

ΜΑΤΗΕΜΑΤΙ

FOR VAST DIGI

ESOURC

Semi-Stochastic Gradient Descent

Peter Richtárik (joint work with Jakub Konečný)

Introduction to Research in Data Science Edinburgh - October 27, 2014

The Problem

Minimizing Average Loss
• Problems are often structured
Structure – sum of functions
find
$$x_* = \underset{x \in \mathbb{R}^d}{\operatorname{arg\,min}} f(x) \left[= \frac{1}{n} \sum_{i=1}^n f_i(x) \right]$$

 $f_i(x)$ represents loss incurred on i^{th} training example

Frequently arising in machine learning

D

Examples

Linear regression (least squares)

$$f_i(x) = (a_i^T x - b_i)^2$$

 $\triangleright a_i, b_i$ are data

Logistic regression (classification)

$$f_i(x) = \log\left(\frac{1}{1 + \exp(y_i a_i^T x)}\right)$$

 \triangleright a_i are data, y_i labels

Assumptions

• Lipschitz continuity of the gradient of $f_i(\cdot)$

Lipschitz parameter – L

$$f_i(z) \le f_i(x) + \langle \nabla f_i(x), z - x \rangle + \frac{L}{2} ||z - x||^2$$

• Strong convexity of $f(\cdot)$

$$f(z) \ge f(x) + \langle \nabla f(x), z - x \rangle + \frac{\mu}{2} ||z - x||^2$$

 μ – modulus of strong convexity

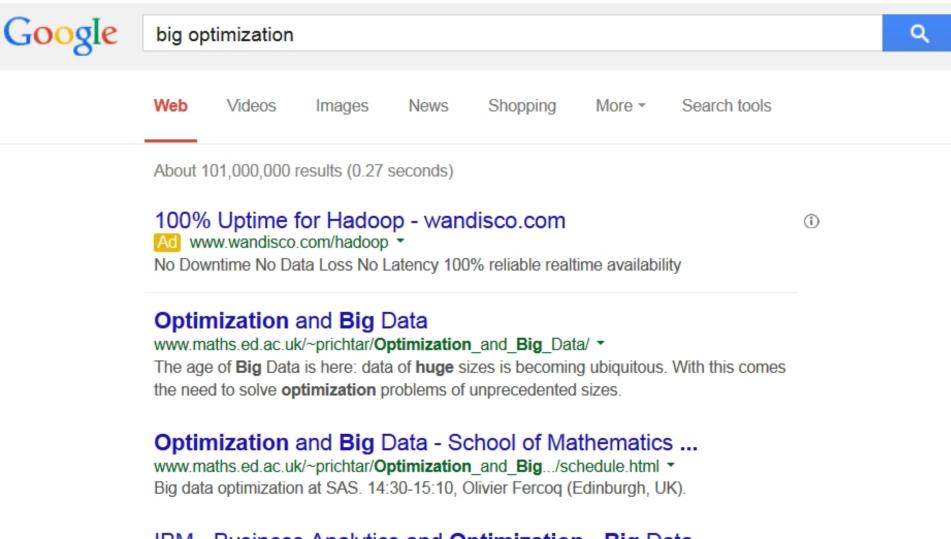
Applications

SPAM DETECTION

M

SPA

PAGE RANKING



IBM - Business Analytics and Optimization - Big Data ... www.ibm.com/services/us/gbs/business-analytics/ - IBM -

Business analytics and big data consulting services from IBM help discover predictive

RECOMMENDER SYSTEMS

coldplay

Playlist Coldplay - Top 21 Coldplay Songs

Mix - Playlist Coldplay - Top 21 Coldplay Songs by YouTube

Upload

Sign in

COLDPLAY - BEST OF THE BEST (2hours,10minutes) by Rogério Olliver 1,519,418 views

Best Of Bob Marley by john krew 14,897,245 views

Q

Best Of Lana Del Rey (+ Remixes)-Audio + Video Megamix (2012)

U2 - The Best of 1980-1990 (Full

GEOTAGGING

Geotagging One Hundred Million Twitter Accounts with Total Variation Minimization

Ryan Compton, David Jurgens, David Allen

(Submitted on 28 Apr 2014)

Geographically annotated social media is extremely valuable for modern information retrieval. However, when researchers can only access publicly-visible data, one quickly finds that social media users rarely publish location information. In this work, we provide a method which can geolocate the overwhelming majority of active Twitter users, independent of their location sharing preferences, using only publicly-visible Twitter data.

