sense that it is an autopoietic machine whose function it is to create and
maintain the unity that distinguishes it from the medium in which it exists.
Again, it is worth pointing out that, despite di�erences in terminology,
Maturana and Varela's distinction between autopoietic and allopoietic
machines, is very similar to UexkuÈ ll's (1928) earlier discussed distinction
between human-made mechanisms, which are constructed centripetally by
a designer and act according to his/her plan, and organisms, which as
`living plans' `construct' themselves in a centrifugal fashion.
The two-way ®t between organism and environment is what Maturana

and Varela refer to as structural congruence between them, which is the

Worlds of robots and animals 733



result of their structural coupling:

Ontogeny is the history of structural change in a unity without loss of organization
in that unity. This ongoing structural change occurs in the unity from moment to

moment, either as a change triggered by interactions coming from the environment
in which it exists or as a result of its internal dynamics. As regards its continuous
interactions with the environment, the _ unity classi®es them and sees them in
accordance with its structure at every instant. That structure, in turn, continuously

changes because of its internal dynamics. _
In these interactions, the structure of the environment only triggers structural

changes in the autopoietic unities (it does not specify or direct them), and vice versa

for the environment. The result will be a history of mutual congruent structural
changes as long as the autopoietic unity and its containing environment do not
disintegrate: there will be a structural coupling. (Maturana and Varela 1987: 74)

Moreover, similar to UexkuÈ ll's (1928) view of autonomous cellular
unities (Zellautonome) as the basic components of multicellular organisms,
Maturana and Varela refer to the former as `®rst-order autopoietic
unities' and to the latter as `second-order autopoietic unities', and they
characterize their integration/solidarity as follows:

_ in the dynamism of this close cellular aggregation in a life cycle, the structural
changes that each cell undergoes in its history of interactions with other cells are

complementary to each other, within the constraints of their participation in the
metacellular unity they comprise. (Maturana and Varela 1987: 79)

Finally, it should be mentioned that, although they are compatible in
many aspects, there are, of course, di�erences between the two theoretical
frameworks compared here. For example, UexkuÈ ll's outright rejection of
evolutionary theories in general, and the work of Darwin in particular, is
a position that in its strictness now, more than ®fty years later, appears
untenable (cf. Emmeche 1990; Ho�meyer 1996). Maturana and Varela's
work, although also skeptical towards neo-Darwinism and its overly
simplistic view of `natural selection', is certainly more in agreement with
modern evolutionary theory. In fact, the view of evolution as `natural drift'
is an important element of their theory of the biology of cognition
(for details see Maturana and Varela 1987; Varela et al. 1991). A common
criticism of Maturana and Varela's theory of autopoiesis, on the other
hand, is its disregard for such concepts as representation10 and information
(cf. Emmeche 1990). Hence, in this aspect many cognitive scientists, and
certainlymany researchers in semiotics, will probably prefer the theoretical
framework of UexkuÈ ll whose theories emphasize the central role of sign
processes in all aspects of life.
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On the di�erences between arti®cial and living organisms

Having discussed the di�erences between arti®cial organisms and conven-
tional mechanisms above, this section will examine what exactly the
(remaining) di�erences between living and arti®cial organisms are, and
what semiotic relevance these di�erences have. In the following discussion
concepts from both the theories of UexkuÈ ll as well as Maturana and
Varela will be used. We do so because we believe that the two theoretical
frameworks, concerning the issue at hand, are su�ciently compatible, and,
in fact, enrich each other.
As discussed in the previous sections, modern AI research on the

interaction between arti®cial organisms and their environments has, unlike
the still predominant computer metaphor, certainly taken a lot of
inspiration from biology. Nevertheless, modern autonomous robotics
and ALife research, due to its interest in (intelligent) behavior and its
focus on observability, often sidesteps much of the proximal details,
i.e., the actual biology, and goes directly for the behavior. Thus, robots are
enabled to interact with their environment, such that a distal description
of the behavior, at the right level, can be compared with the description
of some living systems' behavior at the same level of description
(e.g., `obstacle avoidance'). Thus, the Turing test has been replaced by a
behavioral test. If, for example, a robot avoids obstacles or follows a
cricket's calling song (cf. Lund et al. 1998) `just like a real animal', then
the internal processes of arti®cial and living organism are taken to be
equivalent, at least possibly. This, however, is just the observer's inter-
pretation of the robot's behavior. On some re¯ection, nobody would
suggest that the robot following the male cricket's calling song actually
does so in order to mate. UexkuÈ ll (1982: 36) pointed out that the `life-task
of the animal _ consists of utilizing the meaning carriers and the
meaning-factors, respectively, according to their particular building-
plan'. It might be argued that the calling song `carries meaning' for both
female cricket and robot, in the sense that they both utilize the signal
in order to move towards its source. Ultimately, however, we have to
acknowledge that this behavior is meaningful only for the cricket (or its
species), since it contributes to the ful®lling of its `life-task'. In the robot's
case this behavior is only meaningful to the observer, simply because the
robot has no `life-task' independent of observation, and its phonotaxis is
not at all part of a coherent whole of agent and environment (cf. also
Sharkey and Ziemke 1998, 2000).
The robot's relation to its environment is very di�erent from the living

