IRDS: Visualization

Charles Sutton
University of Edinburgh

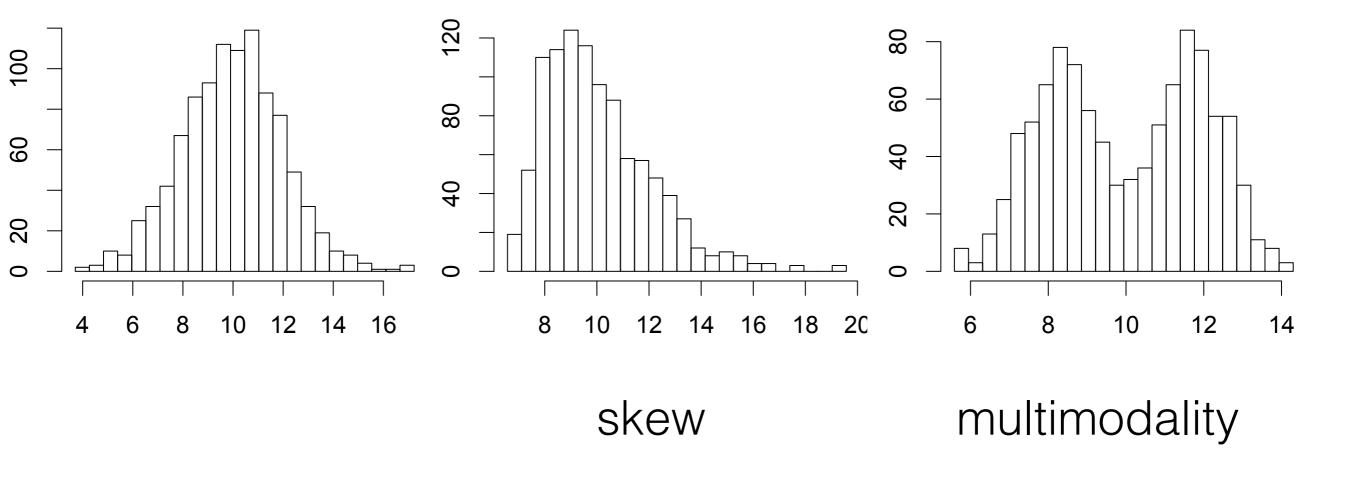
Why visualisation?

- Exploratory
 - What's in the data? What's wrong with it?
 - Today's lecture.
- Presentation
 - Display results of algorithms for publication
- Engagement
 - Infographics from web sites, word clouds, etc

Summary Statistics

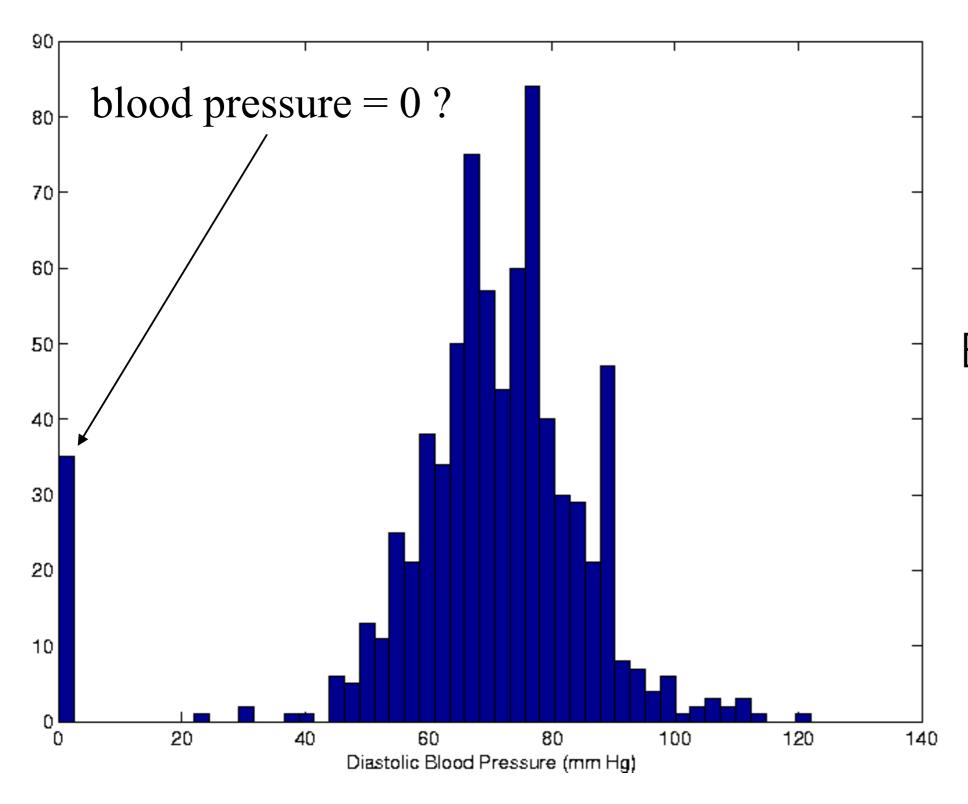
- Univariate
 - Mean
 - Median
 - Variance
 - Quantiles
- Multivariate
 - Correlation
 - Covariance

Histograms



these three have same summary statistics!

Outliers in histograms

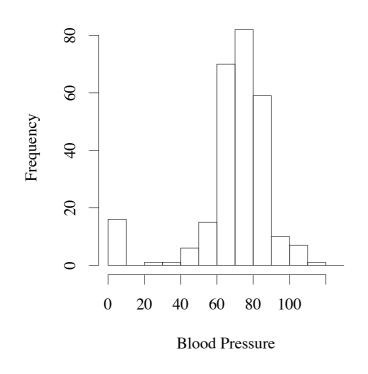


Blood pressure data set

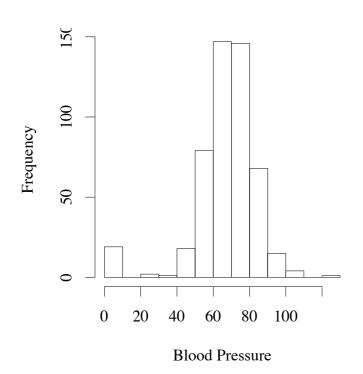
UCI ML repository says no missing data (well, for 20 years it did)

[Source: Padhraic Smyth]