Our method infers an unknown user's location by examining their friend's locations. We frame the geotagging problem as an optimization over a social network with a total variation-based objective and provide a scalable and distributed algorithm for its solution. Furthermore, we show how a robust estimate of the geographic dispersion of each user's ego network can be used as a per-user accuracy measure, allowing us to discard poor location inferences and control the overall error of our approach.

Leave-many-out evaluation shows that our method is able to infer location for 101,846,236 Twitter users at a median error of 6.33 km, allowing us to geotag roughly 89\% of public tweets.

Gradient Descent vs Stochastic Gradient Descent

² http://madeincalifornia.blogspot.co.uk/2012/11/gradient-descent-algorithm.html

Gradient Descent (GD)

Update rule

$$x_{k+1} = x_k - \frac{1}{L}\nabla f(x_k)$$

Fast convergence rate

$$f(x_k) - f(x_*) \le \mathcal{O}\left((1 - \frac{\mu}{L})^k\right)$$

 \blacktriangleright Alternatively, for ϵ accuracy we need

$$\mathcal{O}\left(\frac{L}{\mu}\log(1/\epsilon)\right)$$
 iterations

Complexity of single iteration: n
 (measured in gradient evaluations)

Stochastic Gradient Descent (SGD)

Update rule

pick $i \in \{1, 2, ..., n\}$ uniformly at random

 $x_{k+1} = x_k - h_k \nabla f_i(x)$ a step-size parameter

Why it works

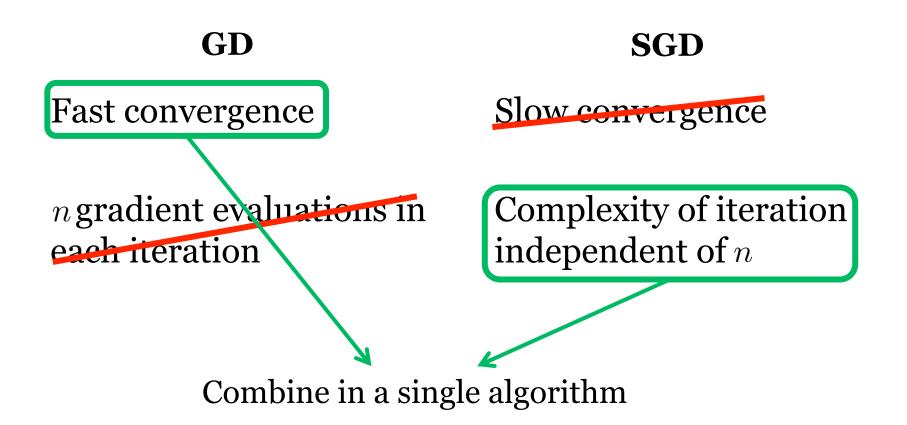
 $\mathbb{E}[\nabla f_i(x)] = \nabla f(x)$

Slow convergence

 $f(x_k) - f(x_*) \le \mathcal{O}(1/k), \quad \text{if } h_k = \mathcal{O}(1/k)$

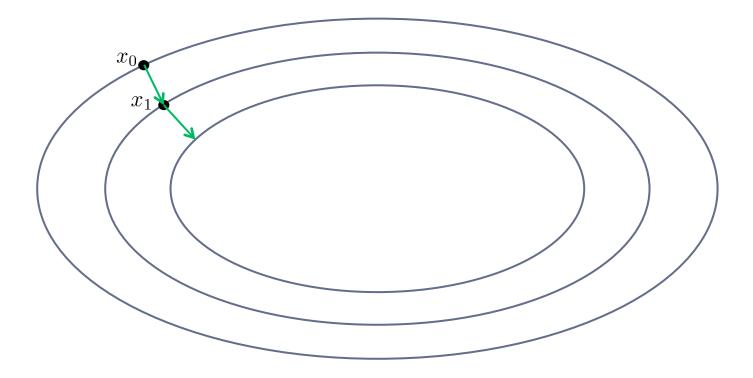
 Complexity of single iteration – 1 (measured in gradient evaluations)

Dream...



S2GD: Semi-Stochastic Gradient Descent

Why dream may come true...