organism's, i.e., the `embodiment' and `situatedness' of natural organisms
are far more deeply rooted than those of their arti®cial counterparts
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(cf. Ziemke 1999b). A robot might have self-organized its control system,
possibly even its physical structure to some degree, in interaction with
its environment, and thus have acquired a certain degree of `epistemic
autonomy' (Prem 1997; Cariani 1992). This self-organization, however,
starts and ends with a bunch of physical parts and a computer program.
Furthermore, the process is determined, started, and evaluated by a
human designer, i.e., the drive to self-organize does not lie in the robot's
components themselves and success or failure of the process is not `judged'
by them either. The components might be better integrated after having
self-organized; they might even be considered `more autonomous' for that
reason, but they certainly do not become alive in that process. Neither
do they suddenly have an intrinsic `life-task', even in an abstract sense;
the `task' still is in the head of the observer. The living organism, on the
other hand, starts its self-organizing process from a single autono-
mous cellular unity (Zellautonom). The drive to self-organize is part of its
`building plan' (Bauplan), and it is equipped, in itself, with the resources
to `carry out that plan'. From the very beginning the organism is a viable
unity, and it will remain that throughout the self-organizing process (until
it dies). T. von UexkuÈ ll (1997a) has pointed out that living organisms are
autopoietic systems (cf. previous subsection), which selectively assimilate
parts of their environment and get rid of parts they do not need anymore.
According to T. von UexkuÈ ll, selection and assimilation of the required
elements can be described as sign processes, whose interpretants cor-
respond to the living systems' biological needs. The criterion for the
correctness of the interpretation described by the sign process is the
successful assimilation. Robots, however, do not assimilate anything from
their environment, and, as mentioned above, they have no intrinsic needs
that the self-organizing process would have to ful®ll to remain `viable'.
Thus, for the robot the only criterion of success or failure is still the
designer's and/or observer's evaluation or interpretation, i.e., this criterion
is entirely extrinsic to the robot.

A key problem with research on arti®cial organisms, we believe, is that,
despite claims to the contrary and despite the emphasis of `embodiment',
many researchers are still devoted to the computationalist/functionalist
view of medium independence, i.e., the idea that the `characteristics of
life and mind are independent of their respective material substances'
(Emmeche 1992: 471). Much research e�ort is spent on control mecha-
nisms, or `arti®cial nervous systems', and how to achieve certain behaviors
in robots through self-organization of these controlmechanisms.However,
to compare a robot's `arti®cial nervous system' to an animal's nervous
system, because they exhibit `the same behavior', implies that the relation
between behavior and (arti®cial) nervous system is actually independent of
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the controlled body. In other terms, it implies that the operation of the
nervous system is computational and largely independent of the body it is
carried out in, i.e., the body is reduced to the computational control
system's sensorimotor interface to the environment.Maturana andVarela,
however, have argued (again, similar to UexkuÈ ll 1928; cf. also Ho�meyer
1996), that in living organisms body and nervous system are not at all
separate parts:

_ the nervous system contains millions of cells, but all are integrated as

components of the organism. Losing sight of the organic roots of the nervous
system is one of the major sources of confusion when we try to understand its
e�ective operation. (Maturana and Varela 1987: 34)

