IRDS: Evaluation, Debugging, and Diagnostics

Charles Sutton
University of Edinburgh
Partitioning Data

Training : Running learning algorithms
Validation : Tuning parameters of learning algorithm (e.g., regularization parameters)
Test : Estimate performance on new situation

ideally only used once…

but this is never really possible (research field overfitting!)
Cross-Validation

Split data into K equal partitions
For each partition
 Train on all other
Average performance over K folds

This way every example is used as a test example
 (useful if data scarce)
Cross-Validation
for parameter tuning (e.g., k in k-nearest neighbour)

First partition into training and test set
Then on training set only:
 For each value of parameter,
 e.g., k in $\{1,2,5,10,\ldots\}$
 Run K-CV to estimate performance
Train one model with best k on entire train set
Measures for Regression

Root Mean Squared Error (RMSE)

\[
RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2}
\]

Mean Absolute Error

\[
MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - f(x_i)|
\]

Test set denoted \(\{(x_i, y_i) \mid i \in \{1, 2, \ldots N\}\} \)

Learned Regression function \(f(x_i) \)
Measures for Classification

<table>
<thead>
<tr>
<th>True label</th>
<th>Predicted label</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>+</td>
<td>TP</td>
<td>FP</td>
</tr>
<tr>
<td>-</td>
<td>FN</td>
<td>TN</td>
</tr>
</tbody>
</table>

TP: True positives
Number of test instances where true label == +, predicted label == +

FP: False positives

TN: True negatives

FN: False negatives

Total number of test instances:

TP + FP + TN + FN = N

Accuracy
%age correctly labeled

\[\text{ACC} = \frac{\text{TP} + \text{TN}}{N} \]

Precision
“when I say +, how often am I right?”

\[P = \frac{\text{TP}}{\text{TP} + \text{FP}} \]

Recall
of the real +, how many do I find?

\[R = \frac{\text{TP}}{\text{TP} + \text{FN}} \]

(for a multi-class problem, can compute P and R for each class)
Interesting Facts about P, R

• Accuracy is a simple measure and a single number. This is good.
• Precision and recall can be interesting when
 • The classes are highly skewed
 • You want to understand performance on individual classes
 • One class more important, e.g., information retrieval
 • Many classes and want to break
 • You want to understand performance as a function of how “conservative” the predictions are.
• P and R are an interesting pair because they are in conflict
 • A good principle for pairs of evaluation measures
Debugging and Diagnostics

Based on slides from Stephen Gould and Andrew Ng
What do I do now?

• You build a classifier (e.g., a spam filter using logistic regression) and the error is too high.
• What do you do to fix it? There are lots of things you could try:
 • Collect more training data.
 • Add different features (e.g., from the email header)
 • Try fewer features (e.g., exclude rare words from the classifier)
 • Try an SVM instead of logistic regression
 • Fix a bug in your stochastic gradient descent procedure
• You could do trial and error, but better is to think of diagnostics
Bias-Variance Tradeoff

Let \(\theta \in \mathbb{R} \) be some quantity we estimate by a random variable \(\hat{\theta} \). Example:

\[
\theta = \int x p(x) dx \quad \hat{\theta} = \frac{1}{N} \sum_{i=1}^{N} x_i \quad x_1 \ldots x_N \sim p
\]

Define the bias and variance

\[
\text{Bias}(\hat{\theta}) = E(\theta - \hat{\theta}) = \theta - \mu
\]

\[
\text{Var}(\hat{\theta}) = E \left[\hat{\theta} - \mu \right]^2
\]

where \(\mu = \int \int \int \hat{\theta} p(x_1, \ldots, x_N) dx_1 \ldots dx_N \)

Both are averages across all data sets that we might have seen.

FUN to look up: Bias-variance decomposition
Useful concepts more generally. These trade off…
Bias-Variance Tradeoff

Figure 2.11. Test and training error as a function of model complexity.

Figure from [Hastie, Tibshirani, and Friedman, 2009]
Bias-Variance Tradeoff

Not just a cartoon. Can use as a diagnostic. On x axis could put:
- Number of features
 - (sort in some meaningful way)
- Model parameter that controls complexity
 - k in k-nearest neighbour
 - number of trees in boosting, random forests
 - regularization parameters
- Or perhaps you have access to more complex models
 - e.g., naive Bayes versus HMM
Learning Curves

- Test set error rate decreases as training set size increases.
- Training set error rate increases with training set size.
Learning Curve Example 1

(Q: Why is error going up?)
Test error no longer decreasing
Even training error is too high
Not much difference between training and test error

(high bias)
Learning Curve Example 2

Test error still decreasing
Big gap training and test error

Test set

target error rate

training set

training set size

high variance
Zero Overfitting Not Desirable

![Graph showing error vs regularization with arrows indicating best for test error but starting to overfit and definitely overfitting.](http://nlpers.blogspot.co.uk/2015/09/overfitting.html)
Optimization in the Loop