- The gradient does not change drastically
- We could reuse old information

Modifying "old" gradient

• Imagine someone gives us a "good" point \tilde{x} and $\nabla f(\tilde{x})$

• Gradient at point x, near \tilde{x} , can be expressed as

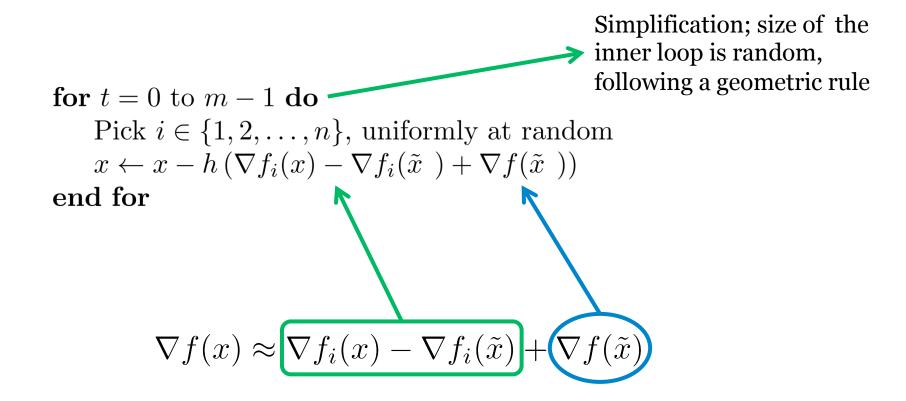
$$\nabla f(x) = \nabla f(x) - \nabla f(\tilde{x}) + \nabla f(\tilde{x})$$

Gradient change We can try to estimate Already computed gradient

Approximation of the gradient

$$\nabla f(x) \approx \nabla f_i(x) - \nabla f_i(\tilde{x}) + \nabla f(\tilde{x})$$

The S2GD Algorithm



Theorem

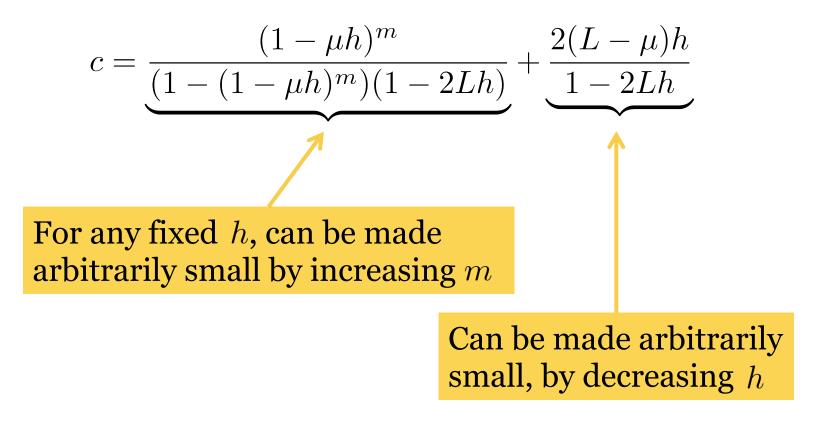
Let the assumptions on f, f_i (*L*-smoothness, μ -strong convexity) be satisfied. Consider the S2GD algorithm applied to minimization of f. Choose 0 < h < 1/2L, and m sufficiently large so that

$$c = \frac{(1-\mu h)^m}{(1-(1-\mu h)^m)(1-2Lh)} + \frac{2(L-\mu)h}{1-2Lh} < 1$$

Then we have the following convergence in expectation:

$$\mathbb{E}[f(\tilde{x}_j) - f(x_*)] \le c^j [f(\tilde{x}_0) - f(x_*)]$$

Convergence Rate



▶ How to set the parameters *j*, *h*, *m*?

Setting the Parameters

$$\frac{\mathbb{E}[f(\tilde{x}_k) - f(x_*)]}{f(\tilde{x}_0) - f(x_*)} \le \epsilon \quad \longleftarrow \text{ Fix target accuracy}$$

The accuracy is achieved by setting

of epochs $j = \lceil \log(1/\epsilon) \rceil$ stepsize $h = \frac{1}{(2+4e)L}$ # of iterations $m = 43\kappa$

• Total complexity (in gradient evaluations) $j(n + 43\kappa) = O[(n + \kappa) \log(1/\epsilon)]$ # of epochs full gradient evaluation m cheap iterations

