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Abstract

A survey of 150 papers from the Proceedings of the Eighth National Conference on
Artificial Intelligence (AAAI-90) shows that AI research follows two methodologies,
each incomplete with respect to the goals of designing and analyzing AI systems but
with complementary strengths.  I propose a mixed methodology and illustrate it with
examples from the Proceedings.
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1. Introduction

As fields mature they produce subfields—AI has one or two dozen, depending on how you count.
Subfields are differentiated by subject and methodology, by what they study and how they study it.
Subfields in AI study intelligent functions such as learning, planning, understanding language,
perception; and underpinnings of these functions such as commonsense knowledge and reasoning.
We could debate whether it makes sense to study intelligence piecewise—where you solve vision and I
solve planning, and someday we get together to build autonomous mobile robots—but this is not our
main concern here. If AI researchers are not pulling together, if the field is pulling apart, it is less
because we study different subjects than because we have different methods.  To support this claim, we
present the results of a survey of 150 papers from the Proceedings of the Eighth National Conference on
Artificial Intelligence (AAAI-90) [0].  We offer evidence for four hypotheses: first, AI research is
dominated by two methodologies;  second, with respect to the goal of developing science and technology
to support the design and analysis of AI systems, neither methodology is sufficient alone; third, the
bulk of AI research consequently suffers from familiar methodological problems, such as lack of
evaluation, lack of hypotheses and predictions, irrelevant models, and weak analytical tools; and
fourth, there exists a methodology that merges the current “big two”and eliminates the conditions that
give rise to methodological problems. Our survey provides direct statistical support for the first claim;
the other claims are supported by statistical evidence and excerpts from the papers in AAAI-90.

Our presentation has three parts: a summary of the survey and general results, a discussion of our
hypotheses, and a pair of appendices that contain details of the survey and statistical analyses. Section
2 briefly describes the 16 substantive questions we asked about each paper. The criteria for answering
them are discussed in detail, and illustrated with excerpts from AAAI-90, in Appendix 1.  Section 3
paints a picture of AAAI-90 with broad, descriptive statistics.  Section 4 restates our hypotheses, and
Sections 4.1 – 4.3 discuss the evidence for them (Appendix 2 documents the statistical analyses).
Arguments against the methodology we propose in Section 4.3 are considered—but not conceded—in
Section 5.

We acknowledge that methodological papers are unpalatable for a variety of reasons. But they also
indicate that the field is approaching maturity (e.g., [10] Ch. 7), and so should be welcomed for this
reason if not for the problems they raise. In fact, this is an extremely positive paper because, unless we
have misread the field very badly, it should be easy to remove the structural, endogenous causes of our
methodological problems. Then we have to worry only about conservatism and other sociological
impediments, which can be addressed in curricula and editorial policy.
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2. The Survey

The survey covered 150 of 160 papers from AAAI-90.  All the papers were read by one individual,
who omitted the ten papers he did not understand or that did not fit easily into Table 1. Each paper is
characterized by the 19 fields in Table 1. We will describe these fields only briefly here, in order to get
quickly to the survey results (the reader should consult Appendix 1 for detailed descriptions of the
fields). Two kinds of data were collected from each paper: the purpose of the research and how the paper
convinces the reader that its purpose has been achieved.  Fields 3 – 8 of Table 1 represent purposes;
specifically, to define models (field 3) prove theorems about the models (field 4) present algorithms
(field 5) analyze algorithms (field 6) present systems and/or architectures (field 7) and analyze them
(field 8). These purposes are not mutually exclusive; for example, many papers that presented models
also proved theorems about the models.

Models are formal characterizations of behaviors (e.g., two papers in AAAI-90 present models of
cooperative problem solving) or task environments (e.g., several papers focus on recursive problem-
space structures). Some papers extended models to incorporate new behaviors (e.g., extending
ordinary constraint-satisfaction problem solving to include dynamic constraints on variables). Some
papers generalized models and others differentiated them, demonstrating on the one hand that two or
more models have a common core, and, on the other, that a model fails to distinguish behaviors or task
environments. Some papers provided formal semantics for models that had previously included
vague terms (e.g., probabilistic semantics for costs). More than half the papers in AAAI-90 presented
algorithms (field 5) and many also analyzed the algorithms (field 6). Complexity analyses
dominated.  Surprisingly, only 45 papers presented systems (field 7) and even fewer analyzed systems
(field 8). The distinctions between models, algorithms and systems are somewhat subjective and are
illustrated in Appendix 1.

Fields 9 – 18 in Table 1 represent methodological tactics for convincing the reader that the purpose
of a paper has been achieved.  The most common tactic was to present a single example (field 9); but
many papers reported studies involving multiple trials, designed to assess performance (field 12), or
assess the coverage of techniques on different problems (field 13) or compare performance (field 14).
Three fields in Table 1 describe examples and tasks (fields 9, 10,11). Natural examples and tasks are
those humans encounter, such as natural language understanding, cross-country navigation, and
expert tasks; synthetic examples and tasks share many characteristics with natural tasks but are
contrived (e.g., simulations of robots in dynamic environments); abstract examples and tasks are
designed to illustrate a single research issue in the simplest possible framework (e.g., N queens, the
Yale Shooting problem, Sussman’s anomaly, etc.). Some papers described techniques embedded in a
larger environment (e.g., temporal projection embedded in a planning system).
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1. Paper ID number
2. Paper classification
3. Define, extend, generalize,
differentiate, semantics for models

72

4. Theorems and proofs re: model 49
5. Present algorithm(s) 84

6. Analyze algorithm(s) 61
complexity
27

formal
19

informal
15

7. Present system 45

8. Analyze aspect(s) of system 21
complexity
5

formal
3

informal
13

9. Example type 133
natural
39

synthetic
24

abstract
70

10. Task type 63
natural
32

synthetic
9

abstract
22

11. Task environment 63
embedded
28

not embed’d
35

12. Assess Performance 38
13. Assess Coverage 4
14. Comparison 24
15. Predictions, hypotheses 25
16. Probe results 18
17. Present unexpected results 8
18. Present negative results 4
19. Comments

Table 1.  Our classification scheme for AAAI-90 papers. The number of papers in each classification is shown in the
columns. For example, of 61 papers that analyzed algorithms, 27 offered complexity analyses, 19 presented
other formal analyses, and 15 gave informal analyses. Where possible answers are not listed, the answers are
“yes” and “no,” and the number of “yes” answers is reported. For example, 18 of the 150 papers probed results.
There are no mutually exclusive subsets of fields (although the answers to the question in each field are mutually
exclusive) so each paper can contribute to the total for every field.
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Relatively few papers presented hypotheses or predictions (field 15). The criteria for what counts as
hypotheses and predictions are discussed in Appendix 1, but because the absence of hypotheses in
AAAI-90 is central to the rest of this paper, we must note here that worst-case complexity results—which
were very common in AAAI-90 papers—did not count as hypotheses or predictions. They are
predictions of a sort, but predictions of performance in the most extreme circumstances; and they tell
us nothing about how common the worst-case circumstances are apt to be, nor how techniques will
behave in average cases.  Not only were average-case hypotheses and predictions rare, but so too were
follow-up experiments to probe previous results (field 16), and reports of negative and unexpected
results (fields 17,18).  Because hypothesis testing, followup studies and replications with extensions
are common and compelling methodological tactics throughout the sciences, their absence from AAAI-
90 is troubling.

The survey involved subjective judgments, but no reliability studies have been performed. This
caveat and related concerns are discussed further in Appendix 2. To compensate for the lack of
reliability, the criteria for classifying the papers are discussed in detail and illustrated with excerpts
from the papers themselves in Appendix 1. Excerpts from AAAI-90 are referenced by the following
convention: each is identified by a single number which is either the page number in the Proceedings
on which the excerpt is to be found, or is the page number of the first page of the paper.  A few excerpts are
unattributed.

3. General Results.

Of the 150 papers surveyed, most included one or more examples (field 9) but fewer than half
described a task and trials of a system beyond a single example (field 10), and only 45 papers
demonstrated performance in some manner (fields 12,13,14). 104 papers offered some kind of analysis
(see below). 24 papers probed or otherwise examined results (fields 16,17,18), and 25 papers presented
hypotheses or predictions (field 15).

150 papers

89%  offered one or more examples

42%  described trials beyond the examples

16% probed results

69% provided some analysis

17% presented hypotheses or predictions

30%  demonstrated performance

Figure 1.  Summary of results from the survey of papers in AAAI-90.

These results are summarized in Figure 1. The general picture is that AAAI-90 published
preliminary, often unevaluated work. Although one would expect to see hypotheses and predictions
even in preliminary research, these were notably absent from AAAI-90.



AAAI-90 Survey:  Pulling Together or Pulling Apart? Paul R. Cohen

5

4. Four Hypotheses

AI is two schools of thought swimming upstream. — C. R. Beal.

Our survey provides support for four hypotheses about the current state of AI research. First, most
AI research is conducted with two methodologies which have in the past been associated with “neat”
and “scruffy” styles of AI research. Second, with respect to the goals of providing science and
technology to support the design and analysis of AI systems, neither methodology is sufficient alone.
Third, common methodological problems arise because AI’s methodologies are insufficient to its
goals. Fourth, by combining aspects of the two methodologies, we get another less prone to these
methodological problems. The following sections discuss the evidence for these hypotheses. Section 4.1
relies heavily on statistical evidence to support the two-methodology hypothesis, whereas Sections 4.2
and 4.3, which discuss the other hypotheses, rely on excerpts from papers in AAAI-90. The third
hypothesis, which claims a causal relationship, is supported only indirectly by showing that
methodological problems are present when the two methodologies are practiced individually (see Sec.
4.2) and absent when aspects of the two methodologies are combined (see Sec. 4.3). It’s an important
hypothesis because it claims that many or all of AI’s methodological problems have a common root,
and, so, it suggests these problems can be corrected en masse. The fourth hypothesis is supported by
describing and demonstrating aspects of the combined methodology in some papers in AAAI-90.

4.1 Hypothesis 1. Two Methodologies.

To support our first hypothesis—that AI is dominated by two methodologies—we classify the papers
in AAAI-90 by some of the fields in Table 1, and show that the classification produces two clusters of
papers with few papers in common.  Then we demonstrate that the papers in these clusters represent
different methodologies, called model-centered and system-centered, respectively.

