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• Analyzing computer programs 
• Data mining 
• Exploratory data analysis 
• Home energy demand 
• Computer security

New applications

New methodology

• New model architectures 
• Inference algorithms 

  (e.g., high dimensional, streaming) 
• Approximate learning methods



Interactive machine learning

Data analysts are like cats.

… not just for dummies!

1. Want to explore their data
2. Don’t know what they want.

Interactive machine learning for analysts
Whose information need is not explicit

Whose domain knowledge is difficult to encode

Allow analysts to explore intermediate results
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Clustered data

TINDER 
Technique for INteractive 
Data Exploration via 
Rejection

[Srivastava, Zou, Sutton, ICML W/S 2016]



Database of 
transactions

Association Rules
Association rule mining

Find set of all rules

that have

Prob
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Frequent itemsets
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Why? Exploratory data analysis



Probabilistic Itemset Mining

1. For each itemset, sample  
To sample a transaction,
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Mining Interesting Itemsets

support divided by the support of its most frequent single-
ton. While the use of h-confidence does eliminate itemsets
with widely differing frequencies, some of these pruned
itemsets are likely to contain highly associated items that
we would like to retain. Instead, we suggest that the key
problem with spurious cross support patterns is not the
skewed support distribution, but the freerider problem.

3.2. Redundancy in the Itemset List

It is well known that the list of frequent itemsets is long
and difficult to understand (Tan et al., 2006). In part this is
because any subset of a frequent itemset is itself frequent.
Additionally, this is exacerbated by the freerider problem,
because the many spurious correlations increase the size
of the frequent itemset list. A common way of addressing
this problem are compact representations of the itemset list,
such as maximal and closed itemsets (Han et al., 2007). Al-
though these methods are effective at reducing the number
of itemsets retrieved, they do not address the other patholo-
gies in this section. Furthermore, we would argue that the
itemsets that are closed or maximal may not be those that
are the most statistically interesting. A maximal itemset,
for example, is actually likely to contain a freerider, as it is
by definition the largest frequent superset.

3.3. Rare itemsets

Another approach to address the redundancy problem in
FIM is simply to increase the minimum support threshold,
thereby excluding itemsets with low support. But this raises
a new issue, regarding the so called rare itemsets.

In a market basket transaction database, FIM algorithms
can easily find sets of items that are frequently bought
together such as {bread, milk}. However, now consider
champagne and caviar which are also frequently bought to-
gether, but as they are both expensive items, occur rarely in
a transaction database (Tan et al., 2006; Hastie et al., 2009).
As a result, unless the minimum support threshold of a FIM
algorithm is set sufficiently low, the algorithm will fail to
retrieve the rare itemset {champagne, caviar} even though
it is highly relevant.

Attempts to resolve this issue have mainly involved design-
ing specific algorithms for mining rare itemsets (Yun et al.,
2003; Koh & Rountree, 2005; Szathmary et al., 2007).
However, these approaches (such as Apriori-Inverse) are
merely simple modifications of FIM which do not consider
statistical interestingness. Most rare itemsets are rare for
good reason, so that the list of all rare itemsets will include
many itemsets whose associations are spurious.

z(j)S

X (j)

S 2 IS 2 I

⇡S

j 2 1, ...,m

Figure 1. Graphical model for Interesting Itemset Mining.

4. Interesting Itemset Mining
In this section we will formulate the problem of identifying
a set of interesting itemsets that are useful for explaining a
database (i.e., sequence) of transactions. First we will de-
fine some preliminary concepts and notation. An item i is
an element of the universe U = {1, 2, . . . , n} that indexes
database attributes. A transaction X is a subset of the uni-
verse U and an itemset S is simply a set of items i. The
set of interesting itemsets I we wish to determine is there-
fore a subset of the power set (set of all possible subsets)
of the universe. Further, we say that an itemset S supports
a transaction X if S ⊂ X .

4.1. Generative Model

We propose a simple directed graphical model for generat-
ing a database of transactions X(1), . . . , X(m) from a set
I of interesting itemsets (see Figure 1). The parameters of
our model are Bernoulli probabilities πS for each interest-
ing itemset S ∈ I . The generative story for our model is,
independently for each transaction X in the database:

1. For each itemset S ∈ I , decide independently
whether to include S in the transaction, i.e., sample

zS ∼ Bernoulli(πS).