Complexity

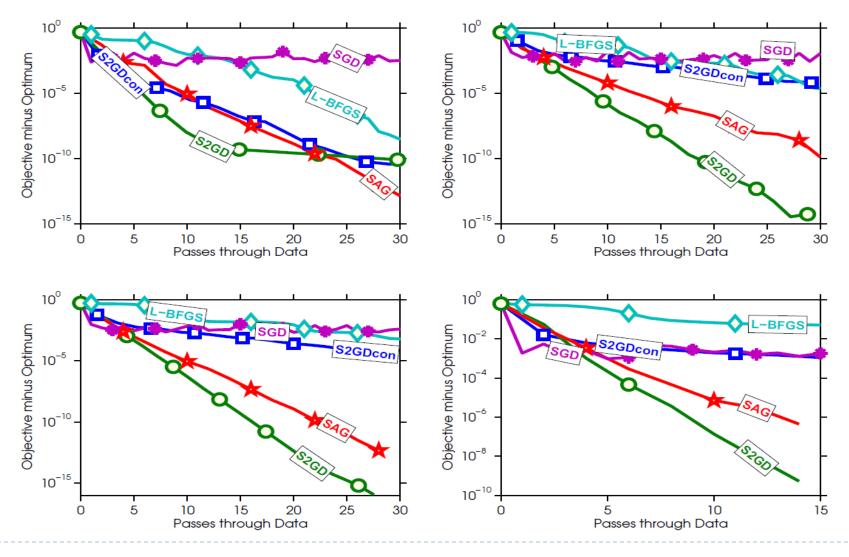
S2GD complexity

$\mathcal{O}\left[\left(n+\kappa\right)\log(1/\epsilon)\right]$

- GD complexity
 - $\mathcal{O}\left[\kappa \log(1/\epsilon)\right]$ iterations
 - $\mathcal{O}(n)$ complexity of a single iteration
 - Total

 $\mathcal{O}\left[(n\kappa)\log(1/\epsilon)\right]$

Experiment (logistic regression on: ijcnn, rcv, real-sim, url)



Related Methods

SAG – Stochastic Average Gradient (Mark Schmidt, Nicolas Le Roux, Francis Bach, 2013)

- Refresh single stochastic gradient in each iteration
- ▶ Need to store *n* gradients.
- Similar convergence rate
- Cumbersome analysis
- SAGA (Aaron Defazio, Francis Bach, Simon Lacoste-Julien, 2014)
 - Refined analysis
- MISO Minimization by Incremental Surrogate Optimization (Julien Mairal, 2014)
 - Similar to SAG, slightly worse performance
 - Elegant analysis

Related Methods

SVRG – Stochastic Variance Reduced Gradient (Rie Johnson, Tong Zhang, 2013)

- Arises as a special case in S2GD
- Prox-SVRG

(Tong Zhang, Lin Xiao, 2014)

- Extended to proximal setting
- EMGD Epoch Mixed Gradient Descent (Lijun Zhang, Mehrdad Mahdavi, Rong Jin, 2013)
 - Handles simple constraints,
 - Worse convergence rate $\mathcal{O}\left[(n+\kappa^2)\log(1/\epsilon)\right]$

Extensions

Extensions

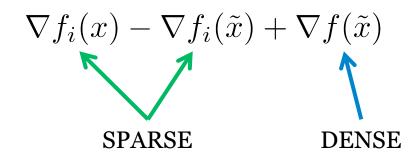
- Efficient handling of sparse data
- Pre-processing with SGD
- Inexact computation of gradients
- Non-strongly convex losses
- High-probability result
- Mini-batching: mS2GD
 - Konecny, Liu, Richtarik and Takac. mS2GD: Minibatch Semi-Stochastic Coordinate Descent in the Proximal Setting, October 2014
- Coordinate variant: S2CD
 - Konecny, Qu and Richtarik. S2CD: Semi-Stochastic Coordinate Descent, October 2014
- Many more ideas!!! (PhD project)

Sparse Data

 For linear/logistic regression, gradient copies sparsity pattern of example.

> $f_i(x) = \phi_i(a_i^T x)$ $\nabla f_i(x) = a_i^T \nabla \phi_i(u), \quad u = a_i^T x$

But the update direction is fully dense



Can we do something about it?

Sparse Data (Continued)

- Yes we can!
- To compute $\nabla f_i(\tilde{x})$, we only need coordinates of xcorresponding to nonzero elements of a_i
- For each coordinate *j*, remember when was it updated last time – χ_j
 - Before computing $\nabla f_i(\tilde{x})$ in inner iteration number k, update required coordinates
 - Step being (x̃)_j ← (x̃)_j − h(k − χ_j) (∇f(x))_j
 Compute direction and make a single update

The "old gradient"

