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• Analyzing computer programs 
• Data mining 
• Exploratory data analysis 
• Home energy demand 
• Computer security

New applications

New methodology

• New model types 
• Inference algorithms 

  (e.g., high dimensional, streaming) 
• Approximate learning methods



Syntactic Idioms in Code
...
if (c != null) {
try {
if (c.moveToFirst()) {
number = c.getString(

c.getColumnIndex(
phoneColumn));

}
} finally {
c.close();
}
}
...

IfStatement

expression:

c!=null

then:Block

TryStatement

body:IfStatement

expr:MethodInvocation

expr:var%android.database.Cursor%

name:c

name:moveToFirst

then:Block

number = c.getString(c.getColumnIndex(phoneColumn));

finally:Block

ExpressionStatement

MethodInvocation

expr:var%android.database.Cursor%

name:c

name:close

E ! E
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)
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(d)
(a)

try {
if ($(Cursor).moveToFirst()) {
$BODY$

}
} finally {
$(Cursor).close();

}

(b) (c)

Figure 1: Example of code idiom extraction: (a) A snippet from PhoneNumberUtils in android.telephony. (b) A common idiom when
handling android.database.Cursor objects, successfully mined by Haggis. (c) Eclipse JDT’s AST for the code in (a). Shaded nodes are
those included in the idiom. (d) An example of a pTSG rule for a simple expression grammar. See text for more details.

types of patterns that are inferred are essentially sequences, or some-
times finite state machines, of method invocations. Although API
patterns are valuable, idiom mining is markedly di↵erent, because
idioms have syntactic structure. For example, current API mining
approaches cannot find patterns such as a library with a Tree class
that requires special iteration logic, or a Java library that requires the
developer to free resources within a finally block. This is exactly
the type of pattern that Haggis identifies.

3. MINING CODE IDIOMS
In this section, we introduce the technical framework that is

required for Haggis,3 our proposed method for the idiom mining
problem. At a high level, we approach the problem of mining source
code idioms as that of inferring of commonly reoccurring fragments
in ASTs. We apply recent advanced techniques from statistical NLP
[10, 42], but we need to explain them in some detail to justify why
they are appropriate for this software engineering task, and why
simpler methods would not be e↵ective.

We will build up step by step. First, we will describe our represen-
tation of idioms. In particular, we describe a family of probability
distributions over ASTs which are called probabilistic tree substi-
tution grammars (pTSGs). A pTSG is essentially a probabilistic
context free grammar (PCFG) with the addition of special rules that
insert a tree fragment all at once.

Second, we describe how we discover idioms. We do this by
learning a pTSG that best explains a large quantity of existing
source code. We consider as idioms the tree fragments that appear
in the learned pTSG. We learn the pTSG using a powerful general
framework called nonparametric Bayesian methods. Nonparametric
Bayes provides a principled theoretical framework for automatically
inferring how complex a model should be from data. Every time we
add a new fragment rule to the pTSG, we are adding a new parameter
to the model (the rule’s probability of appearing), and the number
of potential fragments that we could add is infinite. This creates a
3Holistic, Automatic Gathering of Grammatical Idioms from Soft-
ware.

risk that by adding a large number a fragments we could construct a
model with too many parameters, which would be likely to overfit
the training data. Nonparametric Bayesian methods provide a way
to tradeo↵ the model’s fit to the training set with the model’s size
when the maximum size of the model is unbounded.

It is also worth explaining why we employ probabilistic models
here, rather than a standard deterministic CFG. Probabilities provide
a natural quantitative measure of the quality of a proposed idiom:
A proposed idiom is worthwhile only if, when we include it into
a pTSG, it increases the probability that the pTSG assigns to the
training corpus. This encourages the method to avoid identifying
idioms that are frequent but boring.

At first, it may seem odd that we apply grammar learning methods
here, when of course the grammar of the programming language is
already known. We clarify that our aim is not to re-learn the known
grammar, but rather to learn probability distributions over parse
trees from the known grammar. These distributions will represent
which rules from the grammar are used more often, and, crucially,
which sets of rules tend to be used contiguously.

