

1

The Nature of Informatics

Alan Bundy Informatics

University of Edinburgh

What is Informatics?

The study of the structure, behaviour, and interactions of both natural and artificial computational systems.

What are the Big Informatics Questions?

- What is the nature of computation/information?
- What is mind?
- How can we build useful ICT products?

Subfields of Informatics

- **Computer Science**: studies and builds artificial systems.
- Artificial Intelligence: emulates intelligence within artificial systems.
- **Cognitive Science**: studies natural systems from a computational viewpoint.

Analogy with Maths and Physics

Scientific Informatics	Pure Mathematics
Basic Al	Applied Mathematics or `Pure' Engineering
Applied Informatics	Engineering
Cognitive Science	Theoretical Physics
Psychology	Physics

Old Boundaries are Breaking Down

- Many AI techniques are now mainstream CS,
 - e.g. renewed interest in stochastic and search methods.
- Natural systems inspire new artificial techniques,
 - e.g. brain architecture as model for computer architecture.
- Common, cross-cutting themes,
 e.g. logical reasoning, probabilistic reasoning.
- Need for new unifying science: Informatics.

Science vs Engineering in Informatics

- Informatics as Science: theory and experiment
 - deepen understanding of tasks and techniques;
 - suggests new techniques;
 - cognitive modelling improves understanding of natural systems.

• Informatics as Engineering: new techniques

- suggest new applications;
- better understanding leads to greater dependability;
- results feed back into science.

Exploration of Technique Space

- Informatics as the space of computational techniques.
- Job of Informatics to explore this space.
 - Which techniques are good for which tasks?
 - What are properties of these techniques?
 - What are relationships between these techniques?

What are Informatics Techniques?

- Information Representation: e.g. databases, hash tables, production rules, neural nets.
- Algorithms: e.g. quick sort, depth-first search, parser.
- Architectures: e.g. von Neumann, parallel, agents.
- **Software Engineering Processes**: e.g. extreme programming, knowledge acquisition/requirements capture.
- **Theories**: e.g. denotational semantics, process algebras, computational logics, hidden Markov models.

Exercise: Informatics Techniques

What additional Informatics techniques can you think of?

- Information Representation?
- Algorithms?
- Architectures?
- Software Engineering Processes?
- Theories?
- Other kind?

The Space of Informatics Techniques

- Multi-dimensional space of techniques,
 linked by relationships.
- Rival techniques for same task, – with tradeoffs of properties.
- Complementary techniques which interact.
- Build systems from/with collections of techniques

Generic Questions

- General, long-term questions addressed by Informatics researchers:
 - How can computer systems be made easier to use?;
 - How can computer systems be made more dependable?
 - How can we build computational models of complex systems?
- Many different research areas contribute solutions.
 - Ease of use: HCI, programming languages, graphics, ...
- Multiple solutions required for ICT products.
 - Usability, dependability, efficiency, ...

Technology Transfer in ICT

Research Platforms

- Virtual machines on/with which further research is built, e.g.
 - programming languages, analysis/development tools, operating systems, reasoning engines, parsers,
- Improve productivity so facilitate new possibilities.
- May incorporate new techniques.
- Criteria: dependability, efficiency, support/maintenance, usability.

Computational Thinking

- Computational thinking influences many other disciplines.
- The ways in which they formulate hypotheses, e.g.,
 - DNA as a program, the universe as a computer.
- The kinds of questions they ask and answers they accept,

- e.g., e-Science, morphing faces.

Summary

- Unified computational study of natural and artificial systems.
- Exploration of techniques space.
- Both science and engineering.
- Recommended reading: "What is Informatics?"
 - http://www.informatics.ed.ac.uk/about/vision.html.