Data Science and me

Guido Sanguinetti

ANC- School of Informatics, University of Edinburgh
Room IF1.44 gsanguin@inf

October 10, 2016
I was trained as a physicist/mathematician

Emphasis on Science in Data Science

I’m unconvinced by statements that large-scale data gathering will eliminate the need for theory (i.e. hypothesis driven research), except perhaps in some engineering applications.

However, science also produces vast amounts of data

Statistical models and machine learning techniques are increasingly central in turning data into knowledge.
I was trained as a physicist/m mathematician

Emphasis on Science in Data Science

I’m unconvinced by statements that large-scale data gathering will eliminate the need for theory (i.e. hypothesis driven research), except perhaps in some engineering applications.

However, science also produces vast amounts of data

Statistical models and machine learning techniques are increasingly central in turning data into knowledge.
Current group interests

- Largish group: 6 post-docs, 5 students, 7 nationalities
- Funding from several sources: ERC, EPSRC, Marie Curie, School of Informatics, CDT/ DTC
- Backgrounds from physics, engineering, CS and maths
- Interests range from analysis of sequencing data to dynamical systems theory
1. Dynamical systems and biology

2. Two examples
 - Spatio-temporal systems
 - Epigenetics

3. Looking ahead and refs
Dynamical systems

- Abstractions of real systems focusing on capturing the mechanisms underlying their time-varying behavior
- Generally described by a state-vector and some (infinitesimal) transition relationships, e.g. \(x_{t+1} = f(x_t) + \epsilon_t \),
 \[dx = f(x)dt + \sigma dW, \ldots \]
- Or they can also be defined in terms of agents interacting with each other (sometimes, but not always, equivalent)
- Goal: to determine the probability of the system being in a particular state at a particular time (single time marginal)
- Useful when domain knowledge enables us to formulate models grounded in what we understand as the physical reality of the system
- Particularly useful for prediction and understanding, i.e. they strike a nice balance between explanatory and predictive power
Dynamical systems

- Abstractions of real systems focusing on capturing the mechanisms underlying their time-varying behaviour
- Generally described by a state-vector and some (infinitesimal) transition relationships, e.g. $x_{t+1} = f(x_t) + \epsilon_t$, $dx = f(x)dt + \sigma dW$, ...
- Or they can also be defined in terms of agents interacting with each other (sometimes, but not always, equivalent)
- Goal: to determine the probability of the system being in a particular state at a particular time (single time marginal)
- Useful when domain knowledge enables us to formulate models grounded in what we understand as the physical reality of the system
- Particularly useful for prediction and understanding, i.e. they strike a nice balance between explanatory and predictive power
Abstractions of real systems focusing on capturing the mechanisms underlying their time-varying behaviour.

Generally described by a state-vector and some (infinitesimal) transition relationships, e.g. $x_{t+1} = f(x_t) + \epsilon_t$, $dx = f(x)dt + \sigma dW$, ...

Or they can also be defined in terms of agents interacting with each other (sometimes, but not always, equivalent).

Goal: to determine the probability of the system being in a particular state at a particular time (single time marginal).

Useful when domain knowledge enables us to formulate models grounded in what we understand as the physical reality of the system.

Particularly useful for prediction and understanding, i.e. they strike a nice balance between explanatory and predictive power.
Where does variability come into play? What can we measure? Nice example of a dynamical system with some physical knowledge and a lot of uncertainty.
Since late 90s, biologists have been able to measure various biochemical components of cells in a high-throughput fashion.

Also, more precise microscopy-based measurements give time-resolved measurements at single cells.

Each measurement is a noisy readout of one facet of a (set of) complex biological processes.

Interpretable statistical models are (probably) the only way to integrate these disparate data in one coherent mechanistic picture.

Specifically, I work with probabilistic latent variable models (key difference: the latent variables and parameters have physical meanings).
Systems Biology

- Since late 90s, biologists have been able to measure various biochemical components of cells in a high-throughput fashion.
- Also, more precise microscopy-based measurements give time-resolved measurements at single cells.
- Each measurement is a noisy readout of one facet of a (set of) complex biological processes.
- Interpretable statistical models are (probably) the only way to integrate these disparate data in one coherent mechanistic picture.
- Specifically, I work with probabilistic latent variable models (key difference: the latent variables and parameters have physical meanings).
Let’s watch a movie!
Problem - in words

