
IRDS: Choosing Features
Charles Sutton

University of Edinburgh

Why features?

• Every learning algorithm somehow assumes:
• “similar input vectors have similar labels”

• Features determine what is similar
• For practical ML, two best ways to improve performance

• Get more training data
• Come up with better features
• (For ML research, advice would be different!)

• Feature engineering is a way to introduce prior knowledge about the problem

Two Representation Problems
Image Classification

Document Clustering

Association Rule Mining

Transaction
Database

Feature
Extraction

Learning

Data Feature Vectors Models/Patterns

Feature
Extraction

Feature
Extraction

Learning

Learning

o
oo o
o

o
o

o o
o

o o
o o

o
o

oo

o
o
o

o o

oo o
oo

x x

x

x

x
x

x

x

o
o

o

o
o

o
o

o
o

o

o

x1

x2

w

yX

X

X

if Diapers = 1
then Beer = 1

if Ham = 1 then
Pineapple = 1

…

1. Given input, what goes in the feature vector?2. What is the set of possible models?

Two Representation Problems

1. What features to use

2. What is the space of possible models

• In these lectures, we discuss features.
• For model, see —> IAML, PMR, MLPR

• But: To pick features, must understand model.
• See bonus slides

General Principles
• Feature engineering is iterative (and messy)

• Come up with a new feature
• Try it on a validation set, measure error
• Repeat

• Use an ablative design (NB gains don’t always accumulate nicely)

• Use error analysis
• Look at the most embarrassing mistakes
• What features might help with those

• Training set versus validation set versus test set
• Once you have tuned features on a data set, you can’t use the error to

predict future performance
• Flexibility versus overfitting

Feature Set A 70%

Feature Set A+B 75%

Feature Set A+B+C 75.2%

In this lecture

• Focus on general tricks that help in many domains
• Normally when the features are already “somewhat meaningful”

• In particular, we’ll talk about tricks for:
• categorical features
• continuous features
• nonlinear features
• features “computed” from other processes
• cheap and cheerful transfer learning

1-of-K (“one hot”) encoding

For which algorithms will this matter?

Age Fav. Colour Label
26 +
57 -
34 +

Age Red? Yellow? Blue? Label

26 1 0 0 +
57 0 0 1 -
34 0 1 0 +

Age Fav. Colour Label
26 0 +
57 1 -
34 2 +
This can cause problems.

(Is yellow really twice as related to label
as blue?)

Convert to K binary features
(“1-of-K” or “one hot” encoding)

Normalization (Whitening)
For continuous features, can be best to
have zero mean and unit variance

For which algorithms will this matter?

or in vector notation

Feature index k

Sample mean, feature k

Sample standard
deviation

Entire training
example

Sample covariance matrix
(or: just diagonal entries)

xk 7! xk � µ̂k

�̂k

x 7! ⌃�1/2 (x� µ̂)

Binning (Discretization)
We’ve mentioned nonlinear feature transforms

What if you do not expect a simple functional form
is appropriate?

One possibility: Convert to M binary variables

xk 7!

0

BBB@

I{xk 2 (�1, ⌧1]}
I{xk 2 (�⌧1, ⌧2]}

...
I{xk 2 (⌧M�1,1)}

1

CCCA

xk 7! x

2
k

Feature Conjunctions
If features binary, natural interpretation:

• each feature is a proposition, e.g.
“does document i contain the word ‘geranium’”

In principle we could do this for all pairs (or higher).
Might reduce this using feature selection.

Then, why not combine different features?, e.g.,
• “does document i contain both the word

‘geranium’ and ‘magnolia’”
This is a product of feature values, i.e.,

✓
xj

xk

◆
7!

0

@
xj

xk

xjxk

1

A

Sequences of Predictions

• Predict part of speech for each word in a sentence
• Predict number of web requests for each day
• Predict for each window of an image whether it contains a face

For these, think about features

• At different “lags”
• At different levels of granularity

Examples:

Such as:

• Identity of word at location t, t-1, t-2 …
• Average number of searches in past week, month, year
• Feature statistics from surrounding regions
• True (or predicted) value from previous time step

Vector Quantization

• Run k-means clustering
• For each data point, add a

feature that gives the index of
the closest cluster centroid.

• (Could use one of k
encoding.)

• This is a generalisation of the
1-D binning idea from
previous slide

Use the output of some other algorithm to get features:

x x

x

x

x
x

x

x

o
o

o

o
o

o
o

o
o

o

o

x1

x2

x
x

o

o
o

o
o

Dimensionality Reduction
Principal Components Analysis returns a linear map

Could use fancier techniques, e.g.,
• manifold learning
• topic modelling
• deep neural networks
 (activations of hidden layer)

0

BBB@

x1

x2
...

xM

1

CCCA
7!

0

B@
z1
...
zP

1

CA P << M

Use z as features instead
of (or in addition to?) x

x x

x

x

x
x

x

x

x1

x2

x

v1

v2x
x

Model Combination
Suppose you want to improve on existing systems.
Just add their output as a feature to your classifier!

Examples:
• Machine translation
• Netflix prize

If they provide a confidence, e.g., a probability
 could use predicted log probability as feature

Simple Transfer Learning
Common: Need to solve “lots of little prediction problems”
• Email spam filter for each person
• Fraud detection of personal credit card accounts
Compare domain adaptation, transfer learning, multitask learning

Features can have different meanings across tasks, e.g.,
• “Viagra” commonly included in spam emails
• But a GP might often see it in regular emails

Different prediction tasks not identical

But similar and only a small amount of data for each

Simple Transfer Learning
Common: Need to solve “lots of little prediction problems”
• Email spam filter for each person
• Fraud detection of personal credit card accounts
Compare domain adaptation, transfer learning, multitask learning

• USER872324601_CONTAINS:Viagra
• binary feature, 1 only if email contains “Viagra” and inbox from

specified user
• CONTAINS:Viagra

• binary feature, 1 if email contains “Viagra”

Trick: Both “general” and “specific” features:

Example in research literature:
Daumé, Frustratingly Easy Domain Adaptation. ACL 2007

Feature Selection

• Filters: Rank features by some “relevance” measure, e.g., mutual information,
correlation with output. Choose top K. (Also called ranking, screening).

• Wrapper methods: Search through space of subsets of full feature set, to
maximise performance on validation set. Many different strategies (forward
versus backward)

• Wrapper as filter : Use a wrapper method on a linear classifier to find a good
set of features, then train a (more computationally expensive) nonlinear one

• Lasso (l1 regularization) : Classification/regression and feature selection
simultaneously

Sometimes too many features bad.
Start with “full set” of features, prune less useful ones.

But sometimes… many features are just fine!

