The course will involve:
- Lectures
- Keynote Lectures
- Guest Lectures
- Mini-Project
- Literature Review

- TA Help with the Mini-Project and Literature Review.
- No lab sessions.
Next Mon, Thu

- Ethics in Data Science
- PrivApprox: Privacy-preserving Stream Analytics, Pramod Bhatotia in IFG07
Choosing Mini-Projects

- There are default datasets and projects and lit review areas.
- BUT
- More interesting if it matches your future interests.
- Talk to staff – do they have interesting data to analyse: you need to anyway to determine a supervisor
- Criterion: only “real” data is allowed. Severely preprocessed data for e.g. benchmarking does not wash.
 - No imagenet, cifar, etc. etc. for an ML project.
Subjects of interest...
What is IRDS for you?
Problem Understanding and Planning

- What do people want?
- What do people really want?
- What do people have?
- What do people really have?
- Is it possible? Is it feasible?
- How much data do I need?
- Collaborate, don’t apply.
What do people want?

- As someone describes: listen carefully!
 - Language games
 - They will try to tell you what they think you want to know. They are usually wrong about what you want to know.
 - They will be vague about things you are used to being precise about and vice versa.

- What do you want to know?
 - What is the actual problem they care about, precisely.
 - How do they currently measure that; how might they measure that: are there usable proxies.
Cutting through

- Ask for specific examples. Not just one. Three.
- Make explicit translation tables: Maybe where you say “parameter”, we would say “variable”?
- Use clear English. Techno-speak is as bad as management speak.
- IDK why computer scientists insist on using acronyms? Don’t.
What do they have?

- Stay sceptical?
- Do they really have it?
- Is it what they say it is?
- Is there missing data?
- Example
Evaluation

- Constantly think about evaluation.

- (How) do they currently evaluate things?
 - Is that computable?
 - If not, is there a computable proxy to that evaluation?
 - Is there a good/better way to evaluate things?
 - In ML, always start with a supervised problem.
This is an important point of exploration

Example:

- You are trying to predict the performance capability of a racing car given fixed measurements about the car.
- The car races in multiple races in a season before the car component measurements are tweaked.
- How do you assess the whether you might not be able to do this?

Think about signal to noise ratios.

Also what are the costs?

- Data cleaning, collection etc.
How much data? How long will it take?
Collaborate, don’t apply

- CRISP Cross-industry standard process.

- Plan for all parts
- Plan to iterate
- Plan to communicate
- Plan to integrate
Summary

- What do people want?
- What do people really want?
- What do people have?
- What do people really have?
- Is it possible? Is it feasible?
- How much data do I need?
- Collaborate, don’t apply.