- Often learning methods work by optimizing some objective function.
- For example, recall logistic regression

\[p(y = 1|\mathbf{x}) = \frac{1}{1 + \exp\{-\mathbf{w}^\top \mathbf{x}\}} \]

- To learn the weights, we solve

\[
\max_{\mathbf{w}} L(\mathbf{w}) = \sum_{i=1}^{N} \log p(y = y^{(i)}|\mathbf{x} = \mathbf{x}^{(i)})
\]

data points \((\mathbf{x}^{(i)}, y^{(i)})\) for \(i\) in \(1 \ldots N\)

- Maybe optimise this using gradient descent
- When this performs poorly, now have two questions
 - Is my numerical optimization algorithm performing poorly?
 - Or is objective function \(L\) not doing what I want?
 - (Simple ex: spam filtering with cost-sensitive error)
- Comes up especially often during research in data science
 - Often we introduce new models (== new objective function)
 - Which might be harder to optimize
Optimization Example

Example: To optimize

$$\max_w L(w) = \sum_{i=1}^{N} \log p(y = y^{(i)} | x = x^{(i)})$$

Simple choice is batch gradient descent:

$$\nabla_w L(w) = \sum_{i=1}^{N} \nabla_w [\log p(y = y^{(i)} | x = x^{(i)})]$$

This will be slow if N is big.

Alternative: *stochastic gradient descent.*

Simplest version: Sample $i \sim \text{Uniform} \left(\{1, 2, \ldots, N\} \right)$

Compute $\nabla_w \log p(y = y^{(i)} | x = x^{(i)})$ (single instance!)

Update using this gradient.

(this is standard in deep learning, e.g.)
Optimization Diagnostic

- You run a logistic regression spam filter on 100,000 training instances.
- Using batch gradient descent, you get an accuracy of 85%.
- Not good enough, so you get a larger set of 100,000,000 examples.
- Batch gradient is too slow, so you switch to SGD.
- Now you only get 80% accuracy (!?!?)

Diagnostic: Check the batch training objective

\[
L(w) = \sum_{i=1}^{100000000} \log p(y = y^{(i)} | x = x^{(i)})
\]

Compute this for final result of batch GD \(w_{GD}^*\) and SGD \(w_{SGD}^*\).

If \(L(w_{SGD}^*) \leq L(w_{GD}^*)\)

then your SGD procedure is screwed up.

(maybe try a different step size?)

This kind of thing happens far more generally.
The Numerical Gradient Check

- Often optimization packages require you to implement functions for both
 \[\mathbf{w} \mapsto L(\mathbf{w}) \quad \text{and} \quad \mathbf{w} \mapsto \nabla_{\mathbf{w}} L \]
 (although automatic differentiation is becoming more popular)
- In that case, check whether
 \[\epsilon^{-1} L(\mathbf{w} + \epsilon) - L(\mathbf{w}) = \nabla_{\mathbf{w}} L \]
- Easy to have a bug in one function but not the other.
- Do this for different settings of \(\mathbf{w} \)
- MATLAB does this automatically if you ask it to…
Nested Models

- Often complicated models contain simpler models as a special case. For logistic regression:
 \[
p(y = 1|x) = \frac{1}{1 + \exp\{-w^\top x\}}
\]
- so if \(w = 0\), the distribution over \(y\) is be uniform. Is that what happens in your code? If not, bug.
- Another example: a hidden Markov model and a mixture model
 \[
p(x, z) = \prod_t p(x_t|z_t)p(z_t|z_{t-1})
\]
 if \(p(z_t|z_{t-1})\) ignores \(z_{t-1}\), then all \(x_t\) independent ...

- Lots of ways to get diagnostics from this:
 - Training error of HMM should be strictly better
 - Force your HMM code to fit observation distributions only.
 - Do you get the same distribution as mixture model
 - Logistic regression: Numerical gradient check
 - Try it first at \(w=0\). It will be easier to debug there.
Pipelines of Predictions

Practical systems use predictors at multiple points

e.g., Finding company mergers from newswire text

Split article into sentences

Add part of speech tags

Recognize company names

Syntactic parsing

Classify merger relationship

Many steps rely on learning, will make errors
Is one step a weak link? Or are errors slowly propagating?

Debug by replacing intermediate predictions with gold standard (human annotations)
Overall Advice

• For practical work: Try quick and dirty first. Iterate quickly
• Different diagnostics
 • Learning curves
 • As function of size of training set
 • As function of model complexity
 • Additionally: number of iterations of learning algorithm
 • Optimization diagnostics
 • Diagnostics using model nesting
 • Breaking chains of predictions
• Sometimes diagnostics require a bit of ingenuity.
• “Trust no one”
 • Just because something is true in the maths doesn’t mean it is in your code
 • Imagine how you think the method is probably behaving and check whether that happens!
• (this holds for research too!)