Why visualisation?

IRDS: Visualization

Charles Sutton
University of Edinburgh

06 atice smsterdam arimals architecture art sogut australia suum baby barcelona beach berlin birthday blosk blackandwite blue boston bw california cameraphone comping canada canon car cat cats chicago china christmas church city clouds color concert dso day de docember dog england europe toll family festival tiom florida flower flowers food france friends fun garden geotagged germany oirl groffti green halloween hawaii hiding holiday home honeymoon honolom, house india reland istand italy japan juty yne kids is
lake landscope light me Iondon mountans museum music nature new newyork night nikon nyc ocen paris park party people portrait ther roastrip rock rome san sanfrancisco scotland sea seattle show sky snow spain spring street summer sun sunset sydhey taiwan texas thailand tokyo toronto travel tree trees trip uk utan usa vacation vancouver washington water Wedding white winter yelow yak 200

Graphics provide little additional information

- Goal 1: Have a data set that I want to understand. This is called exploratory data analysis.
- Today's lecture.
- Goal II: Want to display data (i.e., for publication)
- Will save this for later lecture (if time)
- Find or display relationships in the data
- This is a prelude to model building (what is most important to model?)
- Major goal is inter-ocular impact

Univariate data

Summaries

Histograms

Mean 27.7	Min	0.00
Std Dev 9.5	1Q	21.7
	Median 28.0	
	3Q	33.6
Sample mean	Max	57.3
$\bar{x}=\frac{1}{N} \sum_{i} x_{i}$	Median and quartiles	

Sample standard deviation
$s_{x}=\sqrt{\frac{1}{N-1} \sum_{i}\left(x_{i}-\bar{x}\right)}$

Outliers in histograms

Blood pressure data set

Sood Pressure

skew

multimodality
these three have same summary statistics!

Class-Conditional Histograms

Alternative: Box plot

Effect of bin size

Effect of bin size

More misleading histograms

Bivariate data

Dangers of correlation

$8 \quad 10 \quad 1214 \quad 16 \quad 18$

Numerical bivariate summaries
Data are $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots\left(x_{N}, y_{N}\right)$

$$
\begin{array}{l|l}
\text { Sample covariance: } & \text { where as before } \\
s_{x y}=\frac{1}{N-1} \sum_{i=1}^{N}\left(y_{i}-\bar{y}\right)\left(x_{i}-\bar{x}\right) & \bar{x}=\frac{1}{N} \sum_{i} x_{i} \\
\quad \text { Sample correlation: } & \bar{y}=\frac{1}{N} \sum_{i} y_{i} \\
\quad \rho_{x y}=\frac{s_{x y}}{s_{x} s_{y}} & s_{x}=\sqrt{\frac{1}{N-1} \sum_{i}\left(x_{i}-\bar{x}\right)} \\
s_{y}=\sqrt{\frac{1}{N-1} \sum_{i}\left(y_{i}-\bar{y}\right)}
\end{array}
$$

Scatterplots

Colour in Scatterplots

Each point is a word Entire plot: one emai Axes: "Spam score"

Colour: Whether token was part of an attack on the spam filter
[Nelson et al, 2008]

Colour in Scatterplots

Token score before attack

For our purposes note:

- Use of colour to add a categorical variable
- Without this colour would not have seen these two outliers
- Use of $y=x$ line to add the eye
[Nelson et al, 2008]

100 data points

Overplotting

samples from bivariate normal
also: notice the axes!

Fitted line

To fix overplotting, could consider:

- Jittering points
- Subsampling points (i.e., plot only 10\%)
- Averaging (if this makes sense)
- Add trend lines (e.g., quantile lines)

Time Series

Examples

- Financial data
- Network traffic
- Energy usage
- Human traffic
- Building occupancy

Visualization tricks include

- Smoothing
- (running mean, median)
- Repeated multiples

Barack Obama Favorable/Unfavorable Rating Latest Poll: 01/10/2011

This fit is from loess (local linear regression).

Transformations

Consider powers, logs
Occasionally reciprocals (e.g., rates).
Also square root

Before

Example Transformation

Why log log here? Hint: Imagine a spherical cow
[Source: William Cleveland, Visualizing Data]

Three-Dimensional Data

- Generally hard
- 3-D plots are not usually useful
- Usually better to use colour on a 2-D plot
- Or show multiple 2D plots for each value of third variable

Wait, what if you have categorical data?

Tools here include:

- Colour
- Contingency tables
- Multiple plots (e.g., class-conditional histograms)

Two main options:

- Project the data down to 2-D
- Many techniques
- Principal Components Analysis (IAML, MLPR)
- Multidimensional scaling
- Modern nonlinear methods: t-SNE, LLE, Isomap, Eigenmaps
- Problem: Sometimes this will obscure high-D structure and nonlinear structure
- Another option: Scatterplot matrix (see next)

This is performance data for (very old)

CPUs

Important:
Scales must be matched

What are you looking for?

- Anomalies. If something looks weird, figure out why. It could be an error in your data.
- Learn from your data but do not trust it! (Not completely.)
- Relationships. Hypothesis-based visualization. What relationships do you expect to exist? Can you see them?
- Use visualization to inform models and vice versa
- e.g., Can help with feature construction, e.g., whether a relationship is "really" nonlinear
- Fancy 3D graphs ... meh
- These techniques also useful for the outputs of learning!

If you really like this stuff

- Tukey, Exploratory Data Analysis
- Bill Cleveland, Visualizing Data
- Edward Tufte, all books