2. Set the transaction to be the set of items in all the item-
sets selected above, i.e.,

X =
⋃

zs=1

S.

Note that the model allows individual items to be generated
multiple times from different itemsets, e.g. eggs could be
generated both as part of a breakfast itemset {bacon, eggs}
and as as part of a cake itemset {flour, sugar, eggs}.

4.2. Inference

Given a set of itemsets I, let z,π denote the vectors of
zS ,πS for all itemsets S ∈ I. Assuming z,π are fully de-
termined, it is evident from the generative model that the

2. Deterministically set
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Mining Interesting Itemsets

support divided by the support of its most frequent single-
ton. While the use of h-confidence does eliminate itemsets
with widely differing frequencies, some of these pruned
itemsets are likely to contain highly associated items that
we would like to retain. Instead, we suggest that the key
problem with spurious cross support patterns is not the
skewed support distribution, but the freerider problem.

3.2. Redundancy in the Itemset List

It is well known that the list of frequent itemsets is long
and difficult to understand (Tan et al., 2006). In part this is
because any subset of a frequent itemset is itself frequent.
Additionally, this is exacerbated by the freerider problem,
because the many spurious correlations increase the size
of the frequent itemset list. A common way of addressing
this problem are compact representations of the itemset list,
such as maximal and closed itemsets (Han et al., 2007). Al-
though these methods are effective at reducing the number
of itemsets retrieved, they do not address the other patholo-
gies in this section. Furthermore, we would argue that the
itemsets that are closed or maximal may not be those that
are the most statistically interesting. A maximal itemset,
for example, is actually likely to contain a freerider, as it is
by definition the largest frequent superset.

3.3. Rare itemsets

Another approach to address the redundancy problem in
FIM is simply to increase the minimum support threshold,
thereby excluding itemsets with low support. But this raises
a new issue, regarding the so called rare itemsets.

In a market basket transaction database, FIM algorithms
can easily find sets of items that are frequently bought
together such as {bread, milk}. However, now consider
champagne and caviar which are also frequently bought to-
gether, but as they are both expensive items, occur rarely in
a transaction database (Tan et al., 2006; Hastie et al., 2009).
As a result, unless the minimum support threshold of a FIM
algorithm is set sufficiently low, the algorithm will fail to
retrieve the rare itemset {champagne, caviar} even though
it is highly relevant.

Attempts to resolve this issue have mainly involved design-
ing specific algorithms for mining rare itemsets (Yun et al.,
2003; Koh & Rountree, 2005; Szathmary et al., 2007).
However, these approaches (such as Apriori-Inverse) are
merely simple modifications of FIM which do not consider
statistical interestingness. Most rare itemsets are rare for
good reason, so that the list of all rare itemsets will include
many itemsets whose associations are spurious.
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Figure 1. Graphical model for Interesting Itemset Mining.

4. Interesting Itemset Mining
In this section we will formulate the problem of identifying
a set of interesting itemsets that are useful for explaining a
database (i.e., sequence) of transactions. First we will de-
fine some preliminary concepts and notation. An item i is
an element of the universe U = {1, 2, . . . , n} that indexes
database attributes. A transaction X is a subset of the uni-
verse U and an itemset S is simply a set of items i. The
set of interesting itemsets I we wish to determine is there-
fore a subset of the power set (set of all possible subsets)
of the universe. Further, we say that an itemset S supports
a transaction X if S ⊂ X .

4.1. Generative Model

We propose a simple directed graphical model for generat-
ing a database of transactions X(1), . . . , X(m) from a set
I of interesting itemsets (see Figure 1). The parameters of
our model are Bernoulli probabilities πS for each interest-
ing itemset S ∈ I . The generative story for our model is,
independently for each transaction X in the database:

1. For each itemset S ∈ I , decide independently
whether to include S in the transaction, i.e., sample

zS ∼ Bernoulli(πS).

