Partitioning Data

Training: Running learning algorithms
Validation: Tuning parameters of learning algorithm (e.g., regularization parameters)
Test: Estimate performance on new situation

ideally only used once…
but this is never really possible
(research field overfitting!)

Cross-Validation

For parameter tuning (e.g., k in k-nearest neighbour)

First partition into training and test set
Then on training set only:
For each value of parameter, e.g., k in $\{1,2,5,10,\ldots\}$
Run K-CV to estimate performance
Train one model with best k on entire train set

Cross-Validation

Split data into K equal partitions
For each partition
Train on all other
Average performance over K folds

This way every example is used as a test example
(useful if data scarce)
Measures for Regression

Root Mean Squared Error (RMSE)

\[RMSE = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (y_i - f(x_i))^2} \]

Mean Absolute Error

\[MAE = \frac{1}{N} \sum_{i=1}^{N} |y_i - f(x_i)| \]

Test set denoted \(\{ (x_i, y_i) \mid i \in \{1, 2, \ldots N\} \} \)

Learned Regression function \(f(x_i) \)

Measures for Classification

Accuracy

\[ACC = \frac{TP + TN}{N} \]

Precision

\[P = \frac{TP}{TP + FP} \]

Recall

\[R = \frac{TP}{TP + FN} \]

TP: True positives
FP: False positives
TN: True negatives
FN: False negatives

\(TP + FP + TN + FN = N \)

Interest: Total number of test instances

Interesting Facts about P, R

- Accuracy is a simple measure and a single number. This is good.
- Precision and recall can be interesting when
 - The classes are highly skewed
 - You want to understand performance on individual classes
 - One class more important, e.g., information retrieval
 - Many classes and want to break
 - You want to understand performance as a function of how “conservative” the predictions are.
- P and R are an interesting pair because they are in conflict
 - A good principle for pairs of evaluation measures

Debugging and Diagnostics

Based on slides from Stephen Gould and Andrew Ng
What do I do now?

- You build a classifier (e.g., a spam filter using logistic regression) and the error is too high.
- What do you do to fix it? There are lots of things you could try:
 - Collect more training data.
 - Add different features (e.g., from the email header)
 - Try fewer features (e.g., exclude rare words from the classifier)
 - Try an SVM instead of logistic regression
 - Fix a bug in your stochastic gradient descent procedure
- You could do trial and error, but better is to think of diagnostics

Bias-Variance Tradeoff

Let $\theta \in \mathbb{R}$ be some quantity we estimate by a random variable $\hat{\theta}$

Example:

$$\theta = \int xp(x)dx \quad \hat{\theta} = \frac{1}{N} \sum_{i=1}^{N} x_i \quad x_1 \ldots x_N \sim p$$

Define the bias and variance

$$\text{Bias}(\hat{\theta}) = E(\theta - \hat{\theta}) = \theta - \mu$$

$$\text{Var}(\hat{\theta}) = E[(\hat{\theta} - \mu)^2]$$

where

$$\mu = \iiint \hat{\theta} p(x_1, \ldots, x_N) dx_1 \cdots dx_N$$

Both are averages across all data sets that we might have seen.

FUN to look up: Bias-variance decomposition
Useful concepts more generally. These trade off...

Bias-Variance Tradeoff

![Bias-Variance Tradeoff Diagram](image)

Bias-Variance Tradeoff

Not just a cartoon. Can use as a diagnostic.

On x axis could put:
- Number of features
 - (sort in some meaningful way)
- Model parameter that controls complexity
 - k in k-nearest neighbour
 - number of trees in boosting, random forests
 - regularization parameters
- Or perhaps you have access to more complex models
 - e.g., naive Bayes versus HMM

Figure from [Hastie, Tibshirani, and Friedman, 2009]
Learning Curves

Learning Curve Example 1

(Q: Why is error going up?)
Test error no longer decreasing
Even training error is too high
Not much difference between training and test error

Learning Curve Example 2

Test error still decreasing
Big gap training and test error

high bias

Optimization in the Loop

- Often learning methods work by optimizing some objective function.
- For example, recall logistic regression

\[
p(y=1|x) = \frac{1}{1 + \exp(-w^T x)}
\]

- To learn the weights, we solve

\[
\max_w L(w) = \sum_{i=1}^{N} \log p(y = y^{(i)}|x = x^{(i)})
\]

data points \((x^{(i)}, y^{(i)})\) for \(i\) in \(1 \ldots N\)

