
IRDS: Evaluation, Debugging,
and Diagnostics

Charles Sutton
University of Edinburgh

Partitioning Data

Training TestValidation

Training : Running learning algorithms
Validation : Tuning parameters of learning algorithm
 (e.g., regularization parameters)
Test : Estimate performance on new situation
 ideally only used once…
but this is never really possible
(research field overfitting!)

Cross-Validation

Fold 4
(train)

Split data into K equal partitions
For each partition
 Train on all other
Average performance over K folds

Fold 1
(train)

Fold 2
(train)

Fold 3
(test)

Fold 5
(train)

This way every example is used an a test example
 (useful if data scarce)

Cross-Validation

First partition into training and test set
Then on training set only:
 For each value of parameter,
 e.g., k in {1,2,5,10,…}
 Run K-CV to estimate performance
 Train one model with best k on entire train set

for parameter tuning

Fold 4
(train)

Fold 1
(train)

Fold 2
(train)

Fold 3
(validate)

Fold 5
(train) Test set

(e.g., k in k-nearest neighbour)

Measures for Regression
Root Mean Squared Error (RMSE)

Mean Absolute Error

RMSE =

vuut 1

N

NX

i=1

(yi � f(xi))
2

MAE =
1

N

NX

i=1

��
yi � f(xi)

��

{(xi, yi) | i 2 {1, 2, . . . N}}
Test set denoted

Learned Regression function
f(xi)

Measures for Classification
+ -

+ TP FP

- FN TN

Predicted
label

True label

TP: True positives
 Number of test instances where
 true label == +, predicted label == +
FP: False positives
TN: True negatives
FN: False negatives
TP + FP + TN + FN = N

Total number of
test instances

Accuracy

Precision

Recall

(for a multi-class problem, can compute P and R for each class)

ACC =
TP+ TN

N

%age correctly labeled

“when I say +, how often am I right?”

of the real +, how many do I find?

P =
TP

TP + FP

R =
TP

TP + FN

Interesting Facts about P, R

• Accuracy is a simple measure and a single number. This is good.
• Precision and recall can be interesting when

• The classes are highly skewed
• You want to understand performance on individual classes

• One class more important, e.g., information retrieval
• Many classes and want to break

• You want to understand performance as a function of how “conservative”
the predictions are.

• P and R are an interesting pair because they are in conflict
• A good principle for pairs of evaluation measures

Debugging and Diagnostics

Based on slides from Stephen Gould and Andrew Ng

What do I do now?

• You build a classifier (e.g., a spam filter using logistic regression) and the
error is too high.

• What do you do to fix it? There are lots of things you could try:
• Collect more training data.
• Add different features (e.g., from the email header)
• Try fewer features (e.g., exclude rare words from the classifier)
• Try an SVM instead of logistic regression
• Fix a bug in your stochastic gradient descent procedure

• You could do trial and error, but better is to think of diagnostics

Bias-Variance Tradeoff

Useful concepts more generally. These trade off…

✓ =

Z
xp(x)dx

✓̂ =
1

N

NX

i=1

xi x1 . . . xN ⇠ p

Both are averages across all data sets that we might have seen.

FUN to look up: Bias-variance decomposition

✓̂Let be some quantity we estimate by a random variable
Example:

✓ 2 R

Define the bias and variance

µ =

ZZZ
✓̂ p(x1, . . . , xN) dx1 · · · dxN

Bias(✓̂) = E(✓ � ✓̂) = ✓ � µ

Var(✓̂) = E
h
✓̂ � µ

i2

where

Bias-Variance Tradeoff

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 2

High Bias
Low Variance

Low Bias
High Variance

P
re

d
ic

ti
on

E
rr

or

Model Complexity

Training Sample

Test Sample

Low High

FIGURE 2.11. Test and training error as a function
of model complexity.

Figure from [Hastie, Tibshirani, and Friedman, 2009]

Bias-Variance Tradeoff

Elements of Statistical Learning (2nd Ed.) c⃝Hastie, Tibshirani & Friedman 2009 Chap 2

High Bias
Low Variance

Low Bias
High Variance

P
re

d
ic

ti
on

E
rr

or

Model Complexity

Training Sample

Test Sample

Low High

FIGURE 2.11. Test and training error as a function
of model complexity.