3.1 Probabilistic Grammars
A probabilistic context free grammar (PCFG) is a simple way

to define a distribution over the strings of a context-free language.
A PCFG is defined as G = (⌃, N, S,R,⇧), where ⌃ is a set of
terminal symbols, N a set of nonterminals, S 2 N is the root
nonterminal symbol and R is a set of productions. Each production
in R has the form X ! Y , where X 2 N and Y 2 (⌃[N)

⇤. The
set ⇧ is a set of distributions P (r|c), where c 2 N is a non-terminal,
and r 2 R is a rule with c on its left-hand side. To sample a tree
from a PCFG, we recursively expand the tree, beginning at S, and
each time we add a non-terminal c to the tree, we expand c using
a production r that is sampled from the corresponding distribution
P (r|c). The probability of generating a particular tree T from this
procedure is the product over all rules that are required to generate
T . The probability P (x) of a string x 2 ⌃

⇤ is the sum of the
probabilities of the trees T that yield x, that is, we simply consider
P (x) as a marginal distribution of P (T ).

Allamanis and Sutton, FSE 2014



Example Idioms
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From: Nonparametric Bayesian Tree Substitution Grammar
 [Post and Gildea, 2009; Cohn et al, 2010]

channel=connection.
createChannel();

(a)

Elements $name=$(Element).
select($StringLit);

(b)

Transaction tx=ConnectionFactory.
getDatabase().beginTx();

(c)

catch (Exception e){
$(Transaction).failure();
}

(d)

SearchSourceBuilder builder=
getQueryTranslator().build(
$(ContentIndexQuery));

(e)

LocationManager $name =
(LocationManager)getSystemService(
Context.LOCATION_SERVICE);

(f)

Location.distanceBetween(
$(Location).getLatitude(),
$(Location).getLongitude(),
$...);

(g)

try{
$BODY$
}finally{
$(RevWalk).release();
}

(h)

try{
Node $name=$methodInvoc();
$BODY$
}finally{
$(Transaction).finish();
}

(i)

ConnectionFactory factory =
new ConnectionFactory();
$methodInvoc();
Connection connection =
factory.newConnection();

(j)

while ($(ModelNode) != null){
if ($(ModelNode) == limit)
break;
$ifstatement
$(ModelNode)=$(ModelNode)
.getParentModelNode();

}

(k)

Document doc=Jsoup.connect(URL).
userAgent("Mozilla").
header("Accept","text/html").
get();

(l)

if ($(Connection) != null){
try{
$(Connection).close();
}catch (Exception ignore){}
}

(m)

Traverser traverser
=$(Node).traverse();

for (Node $name : traverser){
$BODY$

}

(n)

Toast.makeText(this,
$stringLit,Toast.LENGTH_SHORT)
.show()

(o)

try{
Session session
=HibernateUtil
.currentSession();

$BODY$
}catch (HibernateException e){
throw new DaoException(e);
}

(p)

FileSystem $name
=FileSystem.get(
$(Path).toUri(),conf);

(q)

(token=$(XContentParser)
.nextToken())
!= XContentParser
.Token.END_OBJECT

(r)

Figure 6: Top cross-project idioms for Library projects (Figure 4). Here we include idioms that appear in the test set files. We rank them
by the number of distinct files they appear in and restrict into presenting idioms that contain at least one library-specific (i.e. API-specific)
identifier. The special notation $(TypeName) denotes the presence of a variable whose name is undefined. $BODY$ denotes a user-defined
code block of one or more statements, $name a freely defined (variable) name, $methodInvoc a single method invocation statement and
$ifstatement a single if statement. All the idioms have been automatically identified by Haggis

for (Iterator iter=$methodInvoc; iter.hasNext(); )
{$BODY$}

(a) Iterate through the elements of an Iterator.

private final static Log $name=
LogFactory.getLog($type.class);

(b) Creating a logger for a class.

public static final String $name = $StringLit;

(c) Defining a constant String.

while (($(String) = $(BufferedReader).
readLine()) != null) {$BODY$}

(d) Looping through lines from a BufferedReader.

Figure 7: Sample language-specific idioms. $StringLit de-
notes a user-defined string literal, $name a (variable) name,
$methodInvoc a method invocation statement, $ifstatement
an if statement and $BODY$ a code block.