Class-Conditional Histograms

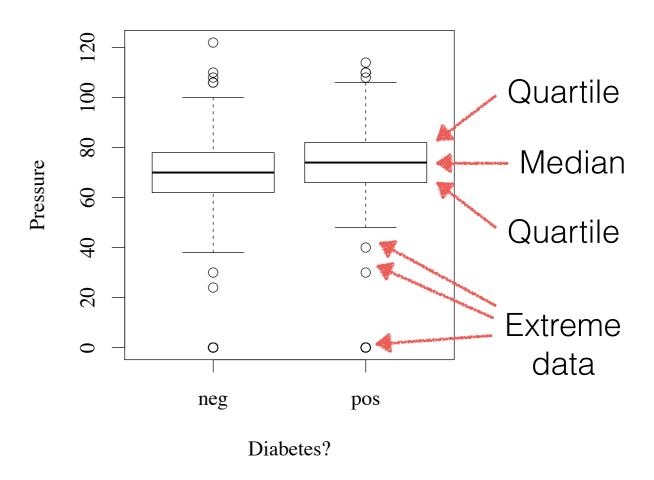


Positive (diabetes)



Negative

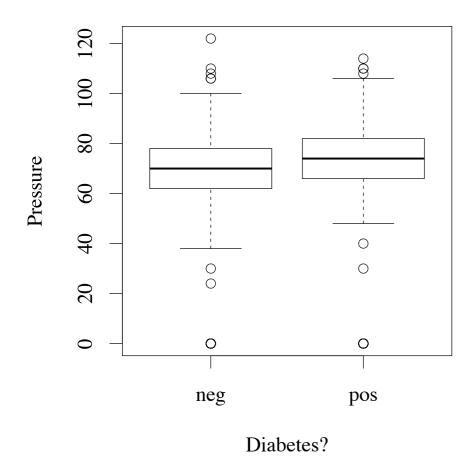
Alternative: Box plot



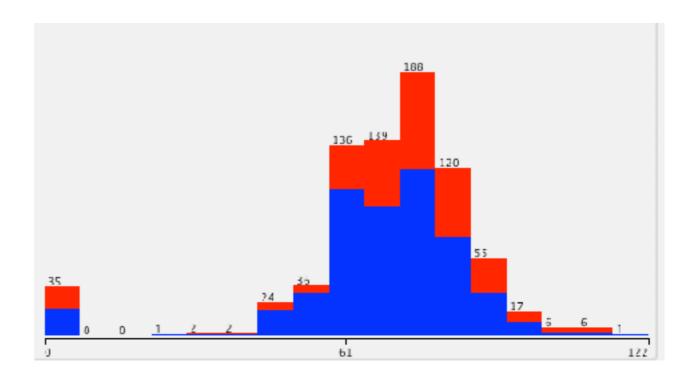
Maybe for only 2 groups, graphs not necessary. For more visual comparisons, can be helpful.

Slight rant about bar charts

Here's my boxplot

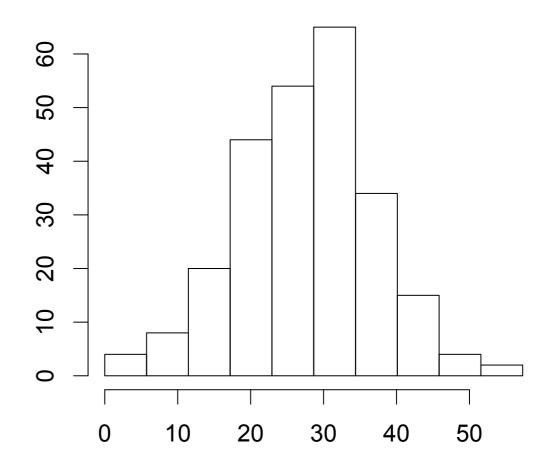


Weka's automatic visualisation

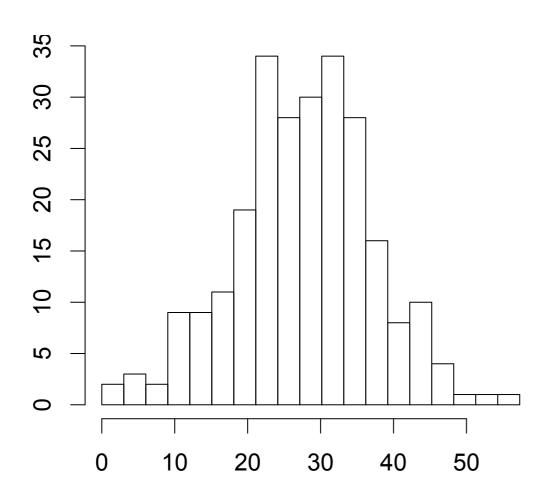


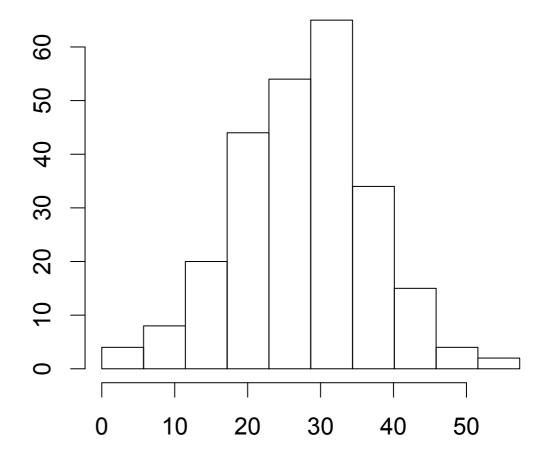
Bar charts often seem like a better idea than they are