- Maybe optimise this using gradient descent
- When this performs poorly, now have two questions
 - Is my numerical optimization algorithm performing poorly?
 - Or is objective function \(L\) not doing what I want?
 - (Simple ex: spam filtering with cost-sensitive error)
- Comes up especially often during research in data science
 - Often we introduce new models (= new objective function)
 - Which might be harder to optimize
Optimization Example

Example: To optimize
\[
\max_w L(w) = \sum_{i=1}^{N} \log p(y = y^{(i)}|x = x^{(i)})
\]

Simple choice is batch gradient descent:
\[
\nabla_w L(w) = \sum_{i=1}^{N} \nabla_w \left[\log p(y = y^{(i)}|x = x^{(i)}) \right]
\]

This will be slow if \(N \) is big.

Alternative: stochastic gradient descent.
Simplest version: Sample \(i \sim \text{Uniform}\{1, 2, \ldots, N\} \)
Compute \(\nabla_w \log p(y = y^{(i)}|x = x^{(i)}) \) (single instance!)

Update using this gradient.
(this is standard in deep learning, e.g.)

The Numerical Gradient Check

- Often optimization packages require you to implement functions for both
 \(w \mapsto L(w) \quad \text{and} \quad w \mapsto \nabla_w L \)
- (although automatic differentiation is becoming more popular)
- In that case, check whether
 \[
 \epsilon^{-1} L(w + \epsilon) - L(w) = \nabla_w L
 \]
- Easy to have a bug in one function but not the other.
- Do this for different settings of \(w \)
- MATLAB does this automatically if you ask it to…

Optimization Diagnostic

- You run a logistic regression spam filter on 100,000 training instances. \(w^*_\text{GD} \)
 - Using batch gradient descent, you get an accuracy of 85%
- Not good enough, so you get a larger set of 100,000,000 examples \(w^*_\text{SGD} \)
 - Batch gradient is too slow, so you switch to SGD
 - Now you only get 80% accuracy (?!?)

Diagnostic: Check the batch training objective
\[
L(w) = \sum_{i=1}^{100,000,000} \log p(y = y^{(i)}|x = x^{(i)})
\]

Compute this for final result of batch GD \(w^*_\text{GD} \) and SGD \(w^*_\text{SGD} \)
if \(L(w^*_\text{SGD}) \leq L(w^*_\text{GD}) \)
then your SGD procedure is screwed up
(maybe try a different step size?)

This kind of thing happens far more generally.

Nested Models

- Often complicated models contain simpler models as a special case. For logistic regression:
 \[
p(y = 1|x) = \frac{1}{1 + \exp\{-w^T x\}}
 \]
- so if \(w = 0 \), the distribution over \(y \) is be uniform. Is that what happens in your code? If not, bug.
- Another example: a hidden Markov model and a mixture model
 \[
p(x, z) = \prod_t \left[p(x_t|z_t)p(z_t|z_{t-1}) \right]
 \]
 if \(p(z_t|z_{t-1}) \) ignores \(z_{t-1} \), then all \(x_t \) independent ... mixture model
- Lots of ways to get diagnostics from this:
 - Training error of HMM should be strictly better
 - Force your HMM code to fit observation distributions only.
 - Do you get the same distribution as mixture model
 - Logistic regression: Numerical gradient check
 - Try it first at \(w=0 \). It will be easier to debug there.
Pipelines of Predictions

Practical systems use predictors at multiple points
e.g., Finding company mergers from newswire text

Split article into sentences
Add part of speech tags
Syntactic parsing
Recognize company names
Classify merger relationship

Many steps rely on learning, will make errors
Is one step a weak link? Or are errors slowly propagating?

Debug by replacing intermediate predictions
with gold standard (human annotations)

Overall Advice

• For practical work: Try quick and dirty first. Iterate quickly
• Different diagnostics
 • Learning curves
 • As function of size of training set
 • As function of model complexity
 • Addition of number of iterations learning algorithm
 • Optimization diagnostics
 • Diagnostics using model nesting
 • Breaking chains of predictions
• Sometimes diagnostics require a bit of ingenuity.
• “Trust no one”
 • Just because something is true in the maths doesn’t mean it in your code
 • Imagine how you think the method is probably behaving and check whether that happens!
• (this holds for research too!)