Name Precision Coverage Avg Size
(%) (%) (#Nodes)

Haggis 8.5 ±3.2 23.5 ±13.2 15.0 ±2.1

nmin = 5, cmin = 2

Li
b
r
a
r
y Haggis 16.9 ±10.1 2.8 ±3.0 27.9 ±8.6

nmin = 20, cmin = 25

Deckard 0.9 ±1.3 4.1 ±5.2 24.6 ±15.0

minToks=10, stride=2, sim=1

Pr
o
j
e
c
t
s Haggis 14.4 ±9.4 30.3 ±12.5 15.5 ±3.1

nmin = 5, cmin = 2

Haggis 29.9 ±19.4 3.1 ±2.6 25.3 ±3.5

nmin = 20, cmin = 25

Figure 8: Average and standard deviation of performance in Library
test set. Standard deviation across projects.



[Poole and Raftery, 2000]

Bayesian Melding

Deterministic simulation

discussed in the Section 4. Following this connection, in this paper, we show that Bayesian meld-
ing has the additional advantage that it can be conveniently applied when both individual-level and
population-level models contain latent variables, as would commonly be the case, e.g., if they were
mixture models or hierarchical Bayesian models. We call this approach latent Bayesian melding.

We present a detailed case study of latent Bayesian melding in the domain of energy disaggregation
[11, 20], which is a particular type of blind source separation (BSS) problem. The goal of the
electricity disaggregation problem is to separate the total electricity usage of a building into a sum of
source signals that describe the energy usage of individual appliances. This problem is hard because
the source signals are not identifiable, which motivates work that adds additional prior information
into the model [14, 15, 20, 25, 26, 8]. We show that a latent Bayesian melding approach allows
incorporating new types of constraints into standard models for this problem, yielding a strong
improvement in performance, in some cases amounting to a 50% error reduction over a moment
matching approach.

2 The Bayesian melding approach

We briefly describe the Bayesian melding approach to integrating prior information in determinis-
tic simulation models proposed in [21], which has wide applications [1, 6, 23]. In the Bayesian
modelling context, denote Y as the observation data and suppose it is modelled by S which is the
collection of unknown random variables, we are then interested in modelling the posterior,

p(S|Y ) = p(Y )

�1p(Y |S)pS(S) (1)

However, in some situations, the variables S may be related to a new random variable ⌧ by a de-
terministic simulation function f(·), and so that ⌧ = f(S). In this case, S and ⌧ are called input
and output variables. For example, ⌧ = S1 + S2 is a simple example; In the energy disaggregation
problem, the total energy consumption variable ⌧ =

PT
t=1 S

T
t µ where St are the state variables of

a hidden Markov model and µ is the vector of mean energy consumption of an appliance which is
known, see the Section 5.2 for details. Both ⌧ and S are random variables, and so in the Bayesian
context, we usually define priors p⌧ (⌧) and pS(S). However, given pS(S), the map f naturally
introduces another prior for ⌧ , which is an induced prior denoted by p⇤⌧ (⌧). Therefore, there are two
different priors for the same variable ⌧ . In the energy disaggregation example, p⇤⌧ is induced by the
state variables St of the hidden Markov model which is the individual model of a specific house,
and p⌧ could be modelled by using the population information of the national data, which is called
the population model since it uses the overall information of many houses. The Bayesian melding
approach joins the two priors to one by using the logarithmic pooling method so that the logarith-
mically pooled prior is ep⌧ (⌧) / p⇤⌧ (⌧)

↵p⌧ (⌧)
1�↵ where 0  ↵  1. The prior ep⌧ melds the prior

information of both S and ⌧ . In the model (1), the prior pS is not sufficient since the information of
⌧ was not included. Thus it is required to derive a melded prior for S. If f is invertible, the prior
for S can be obtained by using the change-of-variable technique. If f is not invertible, Poole and
Raftery ([21]) heuristically derived a melded prior

epS(S) = c↵pS(S)

✓

p⌧ (f(S))

p⇤⌧ (f(S))

◆1�↵

where c↵ is a constant given ↵ such that
R

epS(S)dS = 1, which gives a new posterior ep(S|Y ) =

ep(Y )

�1p(Y |S)epS(S). Note that it is interesting to infer ↵ [22, 7], however we use a fixed value
in this paper. This is assumed there are no random variables in p⌧ . We now consider the situation
when ⌧ is generated by some other latent variables.