Effect of bin size

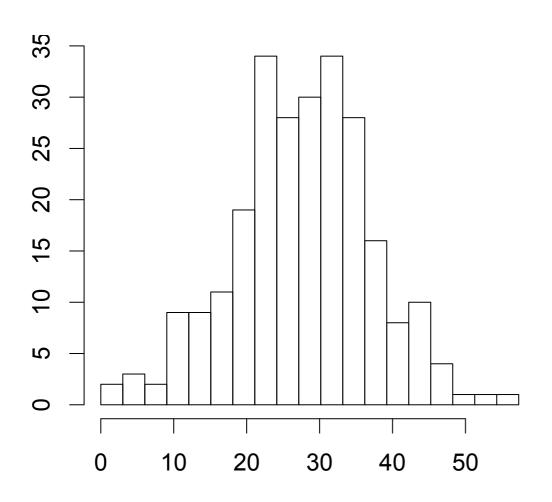


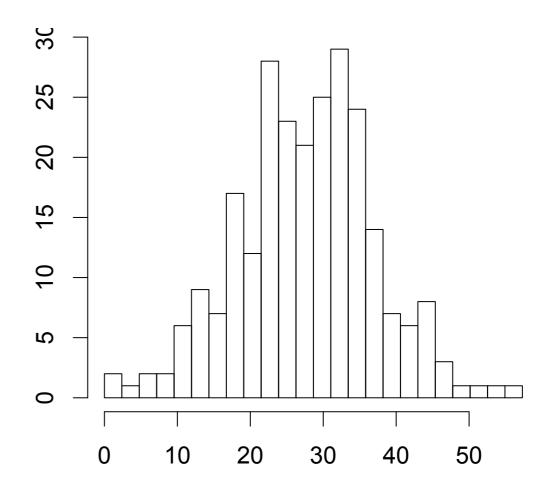
Effect of bin size



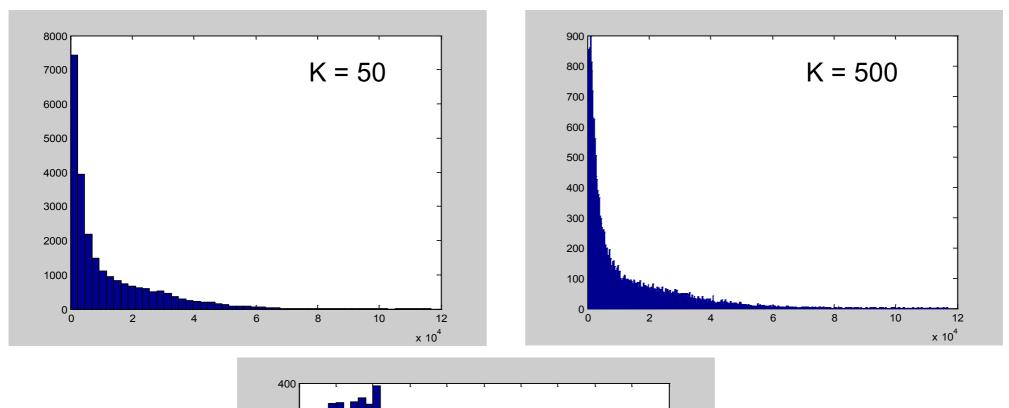


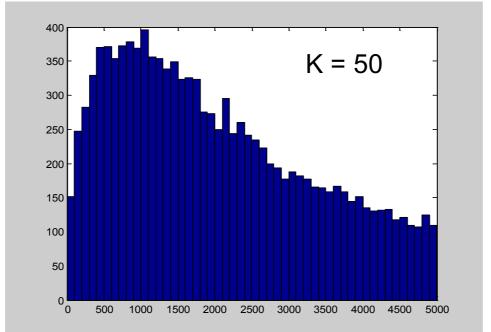
Effect of bin size





More misleading histograms





Data: US Post Codes

[Source: Padhraic Smyth]

Bivariate data

- Numerical summaries about linear dependence
- Histograms sort of scale to 2-D but not really higher
- More common to use scatter plots

Numerical bivariate summaries

Data are $(x_1, y_1), (x_2, y_2), \dots (x_N, y_N)$

Sample covariance:

$$s_{xy} = \frac{1}{N-1} \sum_{i=1}^{N} (y_i - \bar{y})(x_i - \bar{x})$$

Sample correlation:

$$\rho_{xy} = \frac{s_{xy}}{s_x s_y}$$

where as before

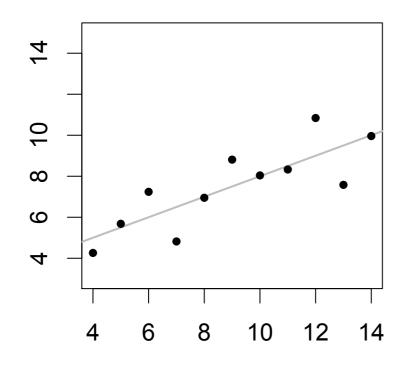
$$\bar{x} = \frac{1}{N} \sum_{i} x_i$$

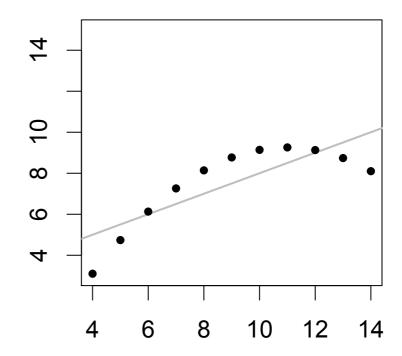
$$\bar{y} = \frac{1}{N} \sum_{i} y_i$$

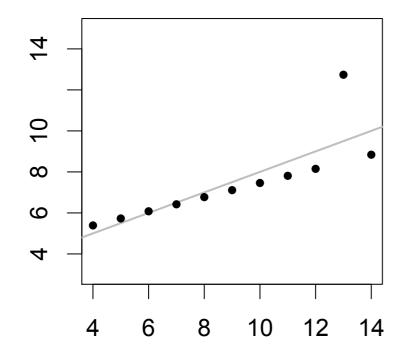
$$s_x = \sqrt{\frac{1}{N-1}} \sum_i (x_i - \bar{x})$$

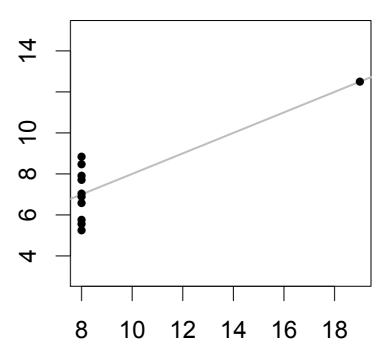
$$s_y = \sqrt{\frac{1}{N-1} \sum_i (y_i - \bar{y})}$$