2. Set the transaction to be the set of items in all the item-
sets selected above, i.e.,

X =
⋃

zs=1

S.

Note that the model allows individual items to be generated
multiple times from different itemsets, e.g. eggs could be
generated both as part of a breakfast itemset {bacon, eggs}
and as as part of a cake itemset {flour, sugar, eggs}.

4.2. Inference

Given a set of itemsets I, let z,π denote the vectors of
zS ,πS for all itemsets S ∈ I. Assuming z,π are fully de-
termined, it is evident from the generative model that the

Generative Model

Inference

[Fowkes and Sutton, KDD 2016, PKDD 2016]

Sequences: Interleaving model for patterns with gaps 
Itemsets: E-step is submodular set cover 

View pattern finding as set cover

Transaction

Patterns

{ }
{ }
{ }

0.0001

0.02

0.5

Alternate set cover and parameter inference (structural EM)



                  ISM Variant 
              [Fowkes & Sutton, FSE ‘16]

             MAPO 
          [Zhong et al, ‘09]

                    UPMiner 
                     [Wang et al, ‘13]

					TwitterFactory.<init>	
					TwitterFactory.getInstance

TwitterFactory.<init>	
TwitterFactory.getInstance

					TwitterFactory.<init>	
					TwitterFactory.getInstance

					TwitterFactory.<init>	
					TwitterFactory.getInstance	
					Twitter.setOAuthConsumer	
					Twitter.setOAuthAccessToken

Status.getUser	
Status.getText

					TwitterFactory.getInstance	
					Twitter.setOAuthConsumer

					Status.getUser	
					Status.getText

ConfigurationBuilder.<init>	
ConfigurationBuilder.build

					TwitterFactory.<init>	
					TwitterFactory.getInstance	
					Twitter.setOAuthConsumer

					AccessToken.getToken	
					AccessToken.getTokenSecret

ConfigurationBuilder.<init>	
TwitterFactory.<init>

					Status.getUser	
					Status.getText

					ConfigurationBuilder.<init>	
					ConfigurationBuilder.build	
					TwitterFactory.<init>	
					TwitterFactory.getInstance

ConfigurationBuilder.<init>	
ConfigurationBuilder.setOAuthCon
sumerKey

					Twitter.setOAuthConsumer	
					Twitter.setOAuthAccessToken

API Call Patterns: “Big Code”
Twitter4j Java Library

: two main types of twitter initialization call

[Fowkes and Sutton, FSE 2016]



Syntactic Idioms in Code
...
if (c != null) {
try {
if (c.moveToFirst()) {
number = c.getString(

c.getColumnIndex(
phoneColumn));

}
} finally {
c.close();
}
}
...

IfStatement

expression:

c!=null

then:Block

TryStatement

body:IfStatement

expr:MethodInvocation

expr:var%android.database.Cursor%

name:c

name:moveToFirst

then:Block

number = c.getString(c.getColumnIndex(phoneColumn));

finally:Block

ExpressionStatement

MethodInvocation

expr:var%android.database.Cursor%

name:c

name:close

E ! E

T

F * F

( E

T + T

)

(prob 0.5)

(d)
(a)

try {
if ($(Cursor).moveToFirst()) {
$BODY$

}
} finally {
$(Cursor).close();

}

(b) (c)

Figure 1: Example of code idiom extraction: (a) A snippet from PhoneNumberUtils in android.telephony. (b) A common idiom when
handling android.database.Cursor objects, successfully mined by Haggis. (c) Eclipse JDT’s AST for the code in (a). Shaded nodes are
those included in the idiom. (d) An example of a pTSG rule for a simple expression grammar. See text for more details.

types of patterns that are inferred are essentially sequences, or some-
times finite state machines, of method invocations. Although API
patterns are valuable, idiom mining is markedly di↵erent, because
idioms have syntactic structure. For example, current API mining
approaches cannot find patterns such as a library with a Tree class
that requires special iteration logic, or a Java library that requires the
developer to free resources within a finally block. This is exactly
the type of pattern that Haggis identifies.