3 The latent Bayesian melding approach

It is common that the variable ⌧ is modelled by a latent variable ⇠, see the examples in Section 5.2.
So we could assume that we have a conditional distribution p(⌧ |⇠) and a prior distribution p⇠(⇠).
This defines a marginal distribution p⌧ (⌧) =

R

p⇠(⇠)p(⌧ |⇠)d⇠. This could be used to produce the
prior by using the Bayesian melding approach such that,

epS(S) = c↵pS(S)

✓

R

p⌧ (f(S)|⇠)p(⇠)d⇠
p⇤⌧ (f(S))

◆1�↵

2

e.g., S contains population at time 0 and growth rate 

 is population at time T 
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ing has the additional advantage that it can be conveniently applied when both individual-level and
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✓

R

p⌧ (f(S)|⇠)p(⇠)d⇠
p⇤⌧ (f(S))

◆1�↵

2

Two sources of information about 
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and output variables. For example, ⌧ = S1 + S2 is a simple example; In the energy disaggregation
problem, the total energy consumption variable ⌧ =
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T
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a hidden Markov model and µ is the vector of mean energy consumption of an appliance which is
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R

p⇠(⇠)p(⌧ |⇠)d⇠. This could be used to produce the
prior by using the Bayesian melding approach such that,

epS(S) = c↵pS(S)

✓

R

p⌧ (f(S)|⇠)p(⇠)d⇠
p⇤⌧ (f(S))

◆1�↵
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1. Information about S, which implies information about    via f  

discussed in the Section 4. Following this connection, in this paper, we show that Bayesian meld-
ing has the additional advantage that it can be conveniently applied when both individual-level and
population-level models contain latent variables, as would commonly be the case, e.g., if they were
mixture models or hierarchical Bayesian models. We call this approach latent Bayesian melding.

We present a detailed case study of latent Bayesian melding in the domain of energy disaggregation
[11, 20], which is a particular type of blind source separation (BSS) problem. The goal of the
electricity disaggregation problem is to separate the total electricity usage of a building into a sum of
source signals that describe the energy usage of individual appliances. This problem is hard because
the source signals are not identifiable, which motivates work that adds additional prior information
into the model [14, 15, 20, 25, 26, 8]. We show that a latent Bayesian melding approach allows
incorporating new types of constraints into standard models for this problem, yielding a strong
improvement in performance, in some cases amounting to a 50% error reduction over a moment
matching approach.

2 The Bayesian melding approach

We briefly describe the Bayesian melding approach to integrating prior information in determinis-
tic simulation models proposed in [21], which has wide applications [1, 6, 23]. In the Bayesian
modelling context, denote Y as the observation data and suppose it is modelled by S which is the
collection of unknown random variables, we are then interested in modelling the posterior,

p(S|Y ) = p(Y )

�1p(Y |S)pS(S) (1)

However, in some situations, the variables S may be related to a new random variable ⌧ by a de-
terministic simulation function f(·), and so that ⌧ = f(S). In this case, S and ⌧ are called input
and output variables. For example, ⌧ = S1 + S2 is a simple example; In the energy disaggregation
problem, the total energy consumption variable ⌧ =

PT
t=1 S

T
t µ where St are the state variables of

a hidden Markov model and µ is the vector of mean energy consumption of an appliance which is
known, see the Section 5.2 for details. Both ⌧ and S are random variables, and so in the Bayesian
context, we usually define priors p⌧ (⌧) and pS(S). However, given pS(S), the map f naturally
introduces another prior for ⌧ , which is an induced prior denoted by p⇤⌧ (⌧). Therefore, there are two
different priors for the same variable ⌧ . In the energy disaggregation example, p⇤⌧ is induced by the
state variables St of the hidden Markov model which is the individual model of a specific house,
and p⌧ could be modelled by using the population information of the national data, which is called
the population model since it uses the overall information of many houses. The Bayesian melding
approach joins the two priors to one by using the logarithmic pooling method so that the logarith-
mically pooled prior is ep⌧ (⌧) / p⇤⌧ (⌧)