Not just a cartoon. Can use as a diagnostic.
On x axis could put
• Number of features

• (sort in some meaningful way)
• Model parameter that controls complexity

• k in k-nearest neighbour
• number of trees in boosting, random

forests
• regularization parameters

• Or perhaps you have access to more complex
models

• e.g., naive Bayes versus HMM

Learning Curves

training set size

e
rr

o
r

ra
te

test set

training set

Learning Curve Example 1

(Q: Why is error going up?)
Test error no longer decreasing
Even training error is too high
Not much difference between training and test error

e
rr

o
r

ra
te

test set

training set

target error rate

training set size

high bias

Learning Curve Example 2

Test error still decreasing
Big gap training and test error

high variance

training set size

e
rr

o
r

ra
te

test set

training set

target error rate

Optimization in the Loop
• Often learning methods work by optimizing some objective function.
• For example, recall logistic regression

!
!

• To learn the weights, we solve
!
!
!
!

• Maybe optimise this using gradient descent
• When this performs poorly, now have two questions

• Is my numerical optimization algorithm performing poorly?
• Or is objective function L not doing what I want?

• (Simple ex: spam filtering with cost-sensitive error)
• Comes up especially often during research in data science

• Often we introduce new models (== new objective function)
• Which might be harder to optimize

p(y = 1|x) = 1

1 + exp{�w

>
x}

max

w
L(w) =

NX

i=1

log p(y = y(i)|x = x

(i)
)

data points (x

(i), y(i)) for i in 1 . . . N

Optimization Example

max

w
L(w) =

NX

i=1

log p(y = y(i)|x = x

(i)
)

Example: To optimize

Simple choice is batch gradient descent:

rwL(w) =

NX

i=1

rw [log p(y = y(i)|x = x

(i)
)]

This will be slow if N is big.

Alternative: stochastic gradient descent.
Simplest version: Sample

Update using this gradient.
(this is standard in deep learning, e.g.)

i ⇠ Uniform({1, 2, . . . , N})

rw log p(y = y(i)|x = x

(i)
)Compute (single instance!)

Optimization Diagnostic
• You run a logistic regression spam filter on 100,000 training instances.

• Using batch gradient descent, you get an accuracy of 85%
• Not good enough, so you get a larger set of 100,000,000 examples

• Batch gradient is too slow, so you switch to SGD
• Now you only get 80% accuracy (!?!?)

Diagnostic: Check the batch training objective

L(w) =

100 000 000X

i=1

log p(y = y(i)|x = x

(i)
)

Compute this for final result of batch GD and SGD w⇤
GD w⇤

SGD

L(w⇤
SGD) L(w⇤

GD)If
then your SGD procedure is screwed up

(maybe try a different step size?)

w⇤
GD

w⇤
SGD

This kind of thing happens far more generally.

The Numerical Gradient Check

• Often optimization packages require you to implement functions for both
!
• (although automatic differentiation is becoming more popular)

• In that case, check whether
!
!

• Easy to have a bug in one function but not the other.
• Do this for different settings of
• MATLAB does this automatically if you ask it to…

w 7! L(w) w 7! rwL

✏�1L(w + ✏)� L(w) = rwL

w

Nested Models
• Often complicated models contain simpler models as a special case. For

logistic regression:
!

• so if w = 0, the distribution over y is be uniform. Is that what happens in your
code? If not, bug.

• Another example: a hidden Markov model and a mixture model
!
!
!
!

• Lots of ways to get diagnostics from this:
• Training error of HMM should be strictly better
• Force your HMM code to fit observation distributions only.

• Do you get the same distribution as mixture model
• Logistic regression: Numerical gradient check

• Try it first at w=0. It will be easier to debug there.

p(y = 1|x) = 1

1 + exp{�w

>
x}

p(x, z) =
Y

t

p(xt|zt)p(zt|zt�1)

if p(zt|zt�1) ignores zt�1, then all xt independent ... mixture model

Pipelines of Predictions
Practical systems use predictors at multiple points

e.g., Finding company mergers from newswire text

Debug by replacing intermediate predictions
with gold standard (human annotations)

Many steps rely on learning, will make errors
Is one step a weak link? Or are errors slowly propagating?

Split article into sentences

Add part of speech tags
Syntactic parsing

Recognize company names
Classify merger relationship

Overall Advice
• For practical work: Try quick and dirty first. Iterate quickly
• Different diagnostics

• Learning curves
• As function of size of training set
• As function of model complexity
• Additionally: number of iterations of learning algorithm

• Optimization diagnostics
• Diagnostics using model nesting
• Breaking chains of predictions

• Sometimes diagnostics require a bit of ingenuity.
• “Trust no one”

• Just because something is true in the maths doesn’t mean it is in your
code

• Imagine how you think the method is probably behaving and check
whether that happens!

• (this holds for research too!)

