
## The Need for Hypotheses in Informatics

## Alan Bundy Informatics

University of Edinburgh



## The Significance of Research



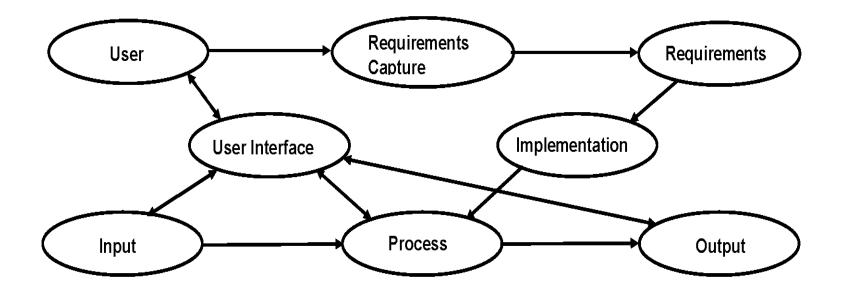
# Importance of Hypotheses

- Science and engineering proceed by
  - the formulation of hypotheses
  - and the provision of supporting (or refuting) evidence for them.
- Informatics should be no exception.
- But the provision of explicit hypotheses in Informatics is rare.
- This causes lots of problems.
- My mission to persuade you to rectify this situation.

# Problems of Omitting Hypotheses

- Usually many possible hypotheses.
- Ambiguity is major cause of referee/reader misunderstanding.
- Vagueness is major cause of poor methodology:
  - Inconclusive evidence;
  - Unfocussed research direction.

# Exploration of Techniques Space

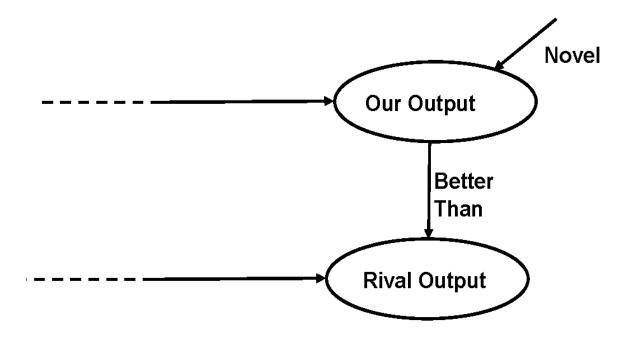

- Invention of new technique,
- Investigation of technique,
  - e.g. discovery of properties of, or relationships between, techniques.
- Extension or improvement of old technique,
- New application of a technique,
  to artificial or natural systems.
- Combine several techniques into a system.

# Hypotheses in Informatics

- Claim about task, system, technique or parameter, e.g.:
  - All techniques to solve task X will have property Y.
  - System X is superior to system Y on dimension Z.
  - Technique X has property Y.
  - X is the optimal setting of parameter Y.
- Properties and relations along scientific, engineering or cognitive science dimensions.
- May be several hypothesis in each publication.

#### Rarely explicitly stated

# **Graphical Depiction of Project**



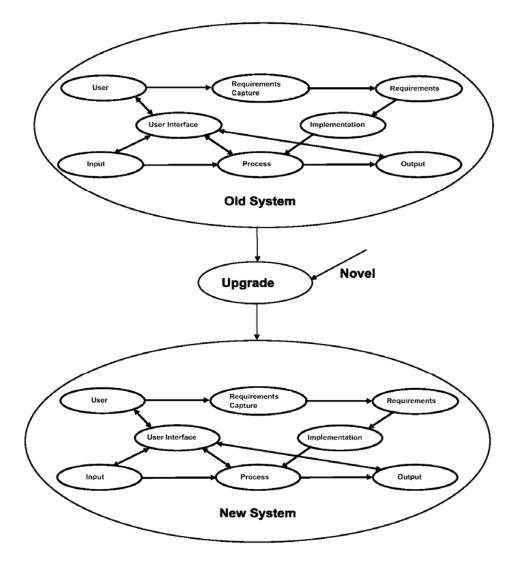

- Systematic generation of hypotheses.
  - . By adding novelty label to nodes.

## **Scientific Dimensions 1**

- Behaviour: the effect or result of the technique,
  - correctness vs quality,
  - need external 'gold standard';
- Coverage: the range of application of the technique,
  - complete vs partial;
- Efficiency: the resources consumed by the technique,
  - e.g. time or space used,
  - usually as approx. function, e.g. linear, quadratic, exponential, terminating.