Dangers of correlation

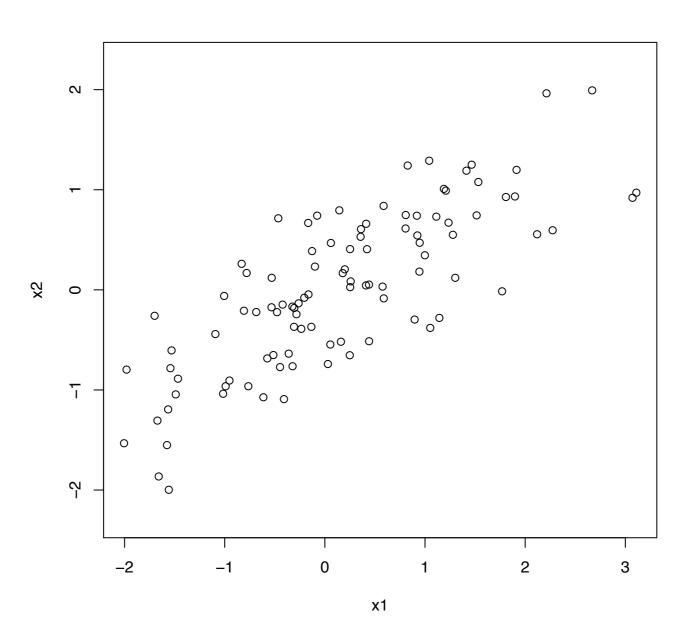








Scatterplots

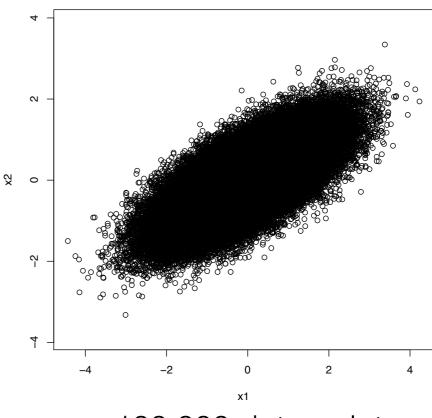




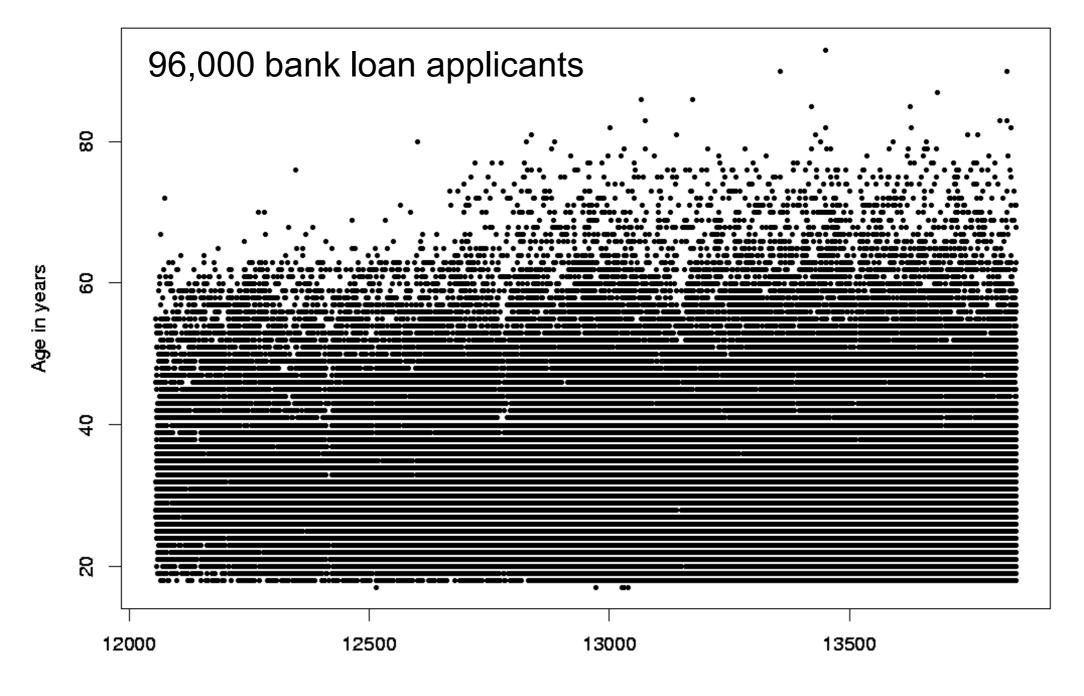
Overplotting

samples from bivariate normal

also: notice the axes!



100,000 data points



[Source: Hand, Manila, and Smyth]

To fix overplotting, could consider:

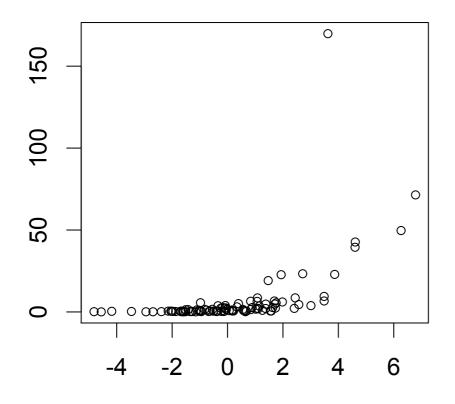
- Jittering points
- Subsampling points (i.e., plot only 10%)
- Averaging (if this makes sense)
- Add trend lines (e.g., quantile lines)

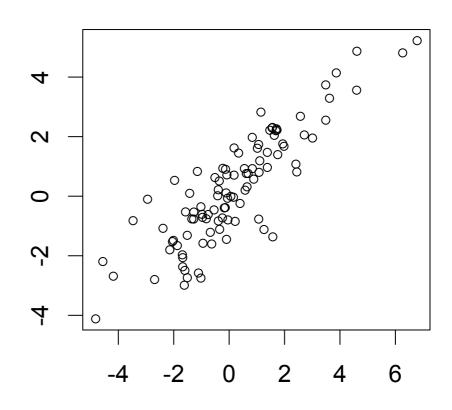
Transformations

Consider powers, logs.

Occasionally reciprocals (e.g., rates).