↵p⌧ (⌧)
1�↵ where 0  ↵  1. The prior ep⌧ melds the prior

information of both S and ⌧ . In the model (1), the prior pS is not sufficient since the information of
⌧ was not included. Thus it is required to derive a melded prior for S. If f is invertible, the prior
for S can be obtained by using the change-of-variable technique. If f is not invertible, Poole and
Raftery ([21]) heuristically derived a melded prior

epS(S) = c↵pS(S)

✓

p⌧ (f(S))

p⇤⌧ (f(S))

◆1�↵

where c↵ is a constant given ↵ such that
R

epS(S)dS = 1, which gives a new posterior ep(S|Y ) =

ep(Y )

�1p(Y |S)epS(S). Note that it is interesting to infer ↵ [22, 7], however we use a fixed value
in this paper. This is assumed there are no random variables in p⌧ . We now consider the situation
when ⌧ is generated by some other latent variables.

3 The latent Bayesian melding approach

It is common that the variable ⌧ is modelled by a latent variable ⇠, see the examples in Section 5.2.
So we could assume that we have a conditional distribution p(⌧ |⇠) and a prior distribution p⇠(⇠).
This defines a marginal distribution p⌧ (⌧) =

R

p⇠(⇠)p(⌧ |⇠)d⇠. This could be used to produce the
prior by using the Bayesian melding approach such that,

epS(S) = c↵pS(S)

✓
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p⌧ (f(S)|⇠)p(⇠)d⇠
p⇤⌧ (f(S))

◆1�↵
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2. Direct measurements of  

discussed in the Section 4. Following this connection, in this paper, we show that Bayesian meld-
ing has the additional advantage that it can be conveniently applied when both individual-level and
population-level models contain latent variables, as would commonly be the case, e.g., if they were
mixture models or hierarchical Bayesian models. We call this approach latent Bayesian melding.

We present a detailed case study of latent Bayesian melding in the domain of energy disaggregation
[11, 20], which is a particular type of blind source separation (BSS) problem. The goal of the
electricity disaggregation problem is to separate the total electricity usage of a building into a sum of
source signals that describe the energy usage of individual appliances. This problem is hard because
the source signals are not identifiable, which motivates work that adds additional prior information
into the model [14, 15, 20, 25, 26, 8]. We show that a latent Bayesian melding approach allows
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The integration involved is generally intractable. We could employ the Monte Carlo method to
approximate it for a fixed ⌧ . However, importantly we are also interested in inferring the latent vari-
able ⇠ which is meaningful for example in the energy disaggregation problem. If we are interested in
finding the maximum a posteriori (MAP) value of the posterior where epS(S) was used as the prior,
we propose to use a rough approximation

R

p⇠(⇠)p⌧ (⌧ |⇠)d⇠ ⇡ max⇠ p⇠(⇠)p⌧ (⌧ |⇠). This introduces
an approximate prior,
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To obtain the approximate prior for S, the joint prior epS,⇠(S, ⇠) has to exist, and so we show that it
does exist under some conditions by the following theorem. We assume that S and ⇠ are continuous
random variables, and that both p⇤⌧ and p⌧ are positive and share the same support. The EpS(S)[·]
denotes the expectation with respect to pS .

Theorem 1. If EpS(S)

h

p⌧ (f(S))
p⇤
⌧ (f(S))

i

< 1, then a constant c↵ < 1 exists such that
R

epS,⇠(S, ⇠)d⇠dS = 1, for any fixed ↵ 2 [0, 1].

The proof can be found in the supplementary materials. We have heuristically derived an approx-
imate joint prior epS,⇠. Interestingly, we could show that epS,⇠ is a limit distribution derived from a
joint distribution of ⇠ and S induced by ⌧ . To see this, we derive a joint prior for S and ⇠,

pS,⇠(S, ⇠) =

Z

p(S, ⇠|⌧)p⌧ (⌧)d⌧ =

Z

p(S|⌧)p(⇠|⌧)p⌧ (⌧)d⌧

=

Z

p(⌧ |S)pS(S)
p⇤⌧ (⌧)

p(⌧ |⇠)p⇠(⇠)
p⌧ (⌧)

p⌧ (⌧)d⌧ = pS(S)p⇠(⇠)