### **Behavioural Dimension**




# Scientific Dimensions 2

- Sometimes mixture of dimensions,
  - e.g., behaviour/efficiency poor in extremes of range.
- Sometimes trade-off between dimensions,
   e.g., behaviour quality vs time taken.
- Property vs comparative relation.
- Task vs systems vs techniques vs parameters.

# **Engineering Dimensions**

- **Usability**: how easy to use?
- **Dependability**: how reliable, secure, safe?
- Maintainability: how evolvable to meet changes in user requirements?
- **Scalability**: whether it still works on complex examples?
- **Cost**: In £s or time of development, running, maintenance, etc.
- **Portability**: interoperability, compatibility.

## **Maintainability Dimension**



### Computational Modelling Dimensions

• External: match to external behaviours,

both correct and erroneous.

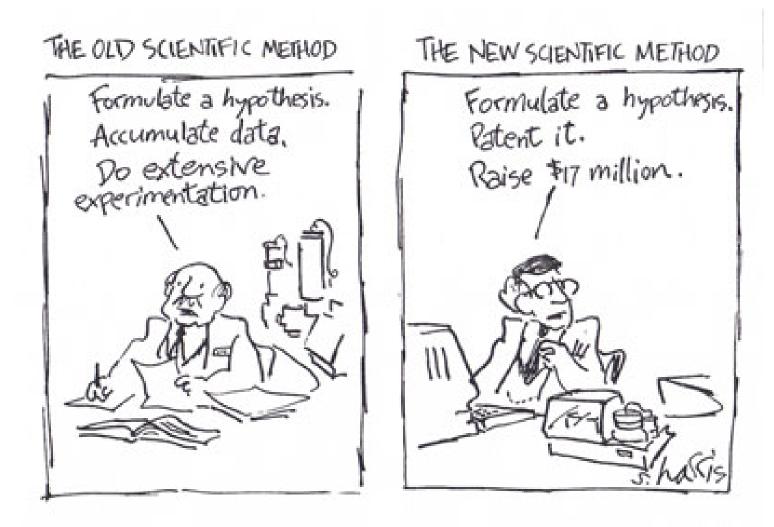
- Internal: match to internal processing,
   clues from e.g. protocol analysis.
- Adaptability: range of occurring behaviours modelled
  - ... and non-occurring behaviours not modelled.
- **Evolvability**: ability to model process of development.

All this to some level of abstraction.

## Exercise: Hypotheses

What Informatics hypotheses can you think of?

- Choose system/technique/parameter setting.
- Choose science/engineering/cognitive science dimensions.
- Choose property or relation.
- Has property or is better than rival on property?
- Other?


## **Theoretical Research**

- Use of mathematics for definition and proof.
   or sometimes just reasoned argument.
- Applies to task or technique.
- **Theorem** as hypothesis; **proof** as evidence.
- Advantages:
  - Abstract analysis of task;
  - Suggest new techniques, e.g. generate and test;
  - Enables proof of general properties/relationships,
    - cover potential infinity of examples;
    - Suggest extensions and generalisations;

#### • Disadvantage:

- Sometimes difficult to reflect realities of task.

## Experimentation



## **Experimental Research**

### • Kinds:

- exploratory vs hypothesis testing.

### • Generality of Testing:

- test examples are representative.

### • Results Support Hypothesis:

- and not due to another cause.

## How to Show Examples Representative

- Distinguish development from test examples.
- Use lots of dissimilar examples.
- Collect examples from an independent source.
- Use the shared examples of the field.
- Use challenging examples.
- Use acute examples

## How to Show that Results Support Hypothesis

- Vary one thing at a time,
  - then only one cause possible.
  - Unfortunately, not always feasible.
- Analyse/compare program trace(s),
  - to reveal cause of results.
- Use program analysis tools,
  - e.g. to identify cause/effect correspondences

# Hypotheses must be Evaluable

- If hypothesis cannot be tested then fails Popper's test of science.
- Obvious hypothesis may be too expensive to evaluate,
  - e.g. programming in MyLang increases productivity,
- Replace with evaluable hypothesis:
  - Strong typing reduces bugs.
  - MyLang has strong typing.

# Summary

- Informatics advances via formulation of hypotheses,
  - and providing supporting (or refuting) evidence for them.
- Hypothesis typically establish or compare properties along some dimension.
- Property dimensions include:
  - Scientific: behaviour, coverage, efficiency.
  - Engineering: fitness, usability, dependability, maintainability, scalability.
  - Computational modelling: external, internal, adaptability, evolvability.
- Both theory and experiment can provide evidence. 9-Oct-10