Also square root

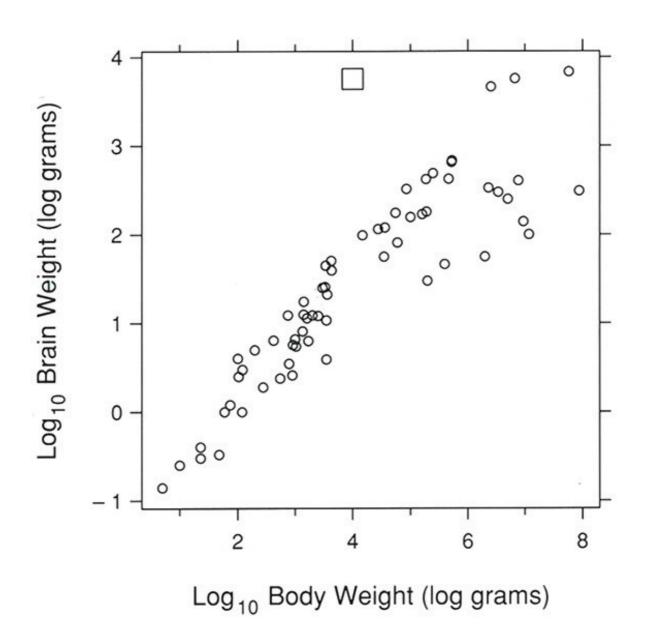




Before

After

Example Transformation



Why log log here? Hint: Imagine a spherical cow

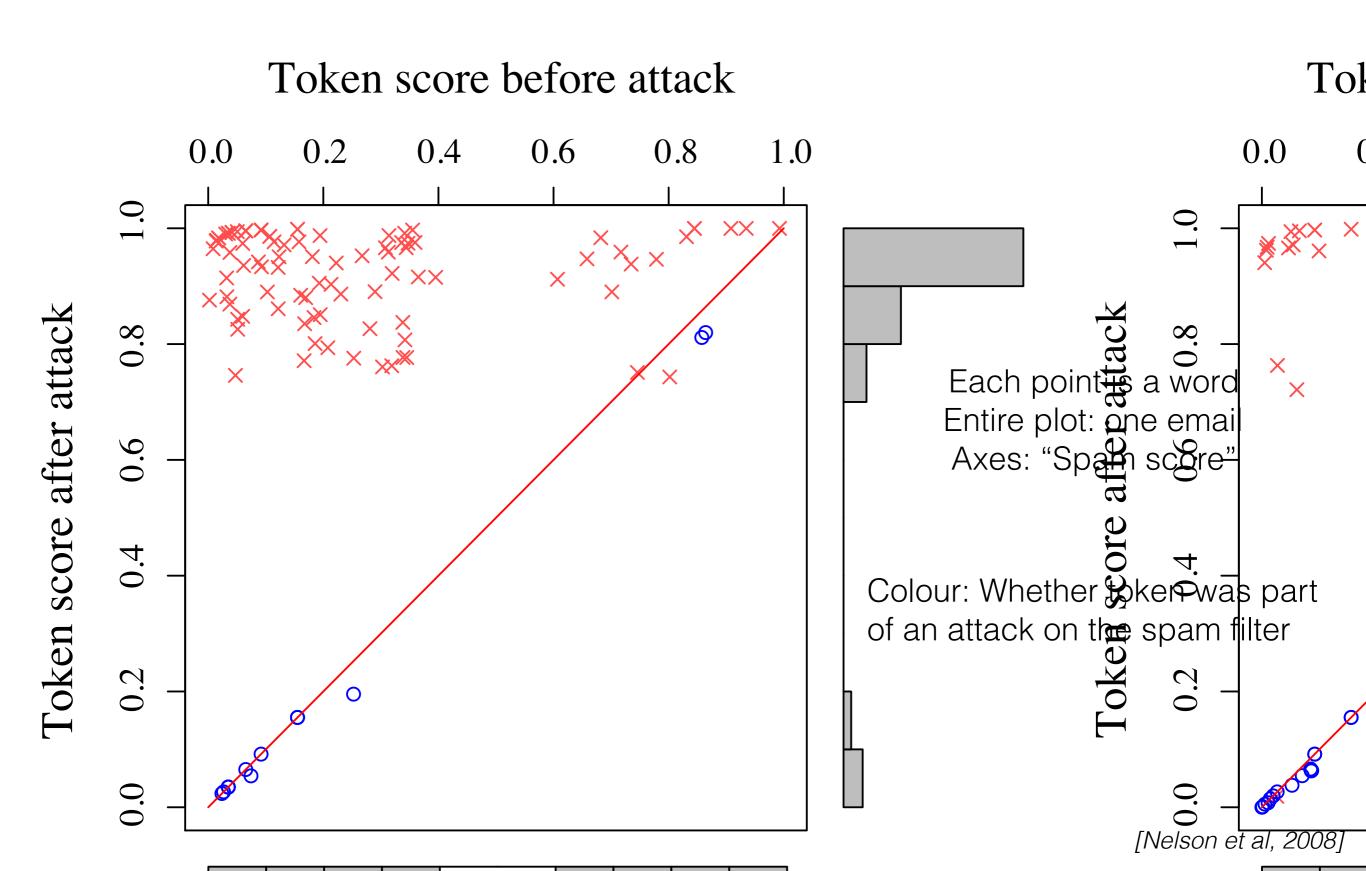
[Source: William Cleveland, Visualizing Data]

Wait, what if you have categorical data?