We used fields 3 – 8 of Table 1 to classify the papers into three sets and their intersections, shown in
Figure 2a.  The first set, called MODELS, includes those papers that had “yes” in field 3 or 4, that is,
papers that dealt with models. 25 papers dealt with models alone, 43 dealt with models and algorithms,
1 dealt with models and systems, and 4 dealt with all three topics. The second set, called ALGS,
includes all papers that presented algorithms (field 5) or some kind of analysis of the algorithms
(field 6). The third set, called SYSTEMS, contains papers that presented systems or analyses of
systems (fields 7 and 8, respectively). One paper belonged to none of these classes, so the total number
of papers for all further discussions is 149, not 150; this causes some totals in the subsequent analyses to
be one less than indicated by Table 1.

The overlap between MODELS and ALGS is considerable, whereas few papers belonged to these
classes and belonged to SYSTEMS.  As shown in Figure 2b, we denote as model-centered the papers in
MODELS, ALGS and MODELS ∩ ALGS (104 papers in all). We refer to papers from SYSTEMS as
system-centered (37 papers in all). Eight hybrid papers reside in the intersection of the other two
classes.
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25 3643

41 3

37

MODELS ALGS

SYSTEMS

MODEL-CENTERED

HYBRID

SYSTEM-CENTERED

Figure 2a,b.  Papers in AAAI-90 classified by fields 3 – 8.

Model-centered papers represent one methodology and system-centered papers, another. To show
that these methodologies are both real and significantly different, we adopt the following strategy:
Starting with the classification of papers in Figure 2b,  we test whether the classifications are
correlated with methodological choices represented by fields 9 – 18 of Table 1. For example, if most
system-centered papers present natural examples and most model-centered papers present abstract
examples (field 9), then, because this distribution of task types is unlikely to have occured by chance,
the classification of a paper as system-centered or model-centered implies a methodological choice,
namely, the choice of an example.  Simple statistical tests, described in Appendix 2, tell us whether the
methodological choices in fields 9 – 18 are independent of the classifications in Figure 2b. In general,
they are not:  system-centered papers represent very different methodological tactics than model-
centered papers.

The following items describe how system-centered and model-centered papers differ
methodologically.  Details of the analyses are described in Appendix 2.

1.  Model-centered papers present different kinds of examples than system-centered and hybrid
papers. In particular, 76% of model-centered papers gave abstract examples or no examples at all,
whereas 84% of system-centered and hybrid papers dealt with natural or synthetic examples. This
result is highly significant (χ2(6) = 55.5, p < .0001).

2.  The classes MODELS, ALGS and MODELS ∩ ALGS (Fig. 2) could not be differentiated by the
kinds of examples they contained. 84% of the papers in MODELS, 81% of the papers in MODELS ∩
ALGS, and 64% of the papers in ALGS, gave abstract examples or no examples at all. Because papers in
MODELS, ALGS and MODELS ∩ ALGS presented the same kinds of examples with roughly the same
relative frequencies, we are justified in combining the papers in these sets into the single class of
model-centered papers.  The papers in MODELS are “pre-implementation” and tend to be definitional,
whereas those in ALGS and MODELS ∩ ALGS typically describe implemented algorithms.  These
differences, however, are statistically independent of the kinds of examples that motivate the papers
(χ2(6) = 7.26, p > .29).

3.  Recall that some papers described tasks, that is, multiple trials beyond a single illustrative
example. As with examples, tasks are classified as natural, synthetic, abstract, and none (field 10);
and as with examples, we find differences between model-centered and system-centered papers in the
kinds of tasks they address:  85% of model-centered papers describe abstract tasks or no tasks at all,
whereas 58% of system-centered and hybrid papers describe natural or synthetic tasks. This result is
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highly significant (χ2(6) = 55.4, p < .0001). None of the 25 papers in MODELS addressed a task, which
is not surprising if we view them as “pre-implementation” papers; but we were very surprised to find
that 41% of system-centered papers described no task, that is, nothing more than a single illustrative
example. Still, a greater proportion of system-centered papers (59%) than model-centered papers (33%)
described tasks (χ2(2) = 11.9, p < .005).

4.  Of the papers that did report multiple trials on tasks, 86% of the system-centered and hybrid
papers described embedded task environments, whereas 88% of model-centered papers described non-
embedded task environments. Again, this result is highly significant (χ2(2) = 33.9, p < .0001) but
hardly surprising: By definition, the techniques discussed in system-centered papers are embedded in
a system (otherwise the paper wouldn’t have been classified as system-centered in the first place). The
surprise is that model-centered papers (mostly from ALGS) were tested so rarely in embedded task
environments—in systems or in real physical environments.

5.  Model-centered and system-centered papers differ in their orientation toward assessing
performance, assessing coverage, and comparing performance (fields 12, 13, 14, respectively). We
say that a paper presents a demonstration if it reports at least one one of these three activities.
Remarkably, a higher proportion of model-centered papers (30%) than system-centered papers (22%)
presented demonstrations, even though 25 model-centered papers (from MODELS) were “pre-
implementation” papers with nothing to demonstrate. Statistically, this result is suggestive but not
significant (χ2(2) = 5.29, p < .07). However, if we look at the papers that described a task (field 10),
thereby “declaring their intention” to demonstrate their techniques on multiple trials, and ask the
question again, we get a highly significant result: 36% of the system-centered papers that described a
task also presented demonstrations, compared with 91% of the model-centered papers and five of the
six hybrid papers (χ2(2) = 19.97, p < .001). Even though more system-centered papers described multiple
trials on tasks, relative to model-centered papers, fewer presented successful demonstrations. It seems
easier to demonstrate the performance of an algorithm on an abstract problem than an entire system
on a natural or synthetic problem. (See Appendix 1 for a list of abstract problems.)

6.  Recognizing that demonstrations are only one way to evaluate a technique (and not a
particularly informative one, at that) we looked at whether system-centered and model-centered
papers had different propensities to analyze their contributions.  We found that 79% of model-centered
papers, six of eight hybrid papers, and just 43% of system-centered papers reported any kind of
analysis. This is highly significant (χ2(2) = 16.5, p < .0005); however these results are not strictly
comparable with the previous ones because they depend on a slight redefinition of system-centered,
model-centered, and hybrid; see Appendix 2.

7.  Finally, we looked at the relative frequencies of hypotheses, predictions, probes, unexpected
results, and negative results (fields 15 – 18, respectively). We had hoped to analyze these fields
separately but only field 15 (hypotheses, predictions) contained enough data to support statistical tests.
By combining the fields we were asking whether the researcher had any expectations beyond the
common assertion that a technique will work (see Appendix 1 for descriptions of fields 15 – 18). Once
again, we found a significant effect of methodology: 22% of model-centered, 11% of system-centered,
and five of eight hybrid papers had expectations (χ2(2) = 10.5, p < .01). While few papers overall gave
evidence of expectations, model-centered and hybrid papers did so more often than system-centered
papers, suggesting that the models in model-centered papers may have offered a small advantage in
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generating hypotheses and predictions.

The paucity of expectations in fields 15 – 18 is disturbing, so we asked whether evidence of
expectations could be found in other fields in Table 1.  One possibility is field 14, which we used to
register papers that compared performance among techniques.  We reasoned that the techniques had
been selected not arbitrarily but to probe or explore expectations about their relative strengths and
weaknesses. Remarkably, model-centered papers numbered 20 of the 24 that compared performance,
lending further support to the idea that the models in model-centered papers are used to generate
expectations; conversely, lacking models, system-centered papers are generally devoid of
expectations.

In summary, we have presented evidence that AI is dominated by two methodologies.  Model-
centered research involves defining, extending, differentiating and generalizing models, analyzing
and proving theorems about these models, designing and analyzing algorithms, and testing
algorithms on abstract problems such as N Queens and Blocks World. System-centered research
involves designing systems to perform tasks that are too large and multifaceted to be accomplished by
a single algorithm.  System-centered papers represent different methodological tactics than model-
centered papers; they are concerned with different kinds of examples, tasks, and task environments
than model-centered papers.  System-centered papers are more apt to describe multiple trials on a task
but they are less likely to demonstrate performance than model-centered papers.  Systems are less
likely to be analyzed than the algorithms in model-centered papers; and system-centered papers
present fewer hypotheses, predictions, and other evidence of expectations than model-centered papers.
In the crudest terms, system-centered researchers build large systems to solve realistic problems, but
without explicit expectations, analyses or even demonstrations of the systems’ performance; whereas
model-centered researchers typically develop algorithms for simple, abstract problems, but with
deeper analysis and expectations, and more demonstrations of success.

4.2.  Hypotheses 2 and 3: Insufficient Methodologies Cause Methodological Problems.

We are developing a case that comprises four claims: there are two AI methodologies; neither is
sufficient, alone; almost nobody is using both methodologies together; however, in combination the
methodologies are sufficient.  Our results are pretty unequivocal about the first and third claims: the
two methodologies are real enough, involving different methodological choices, and only eight of 150
papers bridged the methodologies.  This section presents evidence that the methodologies are not
sufficient, and the next section argues that a composite methodology is sufficient. Along the way we
show that common methodological problems—from poor evaluation to absurd assumptions—arise
because AI’s methodologies are not sufficient.

If the goal of AI research is to develop science and technology to support the design and analysis of
intelligent computer systems, then neither the model-centered nor the system-centered methodology is
sufficient alone. Substitute for “intelligent computer systems” the name of other designed artifacts—
airplanes, chemical processes, trading systems, etc.—and one sees immediately that central to our
goal is the ability to predict and analyze the behavior of our systems. But our survey shows virtually no
interaction between researchers who develop models that are in principle predictive and analytic, and
those who build systems. AI has developed a remarkable collection of models; the trouble seems to be
that some models are inadequate for predicting and analyzing the behavior of AI systems, while others



AAAI-90 Survey:  Pulling Together or Pulling Apart? Paul R. Cohen

9

are not being used in this way.

We can illustrate these points with examples of research that does effectively merge model
building and system building, research that relies on models to predict the behavior of systems under
analysis and systems under design. Tambe and Rosenbloom’s contribution to AAAI-90 relies on two
kinds of models to discuss issues in the design of production match algorithms. One, the k-search
model describes the complexity of these algorithms. Tambe and Rosenbloom use this model to show
that if productions have a structure called the unique-attribute formulation, then a match algorithm
will require time linear in the number of conditions. Thus, they justify the unique-attribute
formulation for real-time applications. They report, as several others do in AAAI-90 and elsewhere,
that this reduction in complexity is bought at the cost of expressiveness [e.g., 633, 640], the so-called
expressiveness/tractability tradeoff [16].

