Optimization under Uncertainty: Large Scale & Parallelisation

Andreas Grothey

School of Mathematics, University of Edinburgh

CDT Guest Lecture, October 2014

Research Interests

- Optimization under Uncertainty: Stochastic Programming
- Interior Point Methods
- Exploitation of Problem Structure
- High Performance Computing & Parallelisation
- Applications: Energy, Finance, Telecommunications

Example Problem: Asset and Liability Management (ALM)

Consider the following **multiperiod Financial Planning Problem** (e.g. for Pension Funds):

- A set of assets $\mathcal{J} = \{1, ..., J\}$ in which we can invest is given.
- At various points in time t = 0, ..., T we can rebalance our portfolio (revise investment decisions). This will incur transaction costs.
- An asset j held between time periods t and t + 1 will incur a return $r_{j,t}$. $[x_j \rightarrow (1 + r_{j,t})x_j]$
- At time period t we need to make a payment l_t and receive contributions c_t.
- We are given an initial amount b to invest.
- The objective is to maximize "financial health" of the fund.

ALM: Mathematical Model

Variables:

- $x_{i,t}^{h}$ money invested in asset j at time t.
- $x_{i,t}^{b}$ amount of asset *j* bought at time *t*.
- $x_{i,t}^{s}$ amount of asset j sold at time t.

Constraints:

- Cash Balance (selling and buying must balance at every time stage)
- Inventory

(Keep stock of assets we have from one period to the next)

Objective:

Maximize final wealth

Scenario Tree

Asset returns are random: Capture evolution by scenario tree:

In year 1, assets A and B have two possible returns: (-6%, -4%) and (+12%, +8%) with probabilities 0.2 and 0.8, respectively. In year 2, these returns are (-8%, -6%) and (+12%, +10%) with probabilities 0.4 and 0.6, respectively.

Multistage Stochastic Programming

 \Rightarrow **nested** column bordered block-diagonal constraint matrix Symmetrical event tree with *K* realizations/node and *T* periods corresponds to

$$K^{T-1}$$
 scenarios $\frac{K^T - 1}{K - 1}$ nodes (blocks)

Realistic applications can have huge scenario trees!

(Multistage) Stochastic Programming has many applications

- Portfolio Optimization ("Asset and Liability Management", various risk measures)
- Robust Network Design with Uncertain Demand ("Security constrained optimal power flow" - Pan-European network has 20000 lines)
- Electricity Generation Planning (involving hydro or wind) ("Stochastic Unit Commitment")
- Cost-optimal routing in telecommunications with uncertain demand

("Top-percentile pricing")

Andreas Grothey IPM, Nonlinear Models & Parallelisation

Security Contrained Optimal Power Flow

- "n-1"- (or even "n-2"-security) requires the inclusion of many contingency scenarios.
- Pan-European system has 13000 nodes and 20000 lines
- \Rightarrow Resulting SCOPF model would have $\approx 10^{10}$ variables.
 - Only a few contingencies are critical for operation of the system (but which ones)?

Stochastic Unit Commitment with Wind Integration

Source: Udo, Wind energy in the Irish power system, 2011

Issues

- How to plan power systems operations to deal with wind uncertainty?
- Network constraints
- Decomposition based solution methods

Ken McKinnon, Andreas Grothey, Tim Schulze

OOPS: Object Oriented Parallel Solver

OOPS

- OOPS is an IPM implementation, that can exploit (nested) block structures through object oriented linear algebra
- Solved (multistage) stochastic programming problems from portfolio management with over 10⁹ variables (≈ 2h on 1280 processors)

Linear Algebra of IPMs

Main work: solve

$$\underbrace{\begin{bmatrix} -Q - \Theta & A^{\top} \\ A & 0 \end{bmatrix}}_{\Phi} \begin{bmatrix} \Delta x \\ \Delta y \end{bmatrix} = \begin{bmatrix} r \\ h \end{bmatrix}$$

for several right-hand-sides at each iteration

Two stage solution procedure

- factorize $\Phi = LDL^{\top}$
- backsolve(s) to compute direction $(\Delta x, \Delta y)$ + corrections

 $\Rightarrow \Phi$ changes numerically but not structurally at each iteration

Key to efficient implementation is exploiting structure of Φ in these two steps

ALM: Structure of matrices A and Q:

Structures of A and Q imply structure of Φ :

Structures of A and Q imply structure of Φ :

Nested bordered block-diagonal structure in Augmented System!

Exploiting Structure: Bordered block-diagonal matrix

Cholesky-like factors can be obtained by Schur-complement:

$$\Phi_{i} = L_{i}D_{i}L_{i}^{\top} \qquad L_{i,0} = B_{i}L_{i}^{-\top}D_{i}^{-1}, \quad i = 1, \dots n$$

$$C = \Phi_{0} - \sum_{i=1}^{n}L_{i,0}D_{i}L_{i,0}^{\top} \qquad C = L_{c}D_{c}L_{c}^{\top}$$

• And the system $\Phi x = b$ can be solved by

$$\begin{array}{rcl} z_i &=& L_i^{-1}b_i \\ z_0 &=& L_c^{-1}(b_0 - \sum L_{i,0}z_i) \\ y_i &=& D_i^{-1}z_i \end{array} \qquad \qquad \begin{array}{rcl} x_0 &=& L_c^{-\top}y_0 \\ x_i &=& L_i^{-\top}(y_i - L_{i,0}^{\top}x_0) \end{array}$$

• Storage:

High Performance Computing

BlueGene/L (Edinburgh, Scotland)

- 2048 Processors
- 0.7GHz, 256Mb
- $R_{max} = 4.7$ TFlops

HPCx (Daresbury, England)

- 1600 IBM Power-4 Processors
- 1.7GHz, 800Mb
- *R_{max}* = 6.2 TFlops

Results

Problem	Stgs	Blk	J	Scenarios	Constraints	Variables	iter	time	procs	machine
ALM1	5	10	5	11.111	66.667	166.666	14	86	1 9	SunFire 15K
ALM2	6	10	5	111.111	666.667	1.666.666	22	387	5	"
ALM3	6	10	10	111.111	1.222.222	3.333.331	29	1638	5	"
ALM4	5	24	5	346.201	2.077.207	5.193.016	33	856	8	"
UNS1	5	35	5	360.152	2.160.919	5.402.296	27	872	8	"
ALM5	4	64	12	266.305	3.461.966	9.586.981	18	1195	8	"
ALM6	4	120	5	1.742.521	10.455.127	26.137.816	18	1470	16	"
ALM7	4	120	10	1.742.521	19.167.732	52.275.631	19	8465	16	"
ALM8	7	128	6	12.831.873	64.159.366	153.982.477	42	3923	512	BlueGene
ALM9	7	64	14	6.415.937	96.239.056	269.469.355	39	4692	512	BlueGene
ALM10	7	128	13	12.831.873	179.646.223	500.443.048	45	6089	1024	BlueGene
ALM11	7	128	21	16.039.809	352.875.799	1.010.507.968	53	3020	1280	HPCx

(Multilevel) Scenario Tree Approximations

- Approximate large problem on reduced tree
- Can we to successive approximations
- Very successfully done for problems in physical space (multigrid), can this be done for probability space?

Asynchronous computation

Synchronous Parallel Computation

- Global operations result in parallelisation barriers
- Especially pronounced for massive parallelism (> 1000 procs)

Asynchronous computation

Synchronous Parallel Computation

- Global operations result in parallelisation barriers
- Especially pronounced for massive parallelism (> 1000 procs)

