Can we make systems more secure by recording and analyzing detailed provenance records?

IRDS
October 27, 2016
James Cheney
Massive Data Breach Puts 4 Million Federal Employees’ Records At Risk

June 4, 2015 · 7:22 PM ET

Context

- "Advanced persistent threats" (APTs) are stealthy, long-term, resourceful attackers
 - Simulate normal user behavior most of the time
 - Lateral attacks, avoid violating fixed security policy
 - Think government, not garage

- Transparent Computing: try to fight APTs through pervasive recording and analysis of provenance
 - aka "event traces/logs on steroids"
 - $60m DARPA research program (2015-19)
"Provenance" - representation of the origin, history or ownership of data
Incoming provenance data (up to 2MB/s)

- Ingestion
- Feature extraction
- Graph DB

ADAPT

Anomaly detection
Classification

Attack subgraph / warning

IRDS

October 27, 2016
Case study

- First TC evaluation was in September
- Recorded various systems for 3-4 days
 - while being attacked by friendly colleagues
- Up to 175GB of raw data per system
 - just loading the data into graph DBMSs took hours/days...
- We can make (subsets of) the data available for projects!
Needle in a haystack

- We then had to **find** the attacks
- It turns out to be very challenging to detect "attack subgraphs" automatically
 - We did not have labeled training data
 - We did not necessarily know what features would be most relevant
- So far: anomaly detection to find "suspicious" starting nodes
 - Followed by manual exploration / querying of the graph
- Much more could be done!
Mo' provenance = mo' problems

- Expect data rates of up to 2MB/sec, but still struggling to manage / analyze GBs of prov in minutes
- General-purpose graph DBs (neo4j, titan/cassandra) not quite there yet for this scenario
 - Fast/continuous data loading seems challenging
 - Query languages/optimization also have many idiosyncrasies
- Compression or other ways to minimize / discard uninteresting "normal" activity?
- Streaming analysis/summarization to make it easier to find unusual activity patterns?
- Any other interesting off-the-shelf unsupervised learning, or graph algorithms that can run on graphs with millions/billions of edges?
Query language matters

- *Gremlin* query language (Apache)
- "navigational", not "declarative"

X = g.V().has('pid',2304);
g.V(x).until(both().hasLabel('EDGE_EVENT_AFFECTS_SUBJECT').count().is(0)).repeat(has('subjectType',0).in().hasLabel('EDGE_EVENT_AFFECTS_SUBJECT').in().hasLabel('Subject').has('subjectType',4).out().hasLabel('EDGE_EVENT_ISGENERATEDBY_SUBJECT').out().hasLabel('Subject').has('subjectType',0).as('b')).select('b').unfold()

- Maybe something like this would be better?

MATCH (x:Process) WHERE x.pid = "2304"
MATCH (y:Process)
MATCH path =
 (x)<-[[:AFFECTS_SUBJECT]-(:Event)<-[[:IS_GENERATED_BY]-(y)*}
RETURN path.y
Related issue

- In the TC program, there are 5 "provider" projects and 3 "analyzer" projects
 - This led almost immediately to the need for a "common data model".
 - But this model only specifies the common "syntax"
- Only now are we starting to discuss "semantic" alignment across the providers
- Open question: Entity resolution/duplicate elimination? Defining consistent standards for "completeness" of the provenance?
Research question:
Web/Database programming

How can we (safely/securely) program multiple layers (database, browser, regular PL)?
Research question: Data transformation

- How do I make use of data in format X with tools that expect Y?
- What if some of X is missing or Y requires information that X doesn't provide?
Summary

- My work explores the interaction between language design, semantics, and data management.

- A current focus is the interaction of provenance and security
 - Transparent Computing/ADAPT: analyzing provenance to find attacks
 - Also interested in security/privacy for provenance

- Other interests: integrating data management into programming languages, data transformation & synchronization

- to improve understanding of, address complex data management problems
 - Also relevant to "science data", though maybe not what people currently think of as "data science"