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Human annotation is valuable

Annotation involves marking up data:

Identifying regions of interest in images or segments with
particular properties in text;

labelling those regions or segments.

In order to understand

what makes those regions interesting or gives those segments
their properties,

what the labels follow from or correlate with,

human annotation is better than human intuition in helping to
formulate a theoretically sound explanation or simply a reasonably
accurate empirical model.
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Human annotation is problematic

People are often inconsistent: They say one thing at time t1
and another at time t2 [Klebanov & Beigman, 2009, 2010].

People are often biased: They have preferences in how they
answer questions and/or annotate data [Passonneau &
Carpenter, 2014].

Either can be the source of inter-annotator disagreement, but
inter-annotator agreement (IAA) can mask both inconsistency
and bias.

It’s neither efficient or sufficient to simply gather a huge
amount of annotation of the same data: Crowd-sourcing alone
is not the answer to either inconsistency or bias [Carpenter &
Passonneau, 2014; Klebanov & Beigman, 2009, 2010].
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Tackling Inconsistency

During annotation, one can try to show annotators their
earlier annotatation of similar tokens.

After annotation is complete, one can try to assess whether
similar tokens have similar annotation.

But both require the ability to identify similar tokens: For
discourse annotation, this can be an interesting problem in its
own right.
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Consistency Project – Annotation Tool
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Consistency Project – Sense Annotation

Temporal	  

Synchronous	   Asynchronous	  

Precedence	  

Succession	  
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Consistency Project – Sense Annotation

Con$ngency	  

Cause	  

Reason	  

Result	  

Purpose	  

Goal	  

Enablement	  

Condi$on	   Nega$ve	  
Condi$on	  
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Consistency Project – Sense Annotation

Comparison	  

Contrast	   Similarity	   Concession	  

Expecta3on	  

Contra-‐
expecta3on	  
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Consistency Project – Sense Annotation

Expansion	  

Conjunc.on	   Detail	  

Specifica.on	  

Summariza.on	  

Equivalence	   Instan.a.on	   Excep.on	  

Arg1-‐excpt	  

Arg2-‐excpt	  

Disjunc.on	   Subs.tu.on	  

Arg1-‐subst	  

Arg2-‐subst	  

Manner	  
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Tackling Bias

Standard practice relies on inter-annotator agreement (IAA)
to recognize biases that lead to annotators to assign different
labels to the same token.

Standard practice then relies on reconciliation to either reach
agreement or make an executive decision.

Neither ensures a high-quality corpus.

Probabilistic models of agreement are more promising.

We’d like to experiment with this on discourse annotation that
we are about to crowdsource.
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Crowdsourcing Experiment
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