Tradeoffs are essential to designers because they can be used to predict—if only comparatively and
qualitatively—the behavior of alternative designs. The most useful tradeoffs are operational in the
sense of telling the designer what to change—which “knobs to tweak”—to change behavior. The
expressiveness/ tractability tradeoff is not operational: it is too general, and researchers have to figure
out for themselves how to find a compromise design. Because the model-centered papers in AAAI-90
are not concerned with systems (i.e., they lack architectural knobs to tweak) they do not operationalize
the expressiveness/tractability tradeoff (or other tradeoffs);  and because these papers do not consider
applications, they have no basis for preferring the behavior of one design over another. They say, yes,
there is a tradeoff, but until we build a system there’s no way to know what to do about it. For example:

In obtaining generality, our inheritance formalism also becomes intractable. We have tried to keep an
open mind on whether it is best to secure a polynomial inheritance algorithm at all costs, or to provide
expressive adequacy even if this requires intractable algorithms. ... Both sorts of systems need to be
tested.  [639]

Tambe and Rosenbloom, however, operationalized the expressiveness/tractability tradeoff by
exploring it in the context of production system architectures. This gives them architectural knobs to
tweak. They introduce their second model, a framework in which to compare particular kinds of
restrictions on the expressiveness of productions (e.g., restrictions on the number of values per
attribute). They show that within this framework the unique-attributes formulation is optimal: “All
other formulations are either combinatoric, so that they violate the absolute requirement of a
polynomial match bound; or they are more restrictive than unique-attributes.” [696]  Later, they extend
the model to incorporate other aspects of the structure of productions, in effect expanding the space of
designs by increasing the number of knobs that can be tweaked. In this space, unique-attributes is not
guaranteed to be better than other possible formulations.

Like Tambe and Rosenbloom, Subramanian and Feldman develop a model to represent a design
tradeoff and to show that some designs are inferior to others:

[We] demonstrate the conditions under which ... to use EBL to learn macro-rules in recursive domain
theories.  ... We begin with a logical account of the macro-formation process with a view to
understanding the following questions: What is the space of possible macro-rules that can be learnt in a
recursive domain theory? ... Under what conditions is using the original domain theory with the rules
properly ordered, better than forming partial unwindings of a recursive domain theory? ...

The overall message is that for structural recursive domain theories where we can find if a
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rule potentially applies by a small amount of computation, forming self-unwindings of recursive rules
is wasteful. The best strategy appears to be compressing the base case reasoning and leaving the
recursive rules alone. We proved this using a simple cost model and validated this by a series of
experiments. We also provided the algorithm R1 for extracting the base case compressions in such a
theory. [949]

Such papers are rare in AAAI-90; only eight of 149 papers reside in the intersection of model-
centered and system-centered research. Is this bad? We have offered a couple of examples in which the
methodologies are profitably merged, now we document the costs of working in one methodology
exclusively. This is most convincing when we let researchers within each methodology speak for
themselves.  We begin with model-centered research.

4.2.1. Models Without Systems

One concern is that the analytical tools of model-centered research do not cut finely enough, and so
empirical research is necessary.  Worst case complexity analysis—the most common kind of
analysis in AAAI-90—does not tell us how systems will perform in practice. Model-centered
researchers acknowledge that intractable tasks may in fact be possible and approximations or
otherwise weakened models may suffice:

The worst-case complexity of the algorithm is exponential in the size of the formula. However, with an
implementation that uses all possible optimizations, it often gives good results. [166]

This pessimistic [intractability] result must be taken in perspective. Shieber’s algorithm works well in
practice, and truly extreme derivational ambiguity is required to lead it to exponential performance.
[196]

Of course complete and tractable subsumption algorithms for the whole language and for the
standard semantics presented here cannot be expected. In Allen’s interval calculus ... determining all
the consequences of a set of constraints is NP-hard. ... That does not render these formalisms useless.
On the one hand it remains to be seen to what extent normal cases in practical applications can be
handled even by complete algorithms. On the other hand, algorithms for computing subsumption in
terminological logics that are incomplete with respect to standard semantics are increasingly being
characterized as complete with respect to a weakened semantics. [645]

Another concern is that model-centered research is driven by formal issues that would fade away
like ghosts at dawn in light of natural problems. One such argument, by Etherington, Kraus and
Perlis [600], suggests that apparent paradoxes in nonmonotonic reasoning disappear when we
reconsider what nonmonotonic reasoning is intended to do:

We briefly recount four such “paradoxes” of nonmonotonic reasoning. ... The observed problems can
be viewed as stemming from a common root—a misapprehension, common to all the approaches, of
the principles underlying this kind of reasoning. ... The directed nature of reasoning seems to have
been ignored. We contend that the intention of default reasoning is generally not to determine the
properties of every individual in the domain, but rather those of some particular individual(s) of
interest. ... In the case of the lottery paradox, by considering the fate of every ticket, we face the
problem that some ticket must win—giving rise to numerous “preferred” models. If we could reason
about only the small set of tickets we might consider buying, there would be no problem with
assuming that none of them would win. [601-602]

Even if we agree that an abstract problem is representative of a natural one, solving the former
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may not convince us that we can solve the latter. Brachman raises this concern in his invited lecture:

The Yale Shooting Problem and other canonical [nonmonotonic reasoning] problems involve a very
small number of axioms to describe their entire world. These may not be fair problems because the
knowledge involved is so skeletal. It seems unrealistic to expect a reasoner to conclude intuitively
plausible answers in the absence of potentially critical information. By and large, [nonmonotonic
reasoning] techniques have yet to be tested on significant “real-world”-sized problems. [1086]

Focusing on practical reasoning tasks not only dispels chimeras, but also guides the search for
solutions to formal problems. Shastri points out that reasoning may be intractable, but we do it, so we
had better figure out how:

A generalized notion of inference is intractable, yet the human ability to perform tasks such as natural
language understanding in real time suggests that we are capable of performing a wide range of
inferences with extreme efficiency. The success of AI critically depends on resolving [this] paradox.
[563]

Indeed, because the space of extensions and refinements to models is enormous, practical problems
must be used to constrain research. For example, Hanks contrasts the general, formal problem of
temporal projection with a specific practical projection problem:

Temporal projection has been studied extensively in the literature on planning and acting, but mainly
as a formal problem: one starts with a logic that purports to capture notions involving time, action,
change and causality, and argues that the inferences the logic licenses are the intuitively correct ones.
This paper takes a somewhat different view, arguing that temporal projection is an interesting
practical  problem. We argue that computing the possible outcomes of a plan, even if formally well-
understood, is computationally intractable, and thus one must restrict one’s attention to the
“important” or “significant” outcomes. This is especially true in domains in which the agent lacks
perfect knowledge, and in which forces not under the agent’s control can change the world, in other
words, any interesting domain. [158]

Another reason to merge theoretical and empirical work is that formal models often involve
simplifying assumptions, so it is important to check the predictions of the models against practical
problems.

To ensure that the approximations made in Section 2 [do] not invalidate our theoretical results, we
compared the iterative-broadening approach to conventional depth-first search on randomly
generated problems. [219]

To a first approximation, we expect symptom clustering to achieve exponential time and space
savings over candidate generation. ... However, the exact savings are difficult to determine, because
some of the candidates are not minimal and because a candidate may satisfy more than one symptom
clustering. Nevertheless, experimental results presented later lend support to a near-exponential
increase in performance. [360]

Taken together, these excerpts suggest that in the absence of practical tasks, model-centered
research is prone to several methodological problems.  It is evidently possible to work on formal
problems that may not arise in practice, to lose track of the purpose of a kind of reasoning, to not exploit
practical constraints when designing solutions to formal problems, and to solve formal problems
without checking one’s assumptions or simplifications in practical situations. How common are these
pathologies? It is difficult to tell because they show up primarily when a researcher attempts to use
models in systems, which is extremely rare in AAAI-90. However, we do know that virtually all
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model-centered papers are prone to these problems. Consider: 76% of model-centered papers gave
abstract examples or no examples; only 33% of these papers described tested implementations, and
more than half of these were tested on abstract problems; only four model-centered papers described
techniques embedded in larger software or hardware environments.

4.2.2. Systems Without Models

“Look Ma, no hands” — J. McCarthy.

Model-centered research at least produces models, proofs, theorems, algorithms, and analyses. It
is difficult to say what exclusively system-centered research produces. In general, system-centered
papers are descriptive rather than analytic; they describe systems that do things, such as distributed
problem solving, diagnosis, design, and so on. It is either tacitly assumed or vaguely asserted that
something is learned or demonstrated by implementing and “testing” the systems described in these
papers; for example,

We have implemented the projector and tested it on fairly complex examples...

To investigate the performance of this implementation of our protocol...

We have tested our prover on some problems that are available in the theorem-proving literature.

Lacking a clear statement in the system-centered papers of why one should build systems, we
turned to Lenat and Feigenbaum’s discussion of their empirical inquiry hypothesis:

Compared to Nature we suffer from a poverty of the imagination; it is thus much easier for us to
uncover than to invent. Premature mathematization keeps Nature’s surprises hidden. ... This attitude
leads to our central methodological hypothesis, our paradigm for AI research:

Empirical Inquiry Hypothesis: Intelligence is still so poorly understood that Nature still holds most of
the important surprises in store for us. So the most profitable way to investigate AI is to embody our
hypotheses in programs, and gather data by running the programs. The surprises usually suggest
revisions that start the cycle over again. Progress depends on these experiments being able to falsify
our hypotheses; i.e., these programs must be capable of behavior not expected by the experimenter.
[15]

Apparently the methodology is not being practiced by system-centered researchers or is not
producing the desired results. Our survey tells us that in general neither model-centered nor system-
centered researchers “embody hypotheses in programs,” or “gather data by running the programs.” In
fact, only 25 papers presented hypotheses that could surprise the experimenter and only two of these
were system-centered (the rest presented the hypotheses that a program works, or works better than
another program, or presented no hypothesis at all).  And if Nature is so full of surprises, why did only
24 papers report negative results, unexpected results, or probe results?

One is tempted to criticize these papers, as Lenat and Feigenbaum do, as “using the computer either
(a) as an engineering workhorse, or (b) as a fancy sort of word processor (to help articulate one’s
hypothesis), or, at worst, (c) as a (self-) deceptive device masquerading as an experiment.” [15, p.1177]
In other words, the empirical inquiry hypothesis is ok but AI researchers are not. But we believe there
is something inherently wrong with the empirical inquiry hypothesis and with system-centered
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research in general: How can a system exhibit “behavior not expected by the experimenter” if there are
no expectations, and how can there be expectations without some kind of predictive model of the
system?  One needn’t subscribe to formal, mathematical models, but nor can one proceed in hope of
being surprised by Nature. The empirical inquiry hypothesis should say, but does not, that hypotheses
and expectations are derived from models—formal or informal—of the programs we design and
build.