Similarly, T. von UexkuÈ ll et al. (1993, 1997), in their discussion of endo-
semiosis, point out that the living body, which we experience to be the
center of our subjective reality (Wirklichkeit), is the correlate of a neural
counterbody (GegenkoÈrper) which is formed and updated in our brain as
a result of the continual information ¯ow of proprioceptive signs from
the muscles, joints, and other parts of our limbs. This neural counterbody
is the center of the earlier discussed neural counterworld (cf. UexkuÈ ll 1909,
1985), created and adapted by the brain from the continual stream of
signs from the sensory organs. According to T.von UexkuÈ ll et al., counter-
body and counterworld form an undividable unity, due to the fact that
all processes/events we perceive in the world really are `countere�ects' to
real or potential e�ects of our motor-system, and together with these they
form the spatial structure within which we orient ourselves. A robot, on
the other hand, has no endosemiosis whatsoever in the body (its physical
components) as such. Thus, there is no integration, communication, or
mutual in¯uence of any kind between parts of the body, except for their
purely mechanical interaction. Further, there is no meaningful inte-
gration of the `arti®cial nervous system' and the physical body, beyond the
fact that some parts of the body provide the control system with sensory
input, which in turn triggers the motion of some other parts of the body
(e.g., wheels) (cf. also Sharkey and Ziemke 1998).
In summary, it can be said that, despite all biological inspira-

tion, arti®cial organisms are still radically di�erent from their living
counterparts. In particular, despite their capacity for a certain degree of
self-organization, today's so-called `autonomous' agents are actually far
from possessing the autonomy of living organisms. Mostly, this is due to
the fact that arti®cial organisms are composed of mechanical parts and
control programs. The autonomy and subjectivity of living systems, on
the other hand, emerges from the interaction of their components,
i.e., autonomous cellular unities (Zellautonome). Meaningful interaction
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between these ®rst-order unities, and between the resulting second-order
unity and its environment, is a result of their structural congruence, as
pointed out by UexkuÈ ll, as well as Maturana and Varela. Thus, autonomy
is a property of a living organism's organization right from its beginning
as an autonomous cellular unity, and initial structural congruence with
its environment results from the speci®c circumstances of reproduction.
Its ontogeny maintains these properties throughout its lifetime through
structural coupling with its environment. Providing artifacts with the
capacity for self-organization can be seen as the attempt to provide them
with an arti®cial ontogeny. However, the attempt to provide them with
autonomy this way is doomed to fail, since it follows from the above
argument that autonomy cannot from the outside be `put' into a system,
that does not already `contain' it. Ontogeny preserves the autonomy of an
organization; it does not `create' it. The attempt to bring the artifact into
some form of structural congruence with its environment, on the other
hand, can `succeed', but only in the sense that the criterion for congruence
cannot lie in the heteronomous artefact itself, but must be in the eye of the
observer. This is exactly what happens when a robot is trained to adapt its
structure in order to solve a task de®ned by its designer (cf. also Sharkey
and Ziemke 2000, where we discuss the relation to the case of Clever Hans
[Pfungst 1911]). Thus, the lack of autonomy makes the idea of true
`®rst hand semantics' or `content for the machine' in today's robotic
systems highly questionable.

Summary and conclusions

The aim of this article has been to discuss the relation between Jakob von
UexkuÈ ll's work and contemporary research in AI and cognitive science. In
particular, we have used his theory of meaning to evaluate the semiotic
relevance of recent research in adaptive robotics and ALife.

The article started o� by discussing UexkuÈ ll's and Loeb's views of the
di�erences between organisms and mechanisms, as well as early attempts
at putting mechanistic theories to the test through the construction of
arti®cial organisms. ThenAI's attempts to create a new type ofmechanism,
which should have some of the mental and/or behavioral capacities of
living organisms, was discussed. It was noted that, after three decades
of focusing on disembodied computer programs, AI research returned to
its cybernetic roots, and now again much research is devoted to the
interaction between agents and their environments.

The autonomous agents approach to AI and ALife has incorporated
in¯uences from a number of theories. From the work of Loeb and others
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the view that organisms are more or less guided by the environment
through taxes/tropisms has found its way into robotics, and has become
very in¯uential. From cognitivism many researchers, perhaps without
much re¯ection, have adopted the general idea that the nervous system
carries out computation, mapping sensory inputs to motor outputs.
However, the bottom-up approach distances itself strongly from the cogni-
tivist correspondence view of representation as a `mirror' of a pre-given
world and instead focuses on interactive representations as behavior-
guiding structures (Bickhard and Terveen 1995; Peschl 1996; Dor�ner
1997; Ziemke 1999a). This is much in line with UexkuÈ ll's view of signs as
embedded in the functional circles of agent-environment interaction.
Moreover, UexkuÈ ll in¯uenced Brooks' (1986a, 1991a) argument that, like
any living organism, an autonomous agent would have to have its own
`subjective' view of the world.
Further, it was then discussed how `arti®cial nervous systems' in com-