Z
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d⌧

For a deterministic simulation ⌧ = f(S), the distribution p(⌧ |S) = p(⌧ |S, ⌧ = f(S)) is ill-defined
due to the Borel’s paradox phenomenon [24]. The distribution p(⌧ |S) depends on the parameteri-
zation, and we assume that ⌧ is uniform on [f(S) � �, f(S) + �] conditional on S and � > 0, and
the distribution is denoted by p�(⌧ |S). The marginal distribution is p�(⌧) =

R

p�(⌧ |S)pS(S)dS.
Denote g(⌧) = p(⌧ |⇠)

p⇤
⌧ (⌧)

and g�(⌧) =
p(⌧ |⇠)
p�(⌧)

. We have the following theorem.

Theorem 2. If lim�!0 p�(⌧) = p⇤⌧ (⌧), and g�(⌧) has bounded derivatives in any order, then
lim�!0

R

p�(⌧ |S)g�(⌧)d⌧ = g(f(S)).

See the supplementary materials for the proof. Under this parameterization, we denote p̂S,⇠(S, ⇠) =
pS(S)p⇠(⇠) lim�!0

R

p�(⌧ |S)g�(⌧)d⌧ = pS(S)p⇠(⇠)
p(f(S)|⇠)
p⇤
⌧ (f(S)) . By applying the logarithmic pool-

ing method, we have a joint prior,

epS,⇠(S, ⇠) = c↵ (pS(S))
↵
(p̂S,⇠(S, ⇠))

1�↵
= c↵pS(S)
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p⌧ (f(S)|⇠)p(⇠)
p⇤⌧ (f(S))

◆1�↵

Since the joint prior blends the variable S and the latent variable ⇠, we call this approxi-
mation the latent Bayesian melding (LBM) approach, which gives the posterior ep(S, ⇠|Y ) =

ep(Y )

�1p(Y |S)epS,⇠(S, ⇠). Note that if there is no latent variables, the latent Bayesian melding
collapses to the Bayesian melding approach. We will apply this method to an energy disaggregation
problem for integrating population information with an individual model.

4 Related methods

We discuss possible connections between Bayesian melding (BM) and other related methods. Re-
cently in machine learning, moment matching methods have been proposed, e.g., posterior regular-
ization (PR) [9], learning with measurements [16] and the generalized expectation criterion [18].
These methods share the common idea that the Bayesian models (or posterior distributions) are
constrained by some observations or measurements to obtain a least-biased distribution, because the
prior knowledge is not sufficient for the original Bayesian models. The idea is that the system we are
modelling is too complex and unobservable, and thus we have limited prior information. To allevi-
ate this problem, we assume we could obtain some observations of the system in some way, e.g., by

3

Instead, model using a latent variable

discussed in the Section 4. Following this connection, in this paper, we show that Bayesian meld-
ing has the additional advantage that it can be conveniently applied when both individual-level and
population-level models contain latent variables, as would commonly be the case, e.g., if they were
mixture models or hierarchical Bayesian models. We call this approach latent Bayesian melding.

We present a detailed case study of latent Bayesian melding in the domain of energy disaggregation
[11, 20], which is a particular type of blind source separation (BSS) problem. The goal of the
electricity disaggregation problem is to separate the total electricity usage of a building into a sum of
source signals that describe the energy usage of individual appliances. This problem is hard because
the source signals are not identifiable, which motivates work that adds additional prior information
into the model [14, 15, 20, 25, 26, 8]. We show that a latent Bayesian melding approach allows
incorporating new types of constraints into standard models for this problem, yielding a strong
improvement in performance, in some cases amounting to a 50% error reduction over a moment
matching approach.

