IRDS: Choosing Features

Charles Sutton
University of Edinburgh

General Principles

- Feature engineering is iterative (and messy)
- Come up with a new feature
- Try it on a validation set, measure error
- Repeat
- Use an ablative design (NB gains don't always accumulate nicely)

Feature Set A	70%
Feature Set $A+B$	75%
Feature Set $A+B+C$	75.2%

- Use error analysis
- Look at the most embarrassing mistakes
- What features might help with those
- Training set versus validation set versus test set
- Once you have tuned features on a data set, you can't use the error to predict future performance
- Flexibility versus overfitting

Why features?

- Every learning algorithm somehow assumes:
- "similar input vectors have similar labels"
- Features determine what is similar
- For practical ML, two best ways to improve performance
- Get more training data
- Come up with better features
- Feature engineering is a way to introduce prior knowledge about the problem
- (For ML research, advice would be different!)

1-of-K ("one hot") encoding

Age	Fav. Colour	Label
26		+
57		-
34		+

Age	Fav. Colour	Label
26	0	+
57	1	-
34	2	+

This can cause problems.
(Is yellow really twice as related to label as blue?)

For which algorithms will this matter?

Normalization (Whitening)

For continuous features, can be best to have zero mean and unit variance

or in vector notation

Sample covariance matrix
(or: just diagonal entries)
For which algorithms will this matter?

Feature Conjunctions

If features binary, natural interpretation:

- each feature is a proposition, e.g.
"does document i contain the word 'geranium'"
Then, why not combine different features?, e.g.,
- "does document i contain both the word 'geranium' and 'magnolia'"
This is a product of feature values, i.e.,

$$
\binom{x_{j}}{x_{k}} \mapsto\left(\begin{array}{c}
x_{j} \\
x_{k} \\
x_{j} x_{k}
\end{array}\right)
$$

In principle we could do this for all pairs (or higher).
Might reduce this using feature selection.

Binning (Discretization)

We've mentioned nonlinear feature transforms

$$
x_{k} \mapsto x_{k}^{2}
$$

What if you do not expect a simple functional form is appropriate?

One possibility: Convert to M binary variables

$$
x_{k} \mapsto\left(\begin{array}{c}
\mathbb{I}\left\{x_{k} \in\left(-\infty, \tau_{1}\right)\right\} \\
\mathbb{I}\left\{x_{k} \in\left(-\tau_{1}, \tau_{2}\right]\right\} \\
\mathbb{I}\left\{x_{k} \in\left(\tau_{M-1}, \infty\right)\right\}
\end{array}\right)
$$

Sequences of Predictions

Examples

- Predict part of speech for each word in a sentence
- Predict number of web requests for each day
- Predict for each window of an image whether it contains a face

For these, think about features

- At different "lags"
- At different levels of granularity

Such as:

- Identity of word at location $t, t-1, t-2$
- Average number of searches in past week, month, year
- Feature statistics from surrounding regions
- True (or predicted) value from previous time step

Vector Quantization

Use the output of some other algorithm to get features:

- Run k-means clustering
- For each data point, add a feature that gives the index of the closest cluster centroid.
- (Could use one of k encoding.)
- This is a generalisation of the 1-D binning idea from previous slide

Model Combination

Suppose you want to improve on existing systems. Just add their output as a feature to your classifier!

If they provide a confidence, e.g., a probability could use predicted log probability as feature

Examples:

- Machine translation
- Netflix prize

Dimensionality Reduction

Principal Components Analysis returns a linear map

$$
\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{M}
\end{array}\right) \mapsto\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{P}
\end{array}\right) \quad P \ll M
$$

Use \mathbf{z} as features instead
of (or in addition to?) \mathbf{x}

Could use fancier techniques, e.g.

- manifold learning
- topic modelling
- deep neural networks (activations of hidden layer)

Simple Transfer Learning

Common: Need to solve "lots of little prediction problems"

- Email spam filter for each person
- Fraud detection of personal credit card accounts

Compare domain adaptation, transfer learning, multitask learning
Different prediction tasks not identical
Features can have different meanings across tasks, e.g.

- "Viagra" commonly included in spam emails
- But a GP might often see it in regular emails

But similar and only a small amount of data for each

Simple Transfer Learning

Common: Need to solve "lots of little prediction problems"

- Email spam filter for each person
- Fraud detection of personal credit card accounts

Compare domain adaptation, transfer learning, multitask learning

Trick: Both "general" and "specific" features

- USER872324601_CONTAINS:Viagra
- binary feature, 1 only if email contains "Viagra" and inbox from specified user
- CONTAINS:Viagra
- binary feature, 1 if email contains "Viagra"

Feature Selection

Sometimes too many features bad.
Start with "full set" of features, prune less useful ones

- Filters: Rank features by some "relevance" measure, e.g., mutual information correlation with output. Choose top K. (Also called ranking, screening).
- Wrapper methods: Search through space of subsets of full feature set, to maximise performance on validation set. Many different strategies (forward versus backward)
- Wrapper as filter : Use a wrapper method on a linear classifier to find a good set of features, then train a (more computationally expensive) nonlinear one
- Lasso (11 regularization) : Classification/regression and feature selection simultaneously