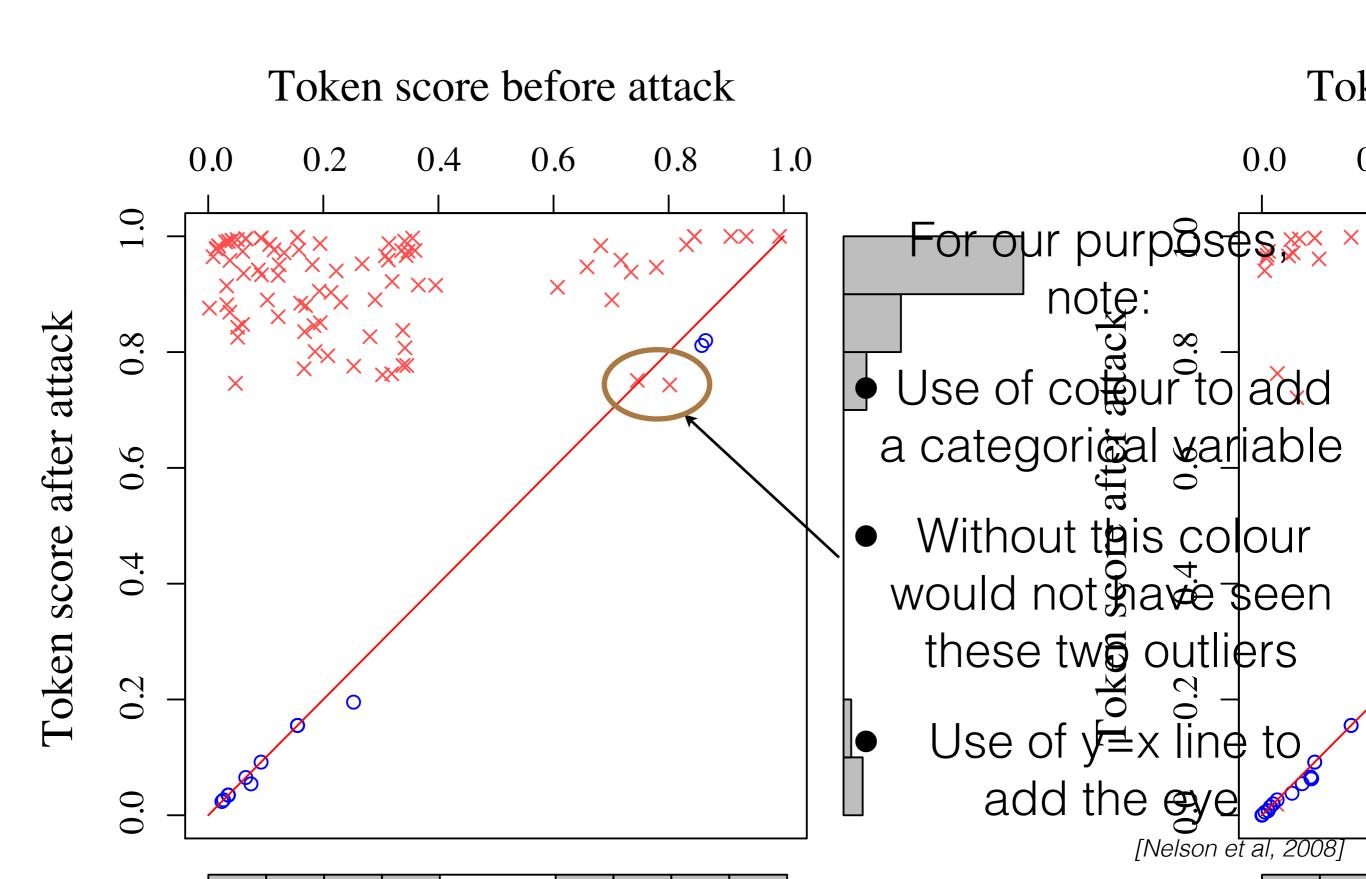
Tools here include:

- Colour
- Contingency tables
- Multiple plots (e.g., class-conditional histograms)

Colour in Scatterplots



Colour in Scatterplots



Thoughts about using color

- Think about data: sequential, diverging, qualitative
- Intensity of color conveys information
- Colorblindeness
- Cartographers care about this
 - colorbrewer2.org

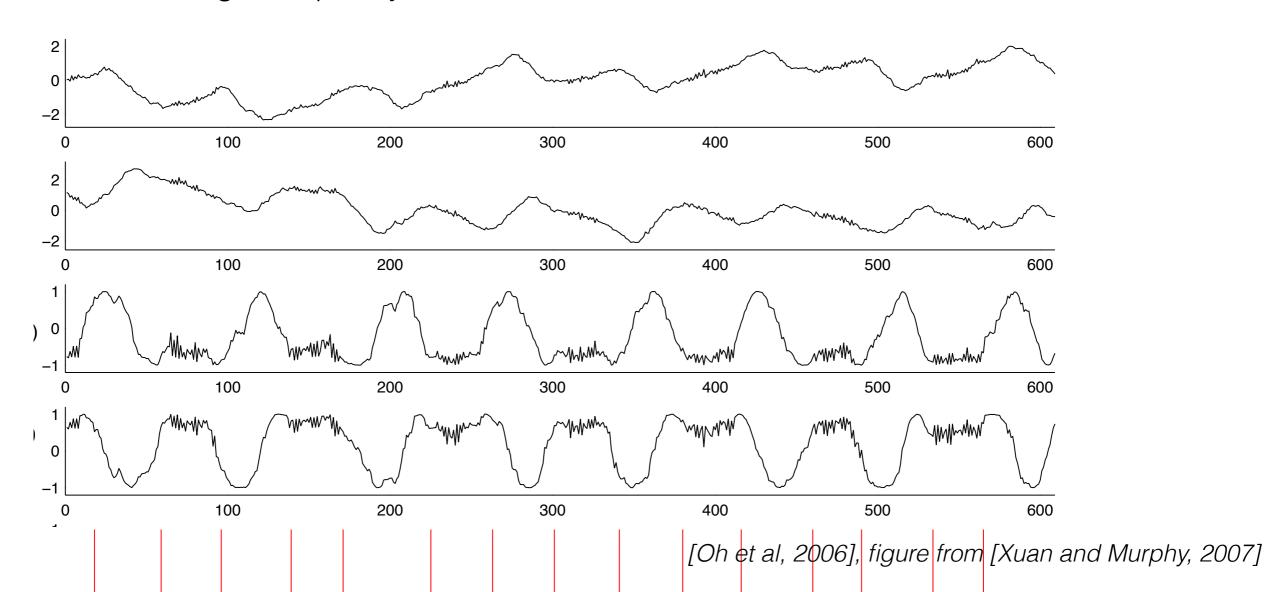
Time Series

Examples

- Financial data
- Network traffic
- Energy usage
- Human traffic
- Building occupancy

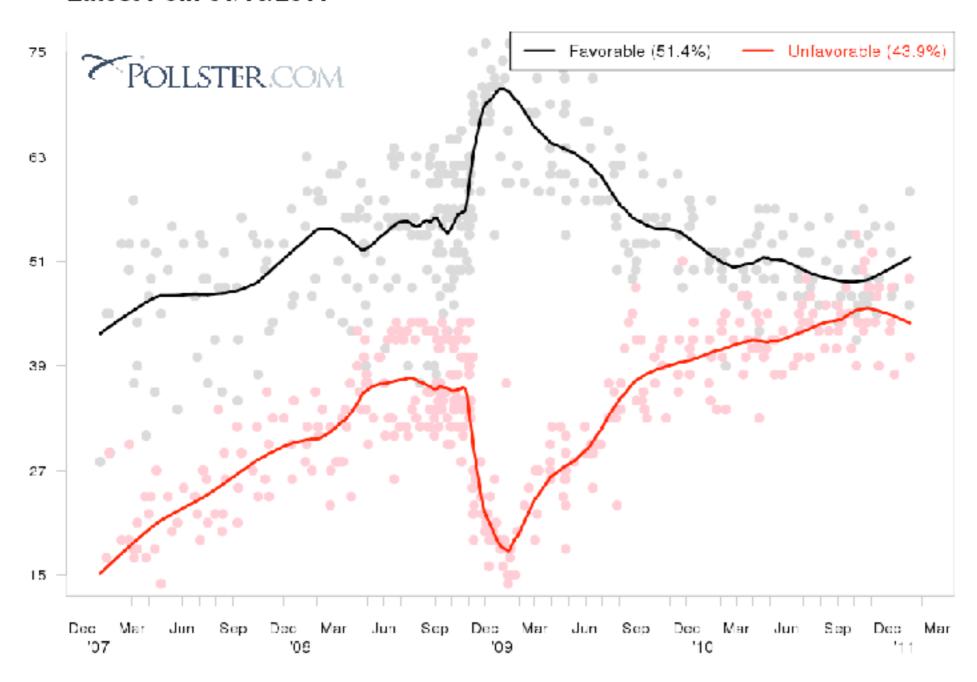
Visualization tricks include:

- Smoothing
 - (running mean, median)
- Repeated multiples



Fitted line

Barack Obama Favorable/Unfavorable Rating Latest Poll: 01/10/2011



This fit is from loess (local linear regression).

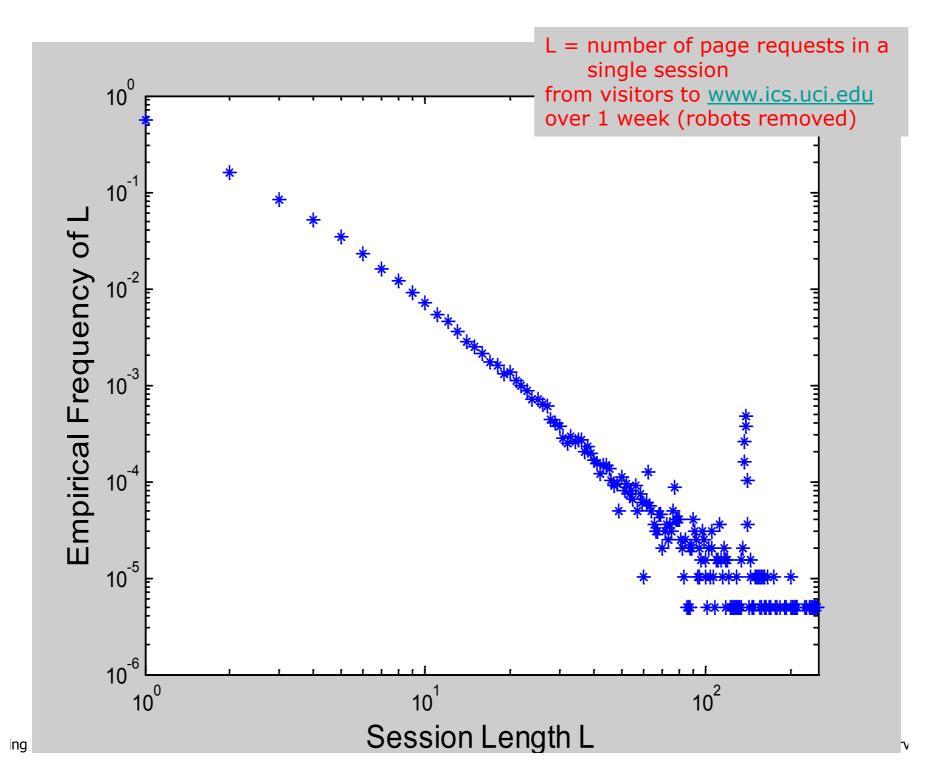
Power Law

- Often data have skewed distribution, e.g., accesses to Web site, number of friends a person has, sizes of files on your computer.
- One way to model these is a power law

$$p(x) = C^{-1}x^{-\alpha}$$
 where $\alpha > 1$

Key point, this is linear when you take logs

Example of Power Law



Three-Dimensional Data

- Generally hard
- 3-D plots are not usually useful
- Usually better to use colour on a 2-D plot
- Or show multiple 2D plots for each value of third variable

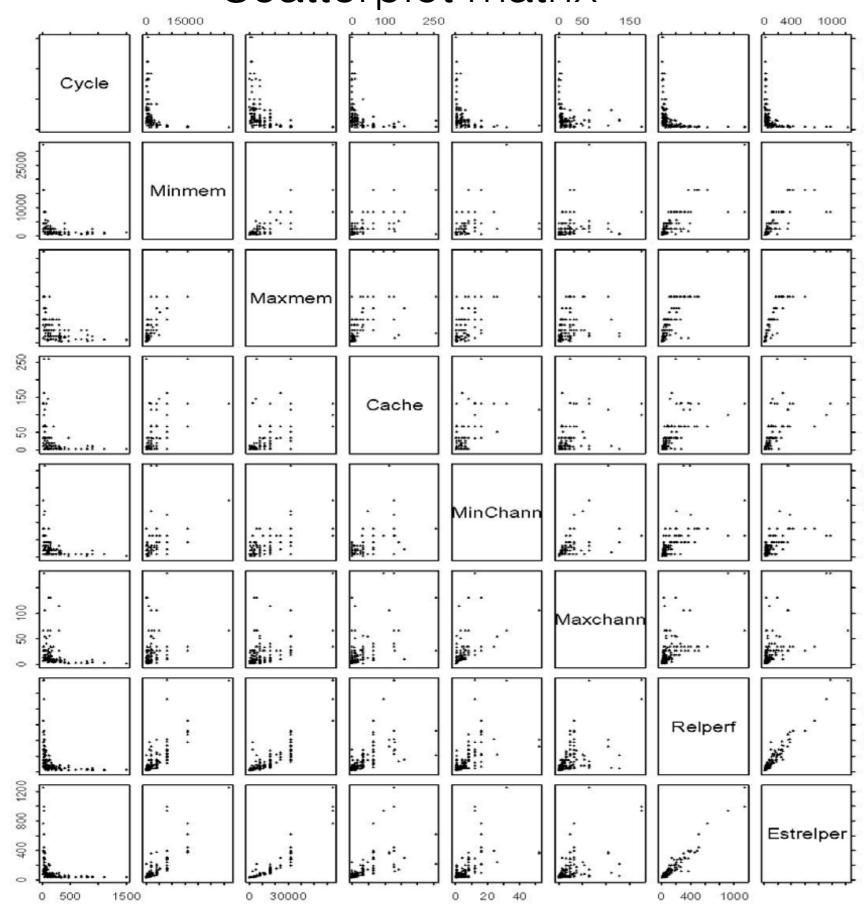
High-Dimensional Data

Always going to be hard.

