Speech Synthesis

Text-to-speech (TTS)

Definition: a text-to-speech system must be

- Able to read any text
- Intelligible
- Natural sounding
- The first of these puts a constraint on the method we can choose:
 - playback of whole words or phrases in not a solution
- The second is actually closer to being a 'solved problem' than the third

<u>A generation task</u>

• although not completely clear what objective function we are optimising

From linguistic specification to a waveform

• Concatenation builds up the utterance from units of recorded speech:

• Generation uses a model to generate the speech:

could be a sequence of HMMs, or a single DNN

Synthetic speech created from audiobooks

paragraph example

Audio credits: Speech and Hearing Research Center, Peking University

DNN speech synthesis

Vocoder parameters

Linguistic features

Demos

	#1	#2	#3	#4
Natural				
HMM-GV				
DNN				
DNN-LSTM				
BN-DNN				
TE-DNN				
TE-BN-DNN				

Speech Synthesis: open problem 1

From input feature engineering (traditional NLP and knowledge sources)

to

learned-from-data linguistic features

Standard text processing pipeline

text

linguistic specification

Text processing pipeline

- A chain of **processes**
- Each process is performed by a **model**
- These models are independently trained in a supervised fashion on annotated data

Example process I

- Part-of-speech tagger
- Accuracy is very high
- <u>But</u>
 - trained on **annotated** text data
 - **categories** are designed for text, not speech

NP McCormick NP Public NPSAffairs NP Institute IN at NP U-Mass NP Boston, NP Doctor NP Ed NP Beard, VBZsays DT the NN push IN for VBPdo PP it PP yourself

Example process 2

- Pronunciation model

 This sequence is the
 dictionary look-up, plus
 appotated transmit
 - letter-to-sound model
 data for our letter-to
- <u>But</u> sound predictor
 - need deep **knowledge** of the language to design the phoneme set
 - human expert must write dictionary

Example process 3

- Phrase-Trialsprediction is the
 binary anasitiated sitraining
 - binary ana sitilated sitraining sequedata sompoutr phrase
- <u>But</u> break predictor
 - trained on annota spoken data
 - therefore very **sm** training set

Representing linguistic features

Vocoder parameters 0, h_4 h_3 h_2 h_1 x_{t} Linguistic features

Encoding

- 1-of-N for phoneme identity, POS, etc
- binary partitions of the space, e.g. "is this a vowel"
- positional features
 - within syllable, word, phrase

Representing context

- include previous & next phonemes, etc
- some features span the current utterance

Problems

- sparsity (mostly zeros)
- noise (errors in linguistic processing)
- relevance (not all features are predictive of speech)

Learning embeddings of features

Stacking up more context

Speech Synthesis: open problem 2

From frame-by-frame prediction

to

trajectory generation

Frame-by-frame prediction

Linguistic features

Linguistic features

Linguistic features

Inconsistency

Trajectory generation

Speech Synthesis: open problem 3

From speaker-dependent speech synthesis

to

adaptable and controllable models

Lots of work already on this in the HMM framework, but still remains an open problem for DNNs

Different ways to adapt the DNN

Speech Synthesis: open problem 4

From output feature engineering (speech signal modelling, a.k.a vocoding)

to

learned-from-data speech generation

What to predict?

Linguistic features

Direct waveform generation ?