bination with computational learning techniques are used in the attempt
to make arti®cial organisms (more) autonomous by enabling them to
self-organize their sign processes. Several examples illustrated how
such techniques allow robots to ®nd their own way of organizing their
functional circles i.e., their internal use of signs and their response to
stimuli from the environment. It was further pointed out that the use of
self-organization and memory does indeed make arti®cial organisms a
unique type of mechanism that might be of further semiotic interest.
The previous section then ®rst examined the relation between UexkuÈ ll's

theory and Maturana and Varela's work on embodied cognition and its
biological basis. It can be noted that the two theoretical frameworks,
both developed against the `mainstream', are largely compatible, although
(unfortunately) developed independently. Moreover, the di�erences
between living and arti®cial organisms were examined in further detail.
It was pointed out that, despite all biological inspiration and self-
organization, today's so-called `autonomous' agents are actually far from
possessing the autonomy of living systems. This is mostly due to the fact
that arti®cial organisms are composed of mechanical parts and control
programs. Living organisms, on the other hand, derive their autonomy
and `subjectivity' from their cellular autonomous unities' integration and
structural congruence with the environment, as pointed out by UexkuÈ ll
as well as Maturana and Varela. Together with the fact that arti®cial
organisms simply lack an intrinsic `life task', this strongly questions
the idea of `®rst hand semantics' or `content for the machine' in today's
robotic systems.
However, it has been shown that the AI/ALife community strives to

minimize human intervention in the design of arti®cial organisms and
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actively investigates alternative, more `life-like' ways of `constructing' such
systems. So far self-organization through adaptation in interaction with
the environment has mostly been applied to control systems, but it has
also been discussed that researchers are beginning to apply similar
approaches to the integrated self-construction of robot bodies and
nervous systems. For future work along these lines a greater awareness
of Jakob von UexkuÈ ll's work would be important, since it could help to
avoid the pitfalls of `new' overly mechanistic theories. We believe that
his theories will prove to be of great value to researchers in robotics, ALife,
and embodied cognition in their endeavor to gain further understanding
of the meaningful embedding of living organisms in their worlds, as well
as the possibilities and limitations of their arti®cial counterparts.11

Notes

1. To avoid confusion between Jakob von UexkuÈ ll and his son Thure, we will throughout

the article refer to both authors by ®rst and last name, or to the former as `UexkuÈ ll' and

to the latter as `T. von UexkuÈ ll'.

2. Sebeok, for example, writes (in personal communication cited by T. von UexkuÈ ll 1982)

that `the criterial feature of living entities, and of machines programmed by humans,

is semiosis'.

3. See UexkuÈ ll's ®gure of the functional cycle in the beginning of this issue.

4. Langthaler (1992), with reference to T. von UexkuÈ ll, points out that UexkuÈ ll's view,

although often associated with vitalism, should really be considered a `third position',

combining elements of both mechanism and vitalism. In a similar vein Emmeche (this

issue) argues that UexkuÈ ll's theory, as well as modern biosemiotics in general, should be

considered a kind of qualitative organicism.

5. We here use the translation given by T. von UexkuÈ ll et al. (1993), who translate the

original German term `Zeichen' as `sign', rather than `token' as in the earlier translation

given in UexkuÈ ll (1985).

6. All our translations from German sources have been carried out by the ®rst author

(who is a native speaker).

7. A number of similar examples, built in the ®rst half of the twentieth century, has been

discussed by Slukin (1954).

8. Nowadays the term `re¯ex' is reserved for movements that are not directed towards

the source of stimulation whereas `taxis' and `tropism' are used to denote movements

with respect to the source of stimulation.

9. See also Ho�meyer (1996: 47) who argues (not speci®cally directed at AI though)

that `mental ``aboutness'' Ð human intentionality Ð grew out of a bodily ``aboutness''

(i.e., the behavior necessary for assuring reproduction and survival)' and points out that

we `cannot escape the fact that our minds remain embodied'.

10. See, however, also Varela et al.'s (1991) more recent formulation of an enactive cognitive

science, which is to a large extent compatible with an interactive view of representation.

11. The authors would like to thank Claus Emmeche and Kalevi Kull for helpful comments

on an earlier version of this article. Tom Ziemke is supported by a grant (1507/97) from

the Knowledge Foundation, Stockholm.
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