2 The Bayesian melding approach

We briefly describe the Bayesian melding approach to integrating prior information in determinis-
tic simulation models proposed in [21], which has wide applications [1, 6, 23]. In the Bayesian
modelling context, denote Y as the observation data and suppose it is modelled by S which is the
collection of unknown random variables, we are then interested in modelling the posterior,

p(S|Y ) = p(Y )

�1p(Y |S)pS(S) (1)

However, in some situations, the variables S may be related to a new random variable ⌧ by a de-
terministic simulation function f(·), and so that ⌧ = f(S). In this case, S and ⌧ are called input
and output variables. For example, ⌧ = S1 + S2 is a simple example; In the energy disaggregation
problem, the total energy consumption variable ⌧ =

PT
t=1 S

T
t µ where St are the state variables of

a hidden Markov model and µ is the vector of mean energy consumption of an appliance which is
known, see the Section 5.2 for details. Both ⌧ and S are random variables, and so in the Bayesian
context, we usually define priors p⌧ (⌧) and pS(S). However, given pS(S), the map f naturally
introduces another prior for ⌧ , which is an induced prior denoted by p⇤⌧ (⌧). Therefore, there are two
different priors for the same variable ⌧ . In the energy disaggregation example, p⇤⌧ is induced by the
state variables St of the hidden Markov model which is the individual model of a specific house,
and p⌧ could be modelled by using the population information of the national data, which is called
the population model since it uses the overall information of many houses. The Bayesian melding
approach joins the two priors to one by using the logarithmic pooling method so that the logarith-
mically pooled prior is ep⌧ (⌧) / p⇤⌧ (⌧)

↵p⌧ (⌧)
1�↵ where 0  ↵  1. The prior ep⌧ melds the prior

information of both S and ⌧ . In the model (1), the prior pS is not sufficient since the information of
⌧ was not included. Thus it is required to derive a melded prior for S. If f is invertible, the prior
for S can be obtained by using the change-of-variable technique. If f is not invertible, Poole and
Raftery ([21]) heuristically derived a melded prior

epS(S) = c↵pS(S)

✓

p⌧ (f(S))

p⇤⌧ (f(S))

◆1�↵

where c↵ is a constant given ↵ such that
R

epS(S)dS = 1, which gives a new posterior ep(S|Y ) =

ep(Y )

�1p(Y |S)epS(S). Note that it is interesting to infer ↵ [22, 7], however we use a fixed value
in this paper. This is assumed there are no random variables in p⌧ . We now consider the situation
when ⌧ is generated by some other latent variables.

3 The latent Bayesian melding approach

It is common that the variable ⌧ is modelled by a latent variable ⇠, see the examples in Section 5.2.
So we could assume that we have a conditional distribution p(⌧ |⇠) and a prior distribution p⇠(⇠).
This defines a marginal distribution p⌧ (⌧) =

R

p⇠(⇠)p(⌧ |⇠)d⇠. This could be used to produce the
prior by using the Bayesian melding approach such that,

epS(S) = c↵pS(S)

✓

R

p⌧ (f(S)|⇠)p(⇠)d⇠
p⇤⌧ (f(S))

◆1�↵
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Ex of latent: Maybe different subpopulations have different growth rates. 

Following the standard BM approach intractable, so we take an approximation:

This yields an integer linear program that we can relax (for our application)
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discussed in the Section 4. Following this connection, in this paper, we show that Bayesian meld-
ing has the additional advantage that it can be conveniently applied when both individual-level and
population-level models contain latent variables, as would commonly be the case, e.g., if they were
mixture models or hierarchical Bayesian models. We call this approach latent Bayesian melding.

We present a detailed case study of latent Bayesian melding in the domain of energy disaggregation
[11, 20], which is a particular type of blind source separation (BSS) problem. The goal of the
electricity disaggregation problem is to separate the total electricity usage of a building into a sum of
source signals that describe the energy usage of individual appliances. This problem is hard because
the source signals are not identifiable, which motivates work that adds additional prior information
into the model [14, 15, 20, 25, 26, 8]. We show that a latent Bayesian melding approach allows
incorporating new types of constraints into standard models for this problem, yielding a strong
improvement in performance, in some cases amounting to a 50% error reduction over a moment
matching approach.