3. MINING CODE IDIOMS
In this section, we introduce the technical framework that is

required for Haggis,3 our proposed method for the idiom mining
problem. At a high level, we approach the problem of mining source
code idioms as that of inferring of commonly reoccurring fragments
in ASTs. We apply recent advanced techniques from statistical NLP
[10, 42], but we need to explain them in some detail to justify why
they are appropriate for this software engineering task, and why
simpler methods would not be e↵ective.

We will build up step by step. First, we will describe our represen-
tation of idioms. In particular, we describe a family of probability
distributions over ASTs which are called probabilistic tree substi-
tution grammars (pTSGs). A pTSG is essentially a probabilistic
context free grammar (PCFG) with the addition of special rules that
insert a tree fragment all at once.

Second, we describe how we discover idioms. We do this by
learning a pTSG that best explains a large quantity of existing
source code. We consider as idioms the tree fragments that appear
in the learned pTSG. We learn the pTSG using a powerful general
framework called nonparametric Bayesian methods. Nonparametric
Bayes provides a principled theoretical framework for automatically
inferring how complex a model should be from data. Every time we
add a new fragment rule to the pTSG, we are adding a new parameter
to the model (the rule’s probability of appearing), and the number
of potential fragments that we could add is infinite. This creates a
3Holistic, Automatic Gathering of Grammatical Idioms from Soft-
ware.

risk that by adding a large number a fragments we could construct a
model with too many parameters, which would be likely to overfit
the training data. Nonparametric Bayesian methods provide a way
to tradeo↵ the model’s fit to the training set with the model’s size
when the maximum size of the model is unbounded.

It is also worth explaining why we employ probabilistic models
here, rather than a standard deterministic CFG. Probabilities provide
a natural quantitative measure of the quality of a proposed idiom:
A proposed idiom is worthwhile only if, when we include it into
a pTSG, it increases the probability that the pTSG assigns to the
training corpus. This encourages the method to avoid identifying
idioms that are frequent but boring.

At first, it may seem odd that we apply grammar learning methods
here, when of course the grammar of the programming language is
already known. We clarify that our aim is not to re-learn the known
grammar, but rather to learn probability distributions over parse
trees from the known grammar. These distributions will represent
which rules from the grammar are used more often, and, crucially,
which sets of rules tend to be used contiguously.

3.1 Probabilistic Grammars
A probabilistic context free grammar (PCFG) is a simple way

to define a distribution over the strings of a context-free language.
A PCFG is defined as G = (⌃, N, S,R,⇧), where ⌃ is a set of
terminal symbols, N a set of nonterminals, S 2 N is the root
nonterminal symbol and R is a set of productions. Each production
in R has the form X ! Y , where X 2 N and Y 2 (⌃[N)

⇤. The
set ⇧ is a set of distributions P (r|c), where c 2 N is a non-terminal,
and r 2 R is a rule with c on its left-hand side. To sample a tree
from a PCFG, we recursively expand the tree, beginning at S, and
each time we add a non-terminal c to the tree, we expand c using
a production r that is sampled from the corresponding distribution
P (r|c). The probability of generating a particular tree T from this
procedure is the product over all rules that are required to generate
T . The probability P (x) of a string x 2 ⌃

⇤ is the sum of the
probabilities of the trees T that yield x, that is, we simply consider
P (x) as a marginal distribution of P (T ).

Allamanis and Sutton, FSE 2014



Example Idioms

Allamanis and Sutton, FSE 2014

From: Nonparametric Bayesian Tree Substitution Grammar
 [Post and Gildea, 2009; Cohn et al, 2010]

channel=connection.
createChannel();

(a)

Elements $name=$(Element).
select($StringLit);

(b)

Transaction tx=ConnectionFactory.
getDatabase().beginTx();

(c)

catch (Exception e){
$(Transaction).failure();
}

(d)

SearchSourceBuilder builder=
getQueryTranslator().build(
$(ContentIndexQuery));

(e)

LocationManager $name =
(LocationManager)getSystemService(
Context.LOCATION_SERVICE);

(f)

Location.distanceBetween(
$(Location).getLatitude(),
$(Location).getLongitude(),
$...);

(g)

try{
$BODY$
}finally{
$(RevWalk).release();
}

(h)

try{
Node $name=$methodInvoc();
$BODY$
}finally{
$(Transaction).finish();
}

(i)