Reason: Visualisation does not scale. (in number of pixels)

- Project the data down to 2-D
 - Many techniques
 - Principal Components Analysis (IAML, MLPR)
 - Multidimensional scaling
 - Modern nonlinear methods: t-SNE, LLE, Isomap, Eigenmaps
 - Problem: Sometimes this will obscure high-D structure and nonlinear structure
- Another option: Scatterplot matrix (see next)

Scatterplot matrix

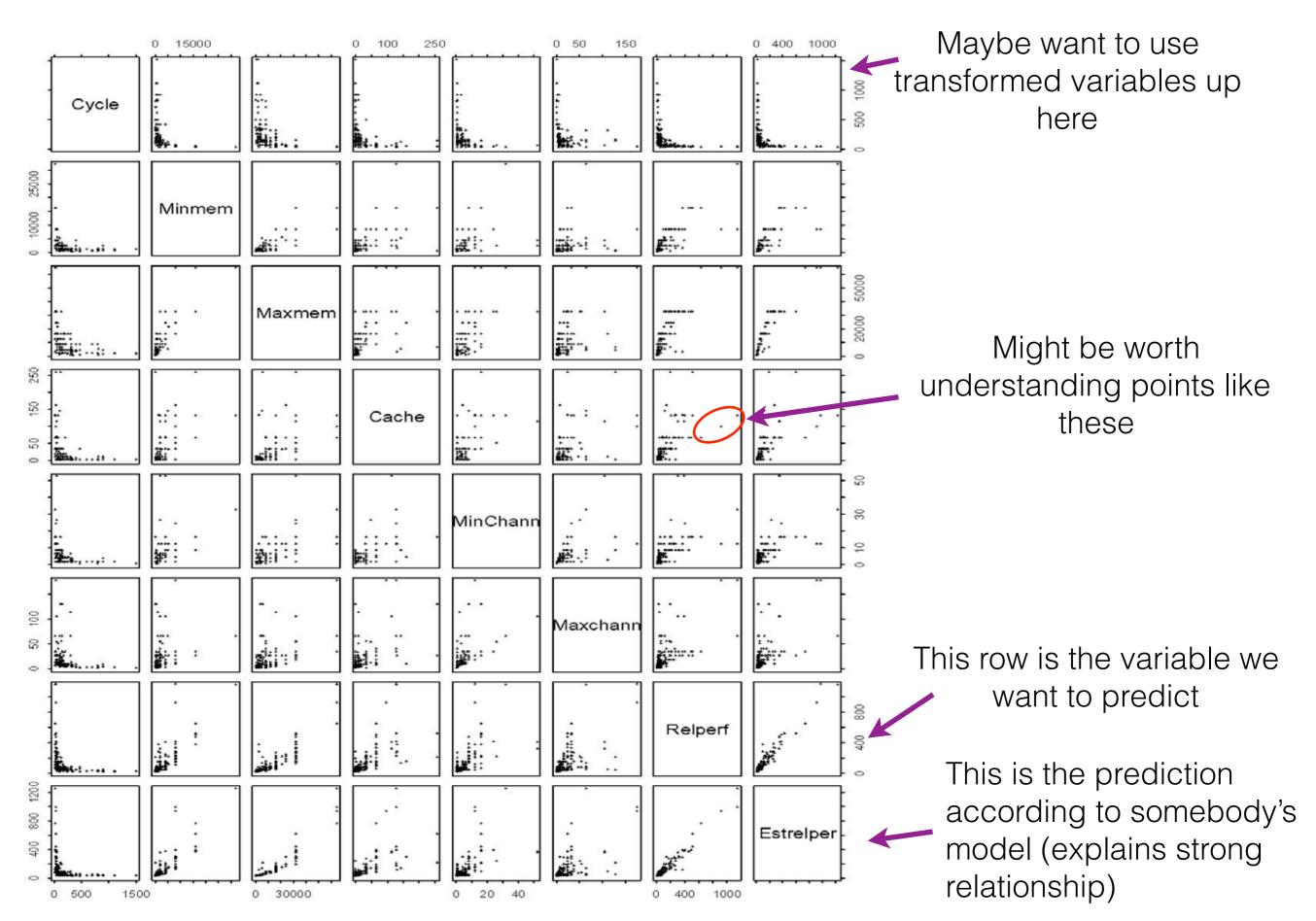


This is performance data for (very old)

CPUs

Important: Scales must be matched

Scatterplot matrix



Another complicated case

What if individual features don't mean as much?

Text, images, audio

- Text: Can summarise individual documents (tf-idf, topics)
- For images / audio, probably reduced to navigation via clustering
- Or can project the data down to 2-D again

Principles

- Visualisation is essential but not scalable (in dimension or data size)
- For exploration, simple is good
 - Histograms and scatterplots rule. Fancy 3-D graphs, meh.
- Principle of small multiples
- Color is the fourth dimension.
 - Time not so useful.
- Understand the axes. Scaling and transforming.
 - (always check the axes on small multiples)
- If something looks weird, figure out why.
 - Find anomalies. Data are always suspect.
- Relationships are about managing expectations
 - What relationships do you expect to exist? Can you see them?
- Use visualization to inform models and vice versa
 - Feature construction, debugging

"Dual-purpose" principles

(both exploratory and presentation analysis)

- Make sure the axis labels aren't too small
- What the reader wants to compare, make it easy to compare
- Revise figures often, same as text

not

Making it easy to compare

Something I often see in MSc theses...

	Size of training set	100	10,000	100,000
SVM	Features A	0.3	0.15	0.12
	Features B	0.32	0.17	0.13
	Features C	0.35	0.19	0.14
k-NN	Features A	0.4	0.25	0.20
	Features B	0.42	0.27	0.18
	Features C	0.38	0.3	0.25
Logistic regression	Features A	0.35	0.2	0.14
	Features B	0.36	0.22	0.16
	Features C	0.33	0.19	0.15

If you really like this stuff

- Tukey, Exploratory Data Analysis
- Bill Cleveland, Visualizing Data
- Edward Tufte, all books