We will argue later that the lack of models in system-centered research is the distal cause of a host
of methodological problems. The proximal cause is the reliance on demonstrations of performance.
Many researchers apparently believe that implementing systems is both necessary and sufficient to
claims of progress in AI. Whereas necessary is debatable, sufficient is dead wrong. First, although
statements of the form “my system produces such-and-such behavior” (abbreviated S → B) are
sometimes called “existence proofs,” nobody ever claimed that these programs could not exist—no
hypothesis or conjecture is being tested by implementing them. S → B is not itself a hypothesis. Neither
S → B nor its negation are practically refutable: tell any hacker that a system cannot be made to do
something and it’s as good as done. In fact, the only empirical claim made of these systems is that they
exist; all other claims are vague and promissory. For example,  “We presented a sketch of an
architecture ... that we believe will be of use in exploring various issues of opportunism and flexible
plan use.”   Very few systems merit attention on the basis of their existence, alone.

Second, desired behaviors are specified very loosely (e.g., real-time problem solving, graceful
degradation, situated action) and so S → B is less a hypothesis than a definition:  B is the behavior
produced by S. The “wishful mnemonic” approach to system design and software engineering,
excoriated by McDermott in 1976 [18], continues unabated today.  Behaviors are what are produced by
the components of systems that carry the names of behaviors (e.g., “scheduling” is what the
“scheduler” does).  This transference is exhiliarating—we can build anything we can imagine and
call it anything we like.  The downside is that what we can build crowds out what we need to build to
produce particular behavior in a particular environment.

Third, demonstrating that S → B does not mean that S is a particularly good way to produce B.
Lacking such an assurance, we can only conclude that S works adequately but its design is
unjustified. Occasionally, a researcher will demonstrate that one program works better than another,
but in system-centered research the result is rarely explained.

Fourth, demonstrations don’t tell us why a system works, what environmental conditions it is
sensitive to, when it is expected to fail, or how it is expected to scale up—in short, demonstrations don’t
amount to understanding [3, 6, 7, 8, 13].  And, finally, implementing something once doesn’t mean we
learn enough to repeat the trick. If all AI systems are one-off designs, and the only thing we learn
about each is that it works, then the “science of design” of AI systems will be a long time coming.

These methodological problems have a common root: system-centered researchers rarely have
models of how their systems are expected to behave. Designing and analyzing any complex artifact
without models is very difficult; imagine designing bridges without models of stress and deflection;
or hulls without models of fluid flow; or drug therapies without models of metabolism and other
physiological processes. Yet with few exceptions, described below, system-centered papers in AAAI-90
lacked models.  Given this, methodological problems are unavoidable. Lacking models of how
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systems are expected to behave, we will see no predictions, no hypotheses, no unexpected results or
negative results; only assertions that a system “works.” Conversely, models define behaviors,
avoiding McDermott’s wishful mnemonic problem. Models provide exogenous standards for
evaluating performance, bringing objectivity to the claim that a system works. And models can
represent causal influences on performance, allowing us to predict performance and test hypotheses
about why systems perform well or poorly in particular conditions.  Models that serve this purpose—
predicting and explaining performance—are necessary if a system is to contribute to the science of AI,
to be more than, in Lenat and Feigenbaum’s words, “an engineering workhorse, a fancy sort of word
processor, or a (self-) deceptive device masquerading as an experiment.”

4.2.3. Models and Systems Together

Given these arguments it should not be surprising that models are common among system-
centered papers that do test hypotheses or explain behavior. An excellent example is Etzioni’s
explanation in terms of nonrecursive problem space structure of why PRODIGY/EBL works:

I formalized the notion of nonrecursive explanations in terms of the problem space graph
(PSG)...PRODIGY/EBL’s nonrecursive explanations correspond to nonrecursive PSG subgraphs.
... I demonstrated the practical import of this analysis via two experiments. First, I showed that
PRODIGY/EBL’s performance degrades in the augmented Blocksworld, a problem space robbed
of its nonrecursive PSG subgraphs. Second, I showed that a program that extracts nonrecursive
explanations directly from the PSG matches PRODIGY/EBL’s performance on Minton’s problem
spaces. Both experiments lend credence to the claim that PRODIGY/EBL’s primary source of
power is nonrecursive problem space structure. [921]

Minton, Johnston, Philips and Laird [23]  ran experiments to explain why a particular neural
network performs so well on constraint satisfaction problems, and subsequently incorporated the
results of this analysis into a scheduling algorithm for, among other things, space shuttle payload
scheduling problems. Based on a probabilistic model, they were able to predict the circumstances
under which the algorithm would perform more or less well.

Pollack and Ringuette [183] explored a filtering mechanism that “restricts deliberation ... to
options that are compatible with the performance of already intended actions.”  In one experiment they
test the hypothesis that the filtering mechanism improves performance. Unlike most experiments in
AAAI-90, Pollack and Ringuette’s carefully varied the experimental conditions, and, consequently,
revealed a tradeoff between the conditions (in this case, the rate of change in the environment) and
performance.  This led to several hypotheses, each derived from a causal model relating
environmental conditions, architecture structure, and behavior. Note that Pollack and Ringuette’s
strategy of varying environmental conditions made sense only because they had a hypothesis about the
relationships between the conditions and performance; otherwise they would just have been aimlessly
tweaking conditions in the hope that Nature would deliver a surprise.

Clearly, models do not have to be quantitative; in the last example they were qualitative and
causal. Moreover, models can be developed as post-hoc explanations in service of future design efforts,
as in Etzioni’s analysis and Minton et al.’s work; or they can evolve over a series of experiments such
as  Pollack and Ringuette’s.  The important thing is that these models support the design and analysis
of AI systems; they are crucial to answering the questions asked by every designer: how does it work?
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when will it work well and poorly? will it work in this environment?

4.3. Hypothesis 4. There Exists a Sufficient Methodology.

Here we document the evidence in AAAI-90 of a methodology sufficient to the goals of providing
science and technology to support the design and analysis of AI systems.  We call the methodology
MAD, for Modelling, Analysis and Design.  MAD involves seven activities:

• assessing environmental factors that affect behavior;

• modelling the causal relationships between a system’s design, its environment, and its behavior;

• designing or redesigning a system (or part of a system);

• predicting how the system will behave;

• running experiments to test the predictions;

• explaining unexpected results and modifying models and system design;

• generalizing the models to classes of systems, environments and behaviors.

None of the papers in AAAI-90 reported all these activities, not even the system-centered papers
cited earlier which relied successfully on models. Thus, it is worth discussing the MAD activities in
some detail, illustrating each with examples from AAAI-90.

Environment assessment.  To build a predictive model of how systems will behave in a particular
environment, we must decide which aspects of the environment to include in the model and how
accurately they must be represented. Interestingly, examples of environment assessment are rare in
AAAI-90. They include fairly vague characterizations, such as, “Our system...enables users to learn
within the context of their work on real-world problems,” [420] as well as fairly precise requirements
placed by the environment on the system, such as “when designing our current media coordinator [we]
showed that people strongly prefer sentence breaks that are correlated with picture breaks.” [442]  Many
papers focused on a single aspect of environments. Time [e.g., 132, 158] and the recursive structure of
problem spaces [e.g., 916, 336, 942] are examples.  Only one paper explicitly intended to study the
influences upon design of several, interacting aspects of an environment—to seek “an improved
understanding of the relationship between agent design and environmental factors.” [183]

Environment assessment produces assumptions about the environment; for example, one might
assume that events are generated by a Poisson process, or that actions are instantaneous, or that a
sentence contains redundant components. These assumptions say, for the purposes of designing and
analyzing systems for this environment, it probably won’t hurt to simplify the characterization of the
environment. Assumptions were plentiful in AAAI-90, especially in the model-centered papers, but
they were assumptions about no particular environment; and, we sometimes suspected, about no
plausible environment. This is where the rift between model-centered and system-centered research
begins: the assumptions that underlie models often preclude their application to the design and
analysis of systems. One way to close the rift is to ground research in a particular environment—to
make environment assessment a regular feature of the research. This needn’t preclude generality:
we can still build models for the entire class of environments of which this one is representative, and
we will be spared basing our models on assumptions that cannot hold in any environment. (Another
way to close the rift is to test the sensitivity of a system to violations of the assumptions; see
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“Experiments,” below).

Modelling.  Models support all the MAD activities: design, prediction, experimentation,
explanation, and generalization. To support these activities models must answer two questions:

1.  If we change the design of a system, how will behavior be affected?

2.  If we change environmental conditions, how will behavior be affected?

Models come in many varieties, from simple qualitative relationships to fairly precise functional
relationships. Tambe and Rosenbloom, for example, develop a qualitative model to show that the
unique-attributes design is the best possible within a particular design space, but is inferior in an
extended design space [696]. They are among the few authors who attempt to answer question 1, above.
Minton et al. [23] give the following probability that the min-conflicts heuristic will make a mistake
assigning a value to a variable:

Pr(mistake) ≤ (k - 1) e-2(pc - d)2/c

The important thing about this model is that it relates the probability of a behavior (making
mistakes) to measurable characteristics of the problem-solver’s search space (the terms on the right of
the inequality). Thus, Minton et al. can predict behavior and, as they do in their paper, explain why the
min-conflicts heuristic performs so well. Characterizing the search space was the most common tactic
for answering question 2, above; for example, Etzioni [916] and Subramanian and Feldman [942]
focused on the recursive structure of problem spaces to predict and explain problem-solving behavior.
Unfortunately, many models in AAAI-90 gave only qualitative, worst-case characterizations of
search spaces (i.e., intractability results) which could not be used to answer either of the questions,
above.  We did not classify the kinds of models developed in AAAI-90, but the paucity of hypotheses and
predictions among the papers suggests either that the models were for some reason not being used to
answer questions 1 and 2, above, or, more likely, were not intended to answer the questions. It seems
likely that most of the models described in AAAI-90 cannot support most MAD activities.