2 The Bayesian melding approach

We briefly describe the Bayesian melding approach to integrating prior information in determinis-
tic simulation models proposed in [21], which has wide applications [1, 6, 23]. In the Bayesian
modelling context, denote Y as the observation data and suppose it is modelled by S which is the
collection of unknown random variables, we are then interested in modelling the posterior,

p(S|Y ) = p(Y )

�1p(Y |S)pS(S) (1)

However, in some situations, the variables S may be related to a new random variable ⌧ by a de-
terministic simulation function f(·), and so that ⌧ = f(S). In this case, S and ⌧ are called input
and output variables. For example, ⌧ = S1 + S2 is a simple example; In the energy disaggregation
problem, the total energy consumption variable ⌧ =

PT
t=1 S

T
t µ where St are the state variables of

a hidden Markov model and µ is the vector of mean energy consumption of an appliance which is
known, see the Section 5.2 for details. Both ⌧ and S are random variables, and so in the Bayesian
context, we usually define priors p⌧ (⌧) and pS(S). However, given pS(S), the map f naturally
introduces another prior for ⌧ , which is an induced prior denoted by p⇤⌧ (⌧). Therefore, there are two
different priors for the same variable ⌧ . In the energy disaggregation example, p⇤⌧ is induced by the
state variables St of the hidden Markov model which is the individual model of a specific house,
and p⌧ could be modelled by using the population information of the national data, which is called
the population model since it uses the overall information of many houses. The Bayesian melding
approach joins the two priors to one by using the logarithmic pooling method so that the logarith-
mically pooled prior is ep⌧ (⌧) / p⇤⌧ (⌧)

↵p⌧ (⌧)
1�↵ where 0  ↵  1. The prior ep⌧ melds the prior

information of both S and ⌧ . In the model (1), the prior pS is not sufficient since the information of
⌧ was not included. Thus it is required to derive a melded prior for S. If f is invertible, the prior
for S can be obtained by using the change-of-variable technique. If f is not invertible, Poole and
Raftery ([21]) heuristically derived a melded prior

epS(S) = c↵pS(S)

✓

p⌧ (f(S))

p⇤⌧ (f(S))

◆1�↵

where c↵ is a constant given ↵ such that
R

epS(S)dS = 1, which gives a new posterior ep(S|Y ) =

ep(Y )

�1p(Y |S)epS(S). Note that it is interesting to infer ↵ [22, 7], however we use a fixed value
in this paper. This is assumed there are no random variables in p⌧ . We now consider the situation
when ⌧ is generated by some other latent variables.

3 The latent Bayesian melding approach

It is common that the variable ⌧ is modelled by a latent variable ⇠, see the examples in Section 5.2.
So we could assume that we have a conditional distribution p(⌧ |⇠) and a prior distribution p⇠(⇠).
This defines a marginal distribution p⌧ (⌧) =

R

p⇠(⇠)p(⌧ |⇠)d⇠. This could be used to produce the
prior by using the Bayesian melding approach such that,

epS(S) = c↵pS(S)

✓

R

p⌧ (f(S)|⇠)p(⇠)d⇠
p⇤⌧ (f(S))

◆1�↵
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approach joins the two priors to one by using the logarithmic pooling method so that the logarith-
mically pooled prior is ep⌧ (⌧) / p⇤⌧ (⌧)

↵p⌧ (⌧)
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�1p(Y |S)epS(S). Note that it is interesting to infer ↵ [22, 7], however we use a fixed value
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It is common that the variable ⌧ is modelled by a latent variable ⇠, see the examples in Section 5.2.
So we could assume that we have a conditional distribution p(⌧ |⇠) and a prior distribution p⇠(⇠).
This defines a marginal distribution p⌧ (⌧) =

R

p⇠(⇠)p(⌧ |⇠)d⇠. This could be used to produce the
prior by using the Bayesian melding approach such that,

epS(S) = c↵pS(S)

✓

R

p⌧ (f(S)|⇠)p(⇠)d⇠
p⇤⌧ (f(S))

◆1�↵

2

f

count how many times  
appliance turns on in S 

count how much energy  
appliance uses in S



• Using machine learning to make programming better 
• ML / NLP for programming languages 
• Combining program analysis with probabilistic machine learning 
• Find patterns in program executions: debugging 

• Using machine learning to make machine learning better 
• Deep learning: Combining neural networks with prior knowledge 

• “interpretability bias” 
• Learning how to clean data 
• Interactive machine learning 
• Tools for monitoring models over time 
• Unsupervised and weakly supervised learning 

• Using machine learning to make the world better 
• ML for computer security, NLP, sustainable energy…