- Populations of individual agents of (few) types coexisting in physical space
- Agents move about in space (apparently) randomly
- When agents come into contact (or very close), interactions happen that may result in changes in agents’ numbers/behaviours
- Very frequent scenario in ecology, molecular biology, epidemiology, social sciences, smart cities
Problem - in words

- Populations of individual agents of (few) types coexisting in physical space
- Agents move about in space (apparently) randomly
- When agents come into contact (or very close), interactions happen that may result in changes in agents’ numbers/behaviours
- Very frequent scenario in ecology, molecular biology, epidemiology, social sciences, smart cities
Statistical problem

- The state of the system is determined by the number of particles in each species, and by the positions of the particles.
- The state space is a (potentially infinite) union of continuous spaces of different dimensions. The evolution equation for the single time marginal is defined on a Fock space and cannot be solved. No way of getting a likelihood function.
- We found a new representation in terms of Poisson/Cox point processes which enables us to construct a likelihood surrogate.
- Now starting to apply it to the dynamics of disease spreading in Africa.
Statistical problem

- The state of the system is determined by the number of particles in each species, and by the positions of the particles.
- The state space is a (potentially infinite) union of continuous spaces of different dimensions. The evolution equation for the single time marginal is defined on a Fock space and cannot be solved. No way of getting a likelihood function.
- We found a new representation in terms of Poisson/ Cox point processes which enables us to construct a likelihood surrogate.
- Now starting to apply it to the dynamics of disease spreading in Africa.
The state of the system is determined by the number of particles in each species, and by the positions of the particles.

The state space is a (potentially infinite) union of continuous spaces of different dimensions. The evolution equation for the single time marginal is defined on a Fock space and cannot be solved. No way of getting a likelihood function.

We found a new representation in terms of Poisson/Cox point processes which enables us to construct a likelihood surrogate.

Now starting to apply it to the dynamics of disease spreading in Africa.
Genetics and transcription cannot be all; spatial organisation of chromosomes plays a role. This is determined by chemical modifications to DNA and histones.
Epigenetics: what the data looks like

Each row is a tiny fraction of a next-generation sequencing experiment’s data. Each row \(\geq 1\text{GB}\) of data. How do we determine relationships between the rows?
Current results

- Identifying statistically significant differences between the rows is already difficult: some success adapting a kernel method, *Maximum Mean Discrepancy* (Gretton et al 2008), to sequencing data (Schweikert et al, BMC Genomics 2013, Mayo et al, Bioinformatics 2015)

- Predictive models are useful: e.g., given a hypothesis that the green rows are mechanistically determined by the pink rows, we should be able to train a fairly accurate regression model

- Recent success in predicting histone modifications from binding of transcription factor proteins (Benveniste et al, PNAS 2014)

- Technical challenges: large size of the data sets, large number of covariates, inhomogeneities along chromosomes (latent variables?)
Current lines of work

- Develop predictive models to relate sequence and epigenetic marks with each other, based on generalised linear models (T. Mayo)
- Model the interactions between various epigenetic factors and gene expression (consensus clustering, soon to move to more general graphical models) (A. Kapourani, CDT)
- Also important to understand processes downstream of transcription, e.g. RNA folding (A. Selega) and splicing (Y. Huang), and (remarkably) these are often also tied to epigenetics
Looking ahead

- At the moment, the two lines of work appear fairly disjointed, how do we integrate them?
- Technical challenge 1: multi-scale models in spatio-temporal modelling
- Technical challenge 2: (almost) all epigenetic data is a snapshot of a stochastic dynamical process. How do we do inference for (large scale) stochastic dynamical systems from (population/ time) average static measurements?
- Technical challenge 3: how do we identify effective smaller (dynamical) models that match the behaviours observed in data?
Looking ahead

- At the moment, the two lines of work appear fairly disjointed, how do we integrate them?
- Technical challenge 1: multi-scale models in spatio-temporal modelling
- Technical challenge 2: (almost) all epigenetic data is a snapshot of a stochastic dynamical process. How do we do inference for (large scale) stochastic dynamical systems from (population/ time) average static measurements?
- Technical challenge 3: how do we identify effective smaller (dynamical) models that match the behaviours observed in data?

G. Schweikert, B. Cseke, T. Clouaire, A. Bird and G.S., MMDiff: quantitative testing for shape changes in ChIP-Seq data sets, *BMC Genomics* 14:826, 2013

C-A. Kapourani and GS, Higher order methylation features for clustering and prediction in epigenomic studies, *Bioinformatics* 32(17), i405-i412, 2016 (Proc of ECCB 2016)