Design and Redesign.  Designs, or rather sketches of designs, abound in AAAI-90, especially in
system-centered papers. Most are presented without explanation or justification—here’s what we are
trying to build, here’s how we did it. The MAD methodology aims to justify design decisions with
models. In top-down design, one first derives models and designs from them; Dechter, for instance,
clearly intends her models to be used this way:

A formal treatment of the expressiveness gained by hidden units ... [is] still not available. ... Our
intention is to investigate formally the role of hidden units and devise systematic schemes for
designing systems incorporating hidden units.  [556]

Alternatively, models are developed at the same time as designs. This is an incremental version
of MAD, in which designs or parts of designs are implemented to provide empirical data, which flesh
out models, which become the basis for redesign. For example, Pollack and Ringuette [183] expected to
find a functional relationship between the cost and benefit of filtering in different environmental
conditions, but they did not know its form until they ran an experiment (Exp. 2, p. 188). They
discovered that the benefits of filtering did not warrant its costs in any conditions, but the ratio of
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benefit to cost increased with the rate of change of the environment. They knew that as the run time of
tasks increased, so would the benefit of filtering those tasks; and, they assumed, so would the accuracy
of the results. On the basis of this qualitative model, they proposed to change their design “to implement
more accurate (and costly) deliberation mechanisms in the near future. For these, filtering may be
much more valuable.” [188] This paper is one of a small handful in AAAI-90 that justify design
revisions based on models; another excellent example is de Kleer’s revisions to the design of TMSs to
exploit locality in the underlying structure of some problems [264].

Prediction. Prediction is central in the MAD methodology: you predict how a system will behave
during the design process; you test predictions in experiments; you explain the disparities between
predictions and reality after the experiments; and when you generalize a predictive model, you
attempt to preserve as much predictive power as possible, even as the range of environmental
conditions, design decisions, and behaviors increases. Prediction is our criterion for understanding
a system: we can claim understanding when we can predict with some degree of success how changes
in design or changes in environmental conditions will affect behavior.

Without predictions it is virtually impossible to evaluate a system; all one can do is demonstrate
that the system works more or less well. If you want to know why it works, or when it is likely to break,
you need a model. For example,

If repairing a constraint violation requires completely revising the current assignment, then the
min-conflicts heuristic will offer little guidance. This intuition is partially captured by the
[previous] analysis [see the discussion of Pr(mistake), above]... which shows how the effectiveness
of the heuristic is inversely related to the distance to a solution. [23]

The MAD view of prediction is very pragmatic: it rejects the abstract argument that prediction is
impossible in principle, taking instead the view that even crude, qualitative, somewhat inaccurate
predictions can serve designers in practice, especially when incorporated into an iterative cycle of
design, experiments, explanations, and redesign (see Sec. 5).

Experiments.  Experiments have three main purposes in the MAD methodology:  to test predictions,
to probe models, and to discover behaviors. The first two are directed, the third is exploratory. In AAAI-
90, very few experiments served these purposes;  instead they demonstrated performance. While this
contributes little to our understanding of our systems, if we are going to keep doing it, we should at
least develop meaningful, efficient measures of performance. Not surprisingly, this too can be
profitably guided by models. For example, Fayyad and Irani ask,

Suppose one gives a new algorithm for generating decision trees, how then can one go about
establishing that it is indeed an improvement? To date, the answer ... has been: Compare the
performance of the new algorithm with that of the old algorithm by running both on many data
sets. This is a slow process that does not necessarily produce conclusive results. On the other hand,
suppose one were able to prove that given a data set, Algorithm A will always (or ‘most of the time’)
generate a tree that has fewer leaves than the tree generated by Algorithm B. Then the results of
this paper can be used to claim that Algorithm A is ‘better’ than Algorithm B.  [754]

In short, they derive from a model the result that the number of leaves in a tree is a proxy for many
other performance measures, so instead of comparing performance directly, we can compare
leafiness.  Most performance measures in AAAI-90 are not so carefully justified. Eskey and Zweben
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point out that a common performance measure—run-time speed up—is not a proxy for the measure that
represents their goals as designers, and so should not be adopted without careful consideration [908].
The correlation between run-time speed up and the measure they prefer (see their Tables 2 and 3) is
only .26. Researchers who select run-time as an “obvious” performance measure should not expect it to
correlate with anything they care about.

Experiment designs are informed by models. Models describe how behaviors are affected by
factors in the environment and system design parameters; and experiments test these causal
hypotheses. Models tell us where to look for results.  For example, although the following excerpt did
not herald an experiment, it does suggest where to look for an effect —in “borderline situations”—if an
experiment was run:

Surprisingly, ... there might exist a semi-cooperative deal that dominates all cooperative deals and
does not achieve both agents’ goals. It turns out this is a borderline situation  [104]

This much is recognizable as the conventional “hypothesis testing” view of experiments: a model
makes predictions about how changes in the environment or changes in design will affect behavior,
and an experiment tests the predictions. But pick up a typical text on experiment design and analysis,
and you are unlikely to find any discussion of a subtler, more important relationship between models
and experiments: Just as experiment designs are informed by models, so too are models informed by
experiment results.  Sometimes, results will contradict predictions, but often they will flesh them out,
providing data to replace rough, qualitative models with functional, quantitative ones.  This iterative,
exploratory development of models is described in a recent paper by Langley and Drummond, who see
it as the future not only of individual research projects but of the entire field of experimental AI:

In the initial stages, researchers should be satisfied with qualitative regularities that show one method
as better than another in certain conditions, or that show one environmental factor as more
devastating ... than another. ... Later stages ... should move beyond qualitative conclusions, using
experimental studies to direct the seach for quantitative laws that can actually predict performance in
unobserved situations. In the longer term, results of this sort should lead to theoretical analyses that
explain results at a deeper level, using average-case methods rather than worst-case assumptions.
[13,  p. 113]

Langley and Drummond’s paper raises many issues in experiment design, including the use of
benchmarks. Lately, the calls for benchmarks and common experimental environments have
increased in frequency and intensity; for example, DARPA recently sponsored a workshop on
benchmarks and metrics and is instituting benchmarks in some of their research programs. We
believe that benchmarks and common environments address a symptom—the lack of evaluation of
systems—not its cause, and, worse, divert attention from the cause.  The principal reason that we don’t
run experiments in AI is that we don’t have hypotheses to test. Instituting benchmarks won’t increase
the number of hypotheses, only the number of demonstrations of performance [6]. This states the case
too strongly—benchmarks can certainly provide common evaluation criteria and may provide the
impetus for researchers to understand why their systems perform poorly1—but we shouldn’t think that
instituting benchmarks will fix AI’s methodological problems, particularly the lack of predictions
and hypotheses.

1 Mark Drummond pointed this out.
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Nor should we think that common experimental environments will provide us that most elusive of
scientific criteria, replicability.  It is claimed that if we all perform our experiments in the same
“laboratory,” (i.e., the same software testbed) then the results will be comparable, replicable, and
cumulative.2  Like the call for benchmarks, this isn’t a bad idea but it diverts attention from a real
methodological problem. Replicability in other fields is not the replicability of laboratories but the
replicability of results across laboratories.  The strongest results are the ones that hold up in many
different environments.  If we say that AI systems are so complex that we cannot hope to replicate
results across systems, and so for the sake of comparability and cumulativity we should work in a
single, common system, then we are by this device diverting attention from a fundamental problem:
we understand our techniques so poorly that we cannot say which aspects of their behavior should be
replicable in different systems and environments.  The solution is to build models that predict
behavior; these predictions should then be replicable in all systems and environments that are
described by the models.

In sum, experimental work without models is only half a loaf. We can fiddle with the parameters
of our systems to “see what happens”; we can demonstrate performance on benchmarks; we can
compare techniques within a common experimental environment. All of these are valuable
exploratory techniques. All are preferrable to unsubstantiated claims of success. But none is half as
convincing as a test of a prediction derived from a model and replicated across environments.

Explanation: By explanation we mean accounting for data; for example, Minton et al. account for
the performance of the min-conflicts heuristic with the model described above.  On the other hand, we
may have to explain why data do not support predictions.  For example, Hirschberg discovered
problems with her model of which features of speech predict stress (accent) assignment: “Even from
such slim data, it appears that the simple mapping between closed-class and deaccentuation employed
in most text-to-speech systems must be modified.” [955]  Explanation of incorrect predictions leads to
revisions. In Hirschberg’s case and the natural sciences in general, incorrect predictions lead to
revisions of models.  However, the behaviors of AI systems are artificial phenomena, so if models
make incorrect predictions about behaviors, should we revise the models or the systems?

This question recently arose in our Phoenix system [4,5,9]. On the basis of a model we predicted
that problems would be solved most efficiently in a particular order; however, the prediction failed—
performance was very inefficient in one of four experimental conditions. Our model included terms
that represented the problem-solving environment and it also made some assumptions about the
problem-solving architecture.  To explain our results we first showed that the model correctly
characterized the environment, and then we attributed the failed prediction to one of these
assumptions.  This raised an interesting question: If a model predicts that given an assumption about
the design of a system, performance should be better than it actually is in experiments, then should we
modify the model or redesign the system to conform to the assumption?  Modifying the model serves no
purpose besides formalizing a bad design; the right answer is to modify the design to bring it in line
with the model.

Generalization: Whenever we predict the behavior of one design in one environment, we should

2 Raj Reddy and other panelists at the recent DARPA Workshop on Planning, Scheduling, and Control made this

claim.
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ideally be predicting similar behaviors for similar  designs in related environments. In other words,
models should generalize over designs, environmental conditions and behaviors.  Model-centered
and system-centered researchers have different views of generality: the former has a general model,
the latter has a specific system, and neither moves an inch toward the other.  The laurels would seem to
go to the model-centered researcher, except that the innovations of the system-centered researcher may
generate dozens or hundreds of imitations, re-implementations and improvements.  Eventually,
someone writes a paper that states generally and more or less formally what all these systems do; for
example, Clancey’s heuristic classification paper [1], Mitchell’s characterization of generalization as
search [19], and Korf’s paper on planning as search [12]. The trouble is that such papers are rare.

The activities just discussed can be combined to yield several styles of AI research. We mentioned
hypothesis testing, where predictions are generated from models and tested empirically in systems.
We also mentioned exploratory model development, where empirical work is intended to first suggest
and then refine models [13].  Sometimes, explanation of behavior in terms of models is the principal
goal. Sometimes the goal is to design a system or a component of a system, given models of how the
artifact will behave in a particular environment. Long-term, large-scale projects will emphasize
different MAD activities at different times. For example, in our Phoenix project it was clearly
impossible to design in a top-down fashion—from nonexistent models—the architecture of Phoenix
agents. (These agents are embedded in simulated bulldozers and firebosses and plan how to fight
simulated forest fires [5].) Instead, we differentiated fixed design decisions, which will not be
reviewed anytime soon; reviewable decisions which are reviewed after they are implemented and
after models are developed to support the analysis; and justifiable decisions, which are based in
models before being implemented.  This division enabled us to get Phoenix up and running, providing
us with an empirical environment in which to develop models iteratively, make predictions, review
design decisions in light of new models, propose new design decisions, and explain performance. To
date, most of our modelling effort has been aimed at analyzing reviewable design decisions; for
example, although Phoenix agents currently work on multiple fires simultaneously, we have recently
developed a model that suggest this is not the best use of resources. If the model holds up empirically,
then we will revise the design decision. In sum, although the MAD activities get “mixed and matched”
at different stages of a research project, the constant theme is a commitment to develop or adapt models
to support the analysis and design of systems.