ConnectionFactory factory =
new ConnectionFactory();
$methodInvoc();
Connection connection =
factory.newConnection();

(j)

while ($(ModelNode) != null){
if ($(ModelNode) == limit)
break;
$ifstatement
$(ModelNode)=$(ModelNode)
.getParentModelNode();

}

(k)

Document doc=Jsoup.connect(URL).
userAgent("Mozilla").
header("Accept","text/html").
get();

(l)

if ($(Connection) != null){
try{
$(Connection).close();
}catch (Exception ignore){}
}

(m)

Traverser traverser
=$(Node).traverse();

for (Node $name : traverser){
$BODY$

}

(n)

Toast.makeText(this,
$stringLit,Toast.LENGTH_SHORT)
.show()

(o)

try{
Session session
=HibernateUtil
.currentSession();

$BODY$
}catch (HibernateException e){
throw new DaoException(e);
}

(p)

FileSystem $name
=FileSystem.get(
$(Path).toUri(),conf);

(q)

(token=$(XContentParser)
.nextToken())
!= XContentParser
.Token.END_OBJECT

(r)

Figure 6: Top cross-project idioms for Library projects (Figure 4). Here we include idioms that appear in the test set files. We rank them
by the number of distinct files they appear in and restrict into presenting idioms that contain at least one library-specific (i.e. API-specific)
identifier. The special notation $(TypeName) denotes the presence of a variable whose name is undefined. $BODY$ denotes a user-defined
code block of one or more statements, $name a freely defined (variable) name, $methodInvoc a single method invocation statement and
$ifstatement a single if statement. All the idioms have been automatically identified by Haggis

for (Iterator iter=$methodInvoc; iter.hasNext(); )
{$BODY$}

(a) Iterate through the elements of an Iterator.

private final static Log $name=
LogFactory.getLog($type.class);

(b) Creating a logger for a class.

public static final String $name = $StringLit;

(c) Defining a constant String.

while (($(String) = $(BufferedReader).
readLine()) != null) {$BODY$}

(d) Looping through lines from a BufferedReader.

Figure 7: Sample language-specific idioms. $StringLit de-
notes a user-defined string literal, $name a (variable) name,
$methodInvoc a method invocation statement, $ifstatement
an if statement and $BODY$ a code block.

Name Precision Coverage Avg Size
(%) (%) (#Nodes)

Haggis 8.5 ±3.2 23.5 ±13.2 15.0 ±2.1

nmin = 5, cmin = 2

Li
b
r
a
r
y Haggis 16.9 ±10.1 2.8 ±3.0 27.9 ±8.6

nmin = 20, cmin = 25

Deckard 0.9 ±1.3 4.1 ±5.2 24.6 ±15.0

minToks=10, stride=2, sim=1

Pr
o
j
e
c
t
s Haggis 14.4 ±9.4 30.3 ±12.5 15.5 ±3.1

nmin = 5, cmin = 2

Haggis 29.9 ±19.4 3.1 ±2.6 25.3 ±3.5

nmin = 20, cmin = 25

Figure 8: Average and standard deviation of performance in Library
test set. Standard deviation across projects.



Predicting Names of Methods

[Allamanis, Peng, and Sutton, ICML 2016]

min					Run				Length

Name

Code

convolutional attention 
mechanismRNN for generating 

summary

h0 h1 h2



• Machine learning for software engineering
• ML / NLP for programming languages 
• Combining program analysis with probabilistic machine learning 
• Find patterns in program executions: debugging 

• Machine learning for data science
• Deep learning: Combining neural networks with prior knowledge 

• “interpretability bias” 
• Learning how to clean data 
• Interactive machine learning 
• Tools for monitoring models over time 
• Unsupervised and weakly supervised learning 

• Deep learning: Unsupervised, structured, transfer learning
• ML for computer security, NLP, sustainable energy…

https://wiki.inf.ed.ac.uk/ANC/CharlesUncertainPeople

CUP, Wed and Fri 4pm

https://wiki.inf.ed.ac.uk/ANC/CharlesUncertainPeople