Number of iterations when the coordinate was not updated

S2GD: Implementation for Sparse Data

parameters: $m = \max \#$ of stochastic steps per epoch, h = stepsize, $\nu =$ lower bound on μ for j = 0, 1, 2, ... do $g_j \leftarrow \frac{1}{n} \sum_{i=1}^n f'_i(x_j)$ $y_{j,0} \leftarrow x_j$ $\chi_i \leftarrow 0$ for $i = 1, 2, \ldots, n$ \triangleright Store when a coordinate was updated last time Let $t_j \leftarrow t$ with probability $(1 - \nu h)^{m-t}/\beta$ for $t = 1, 2, \ldots, m$ for t = 0 to $t_i - 1$ do Pick $i \in \{1, 2, \ldots, n\}$, uniformly at random for $s \in \operatorname{nnz}(a_i)$ do $(y_{i,t})_s \leftarrow (y_{i,t})_s - (t - \chi_s)h(g_i)_s \quad \triangleright$ Update what will be needed $\chi_s = t$ end for $y_{j,t+1} \leftarrow y_{j,t} - h\left(f'_{i}(y_{j,t}) - f'_{i}(x_{j})\right)$ \triangleright A sparse update end for for s = 1 to d do \triangleright Finish all the "lazy" updates $(y_{j,t_j})_s \leftarrow (y_{j,t_j})_s - (t_j - \chi_s)h(g_j)_s$ end for $x_{i+1} \leftarrow y_{i,t_i}$ end for

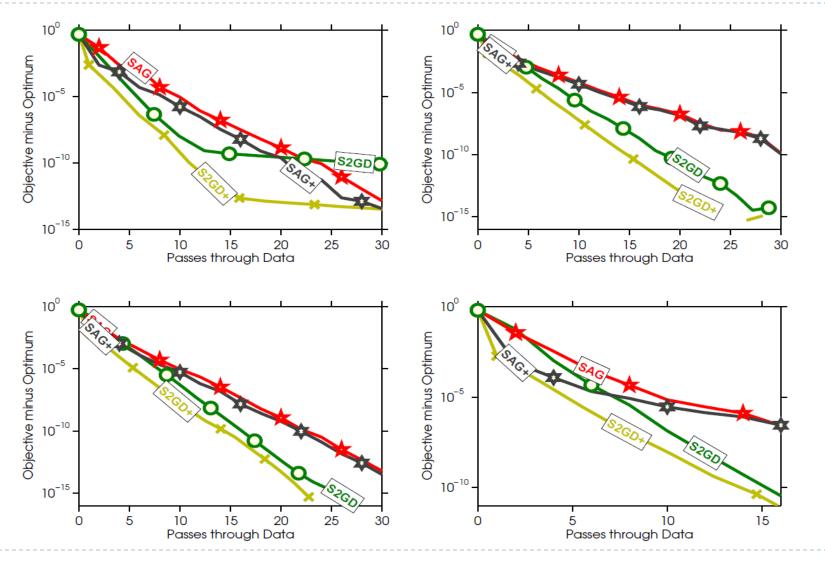
S2GD+

Observing that SGD can make reasonable progress, while S2GD computes first full gradient (in case we are starting from arbitrary point), we can formulate the following algorithm (S2GD+)

parameters: $\alpha \ge 1$ (e.g., $\alpha = 1$)

- 1. Run SGD for a single pass over the data (i.e., n iterations); output x
- 2. Starting from $x_0 = x$, run a version of S2GD in which $t_j = \alpha n$ for all j

S2GD+ Experiment



High Probability Result

- The result holds only in expectation
- Can we say anything about the concentration of the result in practice?

Paying just logarithm of probability Independent from other parameters

For any

$$0 < \rho < 1, \quad 0 < \epsilon < 1, \quad j \ge \frac{\log(1/(\epsilon\rho))}{\log(1/c)}$$

we have:

$$\mathbb{P}\left(\frac{f(x_j) - f(x_*)}{f(x_0) - f(x_*)} \le \epsilon\right) \ge 1 - \rho.$$

Inexact Case

Question: What if we have access to inexact oracle?

• Assume we can get the same update direction with error δ :

$$\nabla f(x) \approx \nabla f_i(x) - \nabla f_i(\tilde{x}) + \nabla f(\tilde{x}) + \delta$$

▶ S2GD algorithm in this setting gives $\mathbb{E}(f(x_j) - f(x_*)) \le c^j \left(f(x_0) - f(x_*) - \frac{b}{1-c}\right) + \frac{b}{1-c}$ with

$$c = \frac{(1-\mu h)^m}{(1-(1-\mu h)^m)(1-4Lh)} + \frac{2(L-\mu)h}{1-4Lh}, \quad b = \frac{2\mathbb{E}\|\delta\|^2}{(1-4Lh)h}$$

Code

 Efficient implementation for logistic regression available at MLOSS

http://mloss.org/software/view/556/