5.  Anticipating Arguments Against MAD

Here we consider five arguments against the MAD methodology, and, more generally against any
attempt to base the design and analysis of AI systems in models. We do not believe these arguments,
we present them to refute them.

“Predictive Models of AI Systems are Unachievable”

As we work with more complex environments, and with architectures that produce complex
behaviors from interactions of simpler behaviors, the goal of developing models to predict behavior
seems increasingly remote. Some researchers claim that behavior is in principle unpredictable, so the
only way to design systems is as Nature does, by mutation and selection (e.g., [14], p. 25).  A related
argument is that AI systems are too complex to be modelled in their entirety. But, in fact, complex
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systems can be modelled and behavior can be predicted—if not accurately, at least accurately enough
to inform design.  Particularly useful, as we noted earlier, are models of design tradeoffs. These need
not be accurate, they might be only qualitative, but they help designers navigate the space of designs.
Moreover, once a prototype design is implemented, even qualitative design tradeoffs can quickly be
enhanced by empirical data.   Nor is it necessary to model an entire system to predict its performance.
By modelling a critical component of a system—a bottleneck, perhaps—one can predict the gross
behavior of an entire system.  So the question is not whether predicting behavior is possible in
principle, nor whether it is possible to model an entire, complex system, but whether predicting the
behavior of important components of systems is useful in practice.

“Predictive Models Lead to Predictable, Boring Systems”

Another kind of argument goes like this: just how intelligent is a predictable AI system?  How do
we reconcile the desire for predictability with the desire to be surprised by an AI system?  These
questions raise some fundamental issues about the nature of novel, creative reasoning, questions that
we cannot address here for want of space and expertise3 .  But we will say this: most of what we mean
by creativity involves relatively small variations on a theme; new themes are introduced very
infrequently. Nothing in MAD precludes designing a system that is predicted to produce novel
variations on a theme. No individual variation would be predictable, but nor would the system stray
from the theme.

“Premature Mathematization Keeps Nature’s Surprises Hidden”

Another possible argument against MAD is that modelling discourages exploration or, as Lenat
and Feigenbaum put it, “Premature mathematization keeps Nature’s surprises hidden.” We know of
no area of inquiry that has been retarded by efforts to build formal models of Nature, but obviously our
understanding of Nature—expressed formally or informally—is not advanced by mathematization
that has only the most tenuous connection to Nature.  Some of Brachman’s comments can be
interpreted as voicing this concern:

More theorems and proofs than ever have appeared in recent KR [knowledge representation]
papers and the body of mathematics in support of KR has grown dramatically. A formal
semantics is now an obligatory accompaniment of the description of a novel KR system. The
tremendous upsurge in KR theory has seemingly come at the expense of experimentation in the
field...But the pendulum may have swung too far, inadvertently causing a rift between the
formalists and those concerned with applications, and causing less and less of the KR literature to
have any impact on the rest of AI and on practice.  [1085]

There should be no possibility in MAD of the mathematical tail wagging the system-designer’s
dog. The goal of MAD is to design and analyze systems with the help of models, and to develop new
models when the available ones are not sufficient for the purposes of design and analysis of systems.
Models serve design and analysis.  The methodology simply does not endorse modelling for its own
sake.

3 Nort Fowler brought these questions to our attention. They are addressed in Margaret Boden’s The Creative

Mind, forthcoming from Basic Books.
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The Synchronization Problem

Another potential argument against MAD is an apparent synchronization problem: system-
centered researchers often find that model-centered researchers provide formal accounts of things that
they (the system-centered researchers) have assumed all along. Probabilistic accounts of certainty
factors came along a decade after MYCIN [11]; semantics for STRIPS operators were developed later
yet [17]. The synchronization problem is that system-centered researchers don’t get models when they
need them—during design and analysis of systems. We believe the problem is real, but we believe that
MAD alleviates it by encouraging the simultaneous development of models and systems.

“MAD Misinterprets the Purpose of AI”

Finally, MAD might be rejected on the grounds it misinterprets the purpose of AI.  Matt Ginsberg
recently put it this way: “You think AI has to do with designing and analyzing systems; I think AI is
like medieval chemistry: Design anything you like to try to turn lead into gold, but you won’t succeed
until you invent nuclear physics. AI theorists are trying to invent nuclear physics. Systems are
premature.”  Paring away the challenges to any given aspect of this analogy, one is left with a basic
dispute about how to proceed in AI.  Model-centered researchers will say that systems are premature
lacking formal models of intelligence. System-centered researchers will say models are superfluous
because the goals of AI are satisfied if we can build systems that work, and this can be accomplished
without models. Unless we are willing to dismiss one group or the other as wrong about the proper goals
and methods of AI, we have to believe both. We have to believe that the goals of AI are to build formal
models of intelligence and to build intelligent systems.  The only question is whether these should be
the activities of different cadres of researchers, as they are now, or should be merged, somehow.  The
symbiosis between the activities is obvious: with models we can design and analyze systems, predict
their performance, explain deviations from performance, and so on; with systems we can test the
assumptions of models, focus on models for tasks that actually exist, revise the models in response to
empirical data, and so on.  MAD doesn’t misinterpret the goals of AI, it provides a necessary
framework in which to achieve them simultaneously.
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Appendix 1. The Fields in Table 1.

Fields 3 and 4: Define, extend, generalize, differentiate, semantics for models; and theorems and
proofs re: model

Many papers focused on models of reasoning. The word model is used many ways in AI, but we
intend it to mean an abstract, typically formal description of behavior and/or environmental factors
or design decisions that affect behavior. The purpose of building a model is to analyze its properties,
assuming (often implicitly) that they will carry over to systems that implement the models.  For
example,

An important area of research is to devise models of introspective reasoning that take into account
resource limitations. Under the view that a KB is completely characterized by the set of beliefs it
represents ... it seems natural to model KBs in terms of belief. ... The best understood models of
belief are based on possible-world semantics. ... Unfortunately, [these models assume] a property
often referred to as logical omniscience, which renders reasoning undecidable in first-order KBs.
An important problem then is to find models of belief with better computational properties. [531]

Clearly, the purpose here is not to build a KB, nor a facility for introspective reasoning about a KB,
but rather, to define a model of introspective reasoning with desirable properties—a model that may
then serve as a design or specification for implementations of introspective reasoning.

In addition to defining models, papers extended, generalized, differentiated, and provided
semantics for models. An example of each follows:

Extension : We ... extend the notion of constraint satisfaction problems to include constraints about
the variables considered in each solution. ... By expressing conditions under which variables are
and are not active, standard CSP methods can be extended to make inferences about variable
activity as well as their possible value assignments. [25]

Generalization: An interesting result of our analysis is the discovery of a subtask that is at the
core of generating explanations, and is also at the core of generating extensions in Reiter’s default
logic. Moreover, this is the subtask that accounts for the computational difficulty of both forms of
reasoning. [343]

Differentiation : While belief functions have an attractive mathematical theory and many
intuitively appealing properties, there has been a constant barrage of criticism directed against
them...We argue that all these problems stem from a confounding of two different views of belief
functions. [112]

Semantics :  Their scheme has one immediate drawback; at the present moment the costs have no
adequate semantics. ... we will provide a probabilistic semantics for cost-based abduction. [106]

Many papers presented theorems and proofs that derived from models. Sometimes these analyses
pertained to soundness, completeness, decidability. Often they pertained to complexity; for example,
[550] presents complexity analyses of eight classes of closed-world reasoning.

Fields 5 and 6,  Present algorithm(s) and Analyze algorithms.

More than half of the papers in AAAI-90 presented algorithms, and most of these analyzed their
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algorithms in some manner. Complexity analyses predominated, but other kinds of formal analyses
(e.g., soundness and completeness results) were common.

Fields 7 and 8,  Present system and Analyze aspect(s) of system.

Several criteria were used to decide that a paper presents a system or an architecture. Systems and
architectures are composite, with different components responsible for different functions. Systems
solve problems that system designers believe are too large to be solved by a single algorithm.
Frequently, system papers discussed the organization and interactions among the system’s
components. Although system papers often discussed just one component in detail, the discussion
usually included a brief description of the system to set the context, and it was usually clear that the
focal component was responsible for only some of the reasoning necessary to a task.  Systems papers
rarely described underlying models, theorems or algorithms. Even when they used the word
“algorithm,” they typically meant the flow of control in the system; for example,

The basic QPC algorithm consists of four steps:
1. Assemble a view-process structure from a description of the scenario.
2. Apply the closed-world assumption and build the QDE.
3. Form an initial state.
4. Simulate using QSIM. [366]

Analyses of systems were divided into three classes: complexity or other formal analysis,
informal, and none.  As one might expect, complexity analyses focused on the behaviors of particular
components of an system; for example,

Building the space of interactions, identifying a candidate path, elaborating structure, and testing
consistency are at worst quadratic in the number of individuals and  classes introduced. We are
working on proving whether Ibis generates all candidates; the other steps are complete. ... The
verification step is NP-hard. [356]

Of the 45 papers that presented systems, seven offered complexity analyses or other formal
analyses. Informal analyses included discussions of design decisions, comparisons with related
architectures, and so on. A good example is Redmond’s analysis of the length of a “snippet” in his
CELIA system [308].

Fields 9, 10,11: Example type, Task type, Task environment.

Three fields dealt with the context in which ideas were presented and tested. Most of the papers (133,
or 89%) presented at least one example of a task (field 9), but only 63 of the papers (42%) indicated that
their techniques had been exercised on a task—on multiple trials beyond a single example.  Tasks
were classified by type (field 10); task environments by whether they were embedded (field 11).
Examples and task types were classified as natural, synthetic, and abstract. To be classified as
performing a natural task, a program had to tackle a problem solved by humans or animals, given the
same or similar data. For example,

What we would really like to know about a function-finding program is not its record of successes on
artificial problems chosen by the programmer, but its likelihood of success on a new problem
generated in a prespecified environment and involving real scientific data. ... When analyzing
bivariate data sets ... published in the Physical Review in the first quarter of this century, E* has
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approximately a 30 percent chance of giving the same answer as the reporting scientist. [832]

Our system runs a complete loop in which experiments are designed by FAHRENHEIT, performed
under the control of [a] PC in the electrochemical cell, [and] the experimental results are sent to ...
FAHRENHEIT [which] uses them to build a theory. Human interference is reduced to sample
preparation and occasional assistance. [891]

The latter excerpt describes an embedded task environment—one in which the principal
innovations of a paper are applied in the context of an architecture or other software systems, or in a
physical environment—whereas the former excerpt describes an algorithm, E*, that apparently runs
in batch mode and has no significant interactions with its task environment. FAHRENHEIT and
robot agents [e.g., 796, 854] are embedded in a physical task environment; but most embedded task
environments are software environments.

Examples and tasks were classified as synthetic if they were synthetic analogs of natural tasks.
For example,

The Tileworld can be viewed as a rough abstraction of the Robot Delivery Domain, in which a mobile
robot roams the halls of an office delivering messages and objects in response to human requests. We
have been able to draw a fairly close correspondence between the two domains.[184]

Synthetic tasks involved simulated environments [e.g., 59, 86, 183],  some planning tasks [e.g.,
152, 158, 1016, 1030], distributed problem solving [78,86], and some qualitative physics tasks [e.g., 401,
407].

Whereas synthetic tasks usually raise several research issues, abstract tasks are designed to be
the simplest possible manifestation of a single research issue. John Seeley Brown called such
problems “paradigmatic” in his address at IJCAI 8 (1983) and distinguished them from “toy” problems,
which are similarly minimalist, but are not distillations of important research issues. For example,
the N-Queens problem is a paradigmatic constraint satisfaction problem, Sussman’s anomaly is the
paradigmatic subgoal interaction problem, ostriches and elephants provide the paradigmatic default
inheritance problem, and so on.  The abstract problems addressed in AAAI-90 included N-Queens
[e.g., 17, 227]; constraint networks [e.g., 10, 40, 46]; networks with and without hidden variables [e.g.,
556]; subgoal interaction problems [166]; problems involving multiple agents such as prisoners’
dilemma, the convoy problem [94], and block-stacking problems [100] (see [538], footnotes 3 and 4 for
many others); a wide variety of problems of nonmonotonic reasoning, including inheritance
problems [e.g., 627, 633], qualification problems such as “potato in the tailpipe” [158], the Yale Shooting
Problem [e.g., 145, 524, 615] and other problems of persistence, and various “paradoxes” of
nonmonotonic reasoning [600]; a variety of simple robot problems such as the robot recharging problem
[151]; problems involving artificial, large search spaces [e.g., 216]; problems involving matching
[e.g., 685, 693, 701]; and a wide variety of paradigmatic classification problems for learning systems,
such as XOR [e.g., 789], LED display [e.g., 762, 834], cups [e.g., 815, 861], and wins in tic-tac-toe [e.g.,
803,882].

Field 12: Assess Performance

AI is unlike experimental sciences which provide editorial guidance and university courses in
experiment design and analysis. This may explain why some papers among the 160 accepted by
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AAAI-90 assessed performance much more convincingly than others. These papers did not set the
standard for assessing performance in this survey, in part because clean experimental work is easiest
when we are evaluating simple artifacts such as individual algorithms, and we didn’t want to
penalize efforts to evaluate complicated systems; and in part because we wanted to err conservatively,
crediting too many papers with assessing performance instead of too few. Thus we adopted a weak
criterion: If a paper reported a study in which at least one performance measure was assessed over a
reasonably large sample of problems, then it was credited with assessing performance. “Reasonably
large” is open to interpretation, but for most tasks a single example did not suffice (but see [796]). A
single example usually does not explore the range of initial conditions or parameterizations that
might affect performance; for instance, the following “experiment”—a single example presented
without a hint of others—is inconclusive:

Using the guaranteed planning strategy ... [the] query is solved ... in 4.75 seconds. Using the
approximate planning strategy ... the same query is solvable in 0.17 seconds. Although [this] plan is
not correct, it is plausible. Note also that the first two actions it prescribes are the same as those of the
correct plan: the approximate plan is an excellent guide to intermediate action.

The “multiple examples” criterion excluded some papers in Knowledge Representation which
offered a single example of a solution to, say, the Yale Shooting Problem. It is tempting to believe that a
solution to such a paradigmatic problem is also a solution to countless other problems in that class.  But
because many of the authors of these papers did not believe this themselves [e.g., 1082] and
acknowledged the need for empirical work specifically where the expressivity/tractability tradeoff
was concerned [e.g., 531, 563, 633], we did not credit KR papers with assessing performance given a
single example.

In general, authors did not describe the structure of their studies (just as they rarely described the
purpose of studies, beyond saying the purpose was to test their ideas). We often had trouble determining
the number and degree of coverage of tests in the study; but only in the most extreme cases, where
authors asserted success without providing any details of the evaluation study, did we decline to credit
them with assessing performance.  For example:

Our evaluation using professional and amateur designers showed that contextualized learning can be
supported by [our system].

An active critiquing strategy has been chosen and has proved to be much more effective.

Field 13: Assess Coverage

Another purpose of an evaluation study is to assess coverage, that is, the applicability of a technique
(algorithm, architecture, etc.) to a range of problems. In general, authors do not discuss their own
criteria for coverage. They  demonstrate techniques on problems that are superficially different, but
they do not discuss whether and how they are different. Examples include an operating system and a
word processing system [310]; simple liquid flow, boiling, and a spring/block oscillator [380]; the heart
and a steam engine [413]. In fact, these authors do not explicitly claim coverage, so it is merely curious
that they do not describe why they selected these particular suites of problems. One positive example of
coverage that involves only three examples is Liu and Popplestone’s paper on robotic assembly [1038].
Because they have an underlying mathematical model of their task, they were able to select examples
that demonstrate coverage with respect to the model.
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There are at least two alternative criteria for demonstrating coverage:
weak coverage: the ability to solve instances of some problems in a space of types of problems

strong coverage: the ability to solve instances of all problems in a space of types of problems

Weak and strong coverage are not distinguished in Table 1 because there were no examples of
strong coverage in AAAI-90.  However, one paper clearly had strong coverage as a goal [59]. It
identified six “basic operations in knowledge processing”: inheritance, recognition, classification,
unification, probabilistic reasoning, and learning. Then it presented a knowledge processing
architecture which it evaluated with problems that required inheritance, recognition, and
classification.

Field 14: Compare performance.

Although a significant number of papers included comparisons of performance, the purpose of
these comparisons was not always clear. When the purpose was clearly to demonstrate that “my
technique is better than yours,” the paper was classified as an assessment of performance (field 12).
When the purpose was to study the relative strengths and weakenesses of two or more techniques, the
paper was classified as a comparison of performance. For example:

The goal of our experiments is to draw an overall picture as to the relative strengths of back
propagation and genetic algorithms for neural network training, and to evaluate the speed of
convergence of both methods. ... Convergence of genetic algorithm based neural network training
was so slow that it was consistently outperformed by quickprop. Varying parameters ... made only
limited contributions in reversing the results [789]

Field 15: Predictions, hypotheses

Some papers offered predictions or hypotheses; for example,

Hypothesis 1: Only when we have a priori knowledge about problem distribution is it effective to
learn macro rules. ... Hypothesis 2: As we increase the degree of nonlinearity of the recursive rules,
there is exponential degradation in performance upon addition of macro rules. [947]

The fact that filtering is less detrimental in the faster environment leads us to hypothesize that there
may be a break-even point at even faster speeds, above which filtering is useful. [188]

Sometimes papers presented counterintuitive predictions. For example,

Our account predicts (perhaps counterintuitively) that an agent will persist in trying to achieve a goal
even if he happens to believe the other agent is in the process of informing him of why he had to give
it up. [99]

One might expect that in such a situation, even if the agents use the Unified Negotiation Protocol, they
will agree on a semi-cooperative deal that is equivalent to the cooperative deal. ... Surprisingly, this is
not the case. [104].

Hypotheses and predictions indicate that the researcher has some reason, besides demonstrating
performance, to implement and test an idea. For example, the first two excerpts above hypothesize
tradeoffs which are to be examined empirically. The third predicts (in hypothetico-deductive manner)
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a behavior that, though counterintuitive, follows logically from a theory; and the fourth also juxtaposes
intuition and theory.  Lastly, you may recall excerpts presented earlier that point out that predictions
from a theory depend on the assumptions that underlie the theory, so they must be checked empirically.

These and related reasons for empirical work were sufficient to classify a paper as presenting
hypotheses or predictions. What did not count, even when it was called a hypothesis, was the simple
assertion that a technique (algorithm, architecture, etc.) solves a problem. This assertion was made
implicitly or explicitly by almost all of the papers. Nor did descriptions of “experiments” imply
hypotheses if they served only to demonstrate an idea (e.g., “The goal of the experiment is to make
Genghis learn to walk forward.” [799]). Nor did worst-case complexity results count as predictions. As
noted earlier, they are technically predictions, but they predict nothing about average-case
performance.

Only 25 papers contained anything that, by these criteria, could be called hypotheses or predictions.
The others were vague about their reasons for empirical work. The following quotes are typical: “We
implemented the above search techniques for parallel search ... and studied their performance.” and,
“To evaluate the effectiveness of our approach, we implemented a simulation environment and solved
the [...] problem.”

Field 16: Probe results

Probing refers to a variety of activities, including explaining or strengthening experimental
results (possibly with the aid of follow-up experiments), explaining results derived by other
researchers, and exploratory experiments to find out more about  a functional relationship thought to
underlie data. In general, if a paper went beyond its central results, or explained someone else’s
results, it was credited with probing results. For example, the following excerpt describes how a follow-
up is expected to explain the success of an earlier experiment:

If evaluation and not search is the key to successful function-finding with real data, it ought to be
possible to improve performance by developing more sophisticated evaluation criteria.  [828]

And this excerpt is from a paper that develops a mathematical theory that explains why another
researcher’s technique works:

Warren has proposed a heuristic for ordering the conjuncts in a query: rank the literals according to
increased cost. ... It is not clear why his cost measure, and its use in this way, is appropriate. However,
it becomes clear when the relation to our analysis is established.  [38]

Field 17:  Present unexpected results

Very few papers discussed their results with any sense of surprise or discovery. Here are some that
did:

So far we have discovered two kinds of difficulties in building math model libraries. First, we found
ourselves using ever more sophisticated qualitative models in order to provide enough functional
dependencies to yield reasonable numerical models. ...  [385]

An interesting result of our analysis is the discovery of a subtask that is at the core of generating
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explanations, and is also at the core of generating explanations in Reiter’s default logic.  [343]

These results are much better than we expected, especially when compared to ... [what] we had
thought was an optimistic measure...  [691]

Contrary to intuition, the random training sets performed as well or better than the most-on-point and
best-case training sets. [845]

Field 18:  Present negative results

Negative results are typically things that were expected to work but did not. Examples include
Hirschberg’s test of an algorithm for assigning intonation to speech (discussed above), and this
excerpt: “It is also probably worthwhile to report on search heuristics that we tried, but that didn’t reduce
the time needed to find a solution to the puzzle.” [214] Evidently, most researchers were even less
enthusiastic—negative results appeared in only four papers.
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Appendix 2. Statistical Analyses.

The following analyses support the conclusions in Section 4.1. Recall that papers were classified
by fields 3 – 8 of Table 1 into seven sets, shown in Figure 2. These sets are shown graphically at the top
of Figure 3, and the original distribution of papers into these sets is shown in row 0 of Figure 3.
Consider one of these sets, say, the 43 papers in MODELS ∩ ALGS.  The remaining rows in Figure 3
show how these papers are distributed over methodological tactics represented by fields 9 – 18 in Table
1. For example, the rows labelled A in Figure 3 correspond to field 9 in Table 1, which asks what kind
of example was presented in a paper. The 43 papers in MODELS ∩ ALGS are distributed as follows:
four papers gave natural examples, four gave synthetic examples, 29 gave abstract examples, and six
gave no examples at all.

•
•••

•••
algsmodels

systems

model–centered hybrid system-
centered

0
Distribution by
fields 3 – 8       25       43       36       1       4       3       37

A
Field 9:
Natural       3       4       9       0       0       1       22

A Synthetic       1       4       4       1       2       1       11
A Abstract       15       29       20       0       2       0       4
A None       6       6       3       0       0       1       0

B
Field 10:
Natural       0       3       10       0       0       1       18

B Synthetic       0       0       2       1       1       2       3
B Abstract       0       7       12       0       1       0       1
B None       25       33       12       0       2       0       15

C
Field 11:
Embedded       0       1       3       1       1       3       19

C Not Embedded       0       9       21       0       1       0       3
C None       25       33       12       0       2       0       15

D
Fields 12 –14:
Demo       0       7       24       0       2       3       8

D No Demo       25       36       12       1       2       0       29

E
Fields 15 – 18:
Expectations       2       10       11      1       3       1       4

E No Expectations       23       33       25       0       1       2       33

Figure 3.   Distributions of papers by classes and fields.
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Now, while the 43 papers in MODELS ∩ ALGS are predominantly concerned with abstract
examples, the 37 papers in SYSTEMS (the last column in Figure 3) are concerned with natural and
synthetic examples. The question is whether this result could have arisen by chance, or whether it
reflects different methodological tactics. There are two ways to answer the question. One is to consider
the entire distribution in the rows labelled A in Figure 3, that is, four types of example (including
none) crossed with seven sets of papers.  Intuitively, the distribution seems unlikely to have occured by
chance; for example, we do not expect chance to distribute 15 of 25 the papers in MODELS into the
“abstract” category whilst distributing 22 of 37 papers in SYSTEMS into the “natural” category. A chi-
square test captures this intuition and tells us whether the entire distribution (not only the anomalous
examples that we pick out) could have arisen by chance.  Given the contingency table in the rows
labelled A in Figure 3, a chi-square statistic (χ2) and its probability (p) are easily calculated. In this
case, χ2(18) = 67.9 and p < .0001, which means that the methodological choice of an example is not
independent of which class (e.g., MODELS, MODELS ∩ ALGS, etc.) a paper comes from; if the choice
was independent of class, then the distribution would be expected by chance less than one time in ten
thousand.

The other way to see whether the distributions in Figure 3 reflect different methodological tactics is
to combine the original seven sets into three: model-centered papers, system-centered papers, and
hybrid papers.  As shown at the top of Figure 3, our scheme for doing this is:

• Papers in MODELS, ALGS and MODELS ∩ ALGS are model-centered (104, total)
• Papers in SYSTEMS are system-centered (37, total)
• Papers in MODELS ∩ ALGS ∩ SYSTEMS, MODELS ∩ SYSTEMS,  and  ALGS ∩
SYSTEMS, and are hybrid (eight, total).

One justification for this is that the papers we call model-centered cannot be differentiated by the
kinds of examples they contain. To see this, we construct a contingency table from the first three
columns of data in the rows labelled A in Figure 3.  This distribution, shown in Figure 4, does not
permit us to reject the hypothesis that example type is statistically indendent of the classification of a
paper as a member of MODELS, ALGS or MODELS ∩ ALGS (χ2(6) = 7.26, p > .29).

A
Field 9:
Natural       3       4       9

A Synthetic       1       4       4
A Abstract       15       29       20
A None       6       6       3

Figure 4.   Three classes of papers with the same distribution
of types of examples.

With this as a justification for the class of model-centered papers, the other classes follow
naturally: system-centered papers are those in SYSTEMS, and the remaining eight, hybrid papers are
those in the intersection of the model-centered and system-centered classes.

Now we can run chi-square tests as above, except with three classes instead of seven.  New
contingency tables are easily derived by summing over columns; for example, Figure 5 shows the new
table for the rows labelled A in Figure 3.  This distribution is unlikely to have arisen by chance (χ2(6)
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= 55.5, p < .0001), which means that model-centered and system-centered papers offered significantly
different types of examples.

A
Field 9:
Natural

Model-centered
      16

Hybrid
      1

System-centered
      22

A Synthetic       9       4       11
A Abstract       64       2       4
A None       15       1       0

Figure 5.   The contingency table derived from Figure 3 for the distribution of
example types over three classes of papers.

Exactly the same sort of analyses were run on fields 10 and 11, with the results reported in Section
4.1: model-centered and system-centered papers focussed on significantly different kinds of tasks
and task environments. The data are shown in the rows labelled B and C, respectively, in Figure 3.
Note, however, that to analyze the embedded/non embedded distinction, we constructed a contingency
table that included only papers which described a task (in fact, we left out the row labelled “C. None” in
Fig. 3) because it makes no sense to ask whether a task environment is embedded if there isn’t a task.

Three analyses warrant further explanation. First, we had to combine data from fields 15 – 18 into
a single “super field” called expectations (a “yes” in at least one of the fields counted as an
expectation). The rows labelled E in Figure 3 show the distribution of expectations. The contingency
table for model-centered, system-centered, and hybrid papers was derived as described above, and
showed that model-centered and hybrid papers were more likely than system-centered papers to
discuss expectations (χ2(2) = 10.5, p < .01).

Second, we combined the data in fields 12 – 14 as shown in the rows labelled D in Figure 3. These
show the distribution of demonstrations over all papers. But we also ran an analysis of the distribution
of demonstrations over papers that described tasks (field 10, see also rows B in Fig. 3). The
contingency table in Figure 6 shows that among the papers that described a task, model-centered
papers were more likely than system-centered papers to present a demonstration (χ2(2) = 19.97, p <
.001).

Fields 12 - 14
Papers with tasks:
Demo

Model-centered

               31

Hybrid

            5

System-centered

               8
No Demo                3             1                14

Figure 6.   The contingency table for the distribution of demonstrations
in papers that described tasks, over three classes of papers.

Finally, to test whether model-centered or system-centered papers analyzed their results to
different extents, we had to change slightly the definitions of these classes. Recall that MODELS
papers are those that presented models (field 3) or proved theorems about the models (field 4). Let us
change the definition of MODELS to include those papers that garnered a “yes” in field 3, only, and
count a “yes” in field 4 as evidence of analysis of models. Similarly, let a “yes” in field 5 or 7 assign a
paper to ALGS or SYSTEMS, respectively, and a response in field 6 or 8 count as evidence of analyzing
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the algorithm or system, respectively. Then the definitions of model-centered, hybrid, and system-
centered are as they were before, and the contingency table relating these classifications to the
distribution of analyses is shown in Figure 7. Clearly, model-centered papers and hybrid papers (as
redefined) are more likely than system-centered papers to present analyses (χ2(2) = 16.5, p < .0005).

Fields 4, 6, or 8 :

Analysis

Model-centered

               82

Hybrid

            6

System-centered

               16
No Analysis                22             2                21

Figure 7.   The contingency table for the distribution of analyses over three
classes of papers.

Problems with and Concerns about the Survey.

It would be misleading to end this discussion without addressing some problems with our own
methodology—the way we conducted the survey.  The major problem is that we have no reliability data.
We cannot be confident that another reviewer, given the fields in Table 1, would classify the papers in
substantially the same way.  To illustrate the problem, consider the most difficult question we had to
tackle in the current survey: where to draw the line between “informal analysis” and “no analysis” of
systems (field 8).  The line must distinguish real analyses from guesses, post-hoc justifications, wish-
lists for extensions to the system, perfunctory and obligatory references to other research, and so on.
The criteria for this distinction are very subjective; however, we needed some way to acknowledge the
13 papers that in an ill-defined way tried to analyze their systems (especially because nine of them had
not a single non-negative entry in fields 12 – 18).  We believe that other questions in Table 1 can be
answered more objectively, but to find out will require a reliability study, for which we solicit
volunteers!

Bias due to preconceptions is another concern. Perhaps by identifying a paper as, say, a member of
SYSTEMS, we became biased in how we filled in the other fields in Table 1. For example, we might be
more likely to classify an experiment as a demonstration of performance if it came from a SYSTEMS
paper than an ALGS paper because we expected SYSTEMS papers to demonstrate performance more
often than ALGS papers. In fact, we expected exactly this but we found the opposite, so the bias—if it
existed—was clearly not strong enough to eradicate the true result in this instance. Bias is probably a
factor in our results, but we doubt it is a major factor—or at least we have not discovered obvious
examples of it.

We must also address the concern that the papers in AAAI-90 do not represent the methodological
status of AI. Perhaps methodologically superb work is being excluded by space limits, reviewing
criteria, or other factors in the AAAI reviewing process.  We found no evidence to suggest that the
reviewing process is a Maxwell’s Demon that lets bad work in and keeps good work out. Roughly 80%
of AAAI-90 papers provided either analysis or demonstrations of performance, which suggests that the
program committee was looking for something to back up the claims made in the papers; and the fact
that roughly 20% provided neither analysis nor demonstrations suggests not that superb work was
rejected, but that it was hard to come by.  Perhaps, then, it is not the reviewing process but the
requirements of the forum itself—particularly the page limits—combined with self-selection, that



AAAI-90 Survey:  Pulling Together or Pulling Apart? Paul R. Cohen

35

prevent researchers from sending their best work to AAAI. No doubt there is something to this, but it is
not the simplest explanation of the wide variance in the quality of work in AAAI-90.


