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Overview

Research Interests

Optimization under Uncertainty: Stochastic Programming

Interior Point Methods

Exploitation of Problem Structure

High Performance Computing & Parallelisation

Applications: Energy, Finance, Telecommunications
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Example Problem: Asset and Liability Management (ALM)

Consider the following multiperiod Financial Planning Problem
(e.g. for Pension Funds):

A set of assets J = {1, ..., J} in which we can invest is given.

At various points in time t = 0, ...,T we can rebalance our
portfolio (revise investment decisions). This will incur
transaction costs.

An asset j held between time periods t and t + 1 will incur a
return rj ,t . [xj → (1 + rj ,t)xj ]

At time period t we need to make a payment lt and receive
contributions ct .

We are given an initial amount b to invest.

The objective is to maximize “financial health” of the fund.
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ALM: Mathematical Model

Variables:

xh
j ,t money invested in asset j at time t.

xb
j ,t amount of asset j bought at time t.

xs
j ,t amount of asset j sold at time t.

Constraints:

Cash Balance
(selling and buying must balance at every time stage)

Inventory
(Keep stock of assets we have from one period to the next)

Objective:

Maximize final wealth
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Scenario Tree

Asset returns are random: Capture evolution by scenario tree:
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In year 1, assets A and B have two possible returns: (-6%,-4%) and
(+12%,+8%) with probabilities 0.2 and 0.8, respectively.

In year 2, these returns are (-8%,-6%) and (+12%,+10%) with

probabilities 0.4 and 0.6, respectively.
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Multistage Stochastic Programming
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Scenario 1

Scenario 2

Scenario 3

Scenario 4

4

5

7

6

Scenario Tree Constraint Matrix

⇒ nested column bordered block-diagonal constraint matrix
Symmetrical event tree with K realizations/node and T periods
corresponds to

KT−1 scenarios
KT − 1

K − 1
nodes (blocks)

Realistic applications can have huge scenario trees!
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Applications

(Multistage) Stochastic Programming has many applications

Portfolio Optimization
(“Asset and Liability Management”, various risk measures)

Robust Network Design with Uncertain Demand
(“Security constrained optimal power flow” - Pan-European
network has 20000 lines)

Electricity Generation Planning (involving hydro or wind)
(“Stochastic Unit Commitment”)

Cost-optimal routing in telecommunications with uncertain
demand
(“Top-percentile pricing”)

Andreas Grothey IPM, Nonlinear Models & Parallelisation



Andreas Grothey IPM, Nonlinear Models & Parallelisation



Security Contrained Optimal Power Flow

“n-1”- (or even “n-2”-security) requires the inclusion of many
contingency scenarios.

Pan-European system has 13000 nodes and 20000 lines

⇒ Resulting SCOPF model would have ≈ 1010 variables.

Only a few contingencies are critical for operation of the
system (but which ones)?
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Stochastic Unit Commitment with Wind Integration

Source: Udo,Wind energy in the Irish power system, 2011

Issues

How to plan power systems operations to deal with wind
uncertainty?

Network constraints

Decomposition based solution methods

Ken McKinnon, Andreas Grothey, Tim Schulze
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OOPS: Object Oriented Parallel Solver

OOPS

OOPS is an IPM implementation, that can exploit (nested)
block structures through object oriented linear algebra

Solved (multistage) stochastic programming problems from
portfolio management with over 109 variables
(≈ 2h on 1280 processors)
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Linear Algebra of IPMs

Main work: solve
[
−Q − Θ A⊤

A 0

]

︸ ︷︷ ︸

Φ

[
∆x
∆y

]

=

[
r
h

]

for several right-hand-sides at each iteration

Two stage solution procedure

factorize Φ = LDL⊤

backsolve(s) to compute direction (∆x ,∆y) + corrections

⇒ Φ changes numerically but not structurally at each iteration

Key to efficient implementation is exploiting structure of Φ in
these two steps
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ALM: Structure of matrices A and Q:

Matrix A Matrix Q
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Structures of A and Q imply structure of Φ:
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Structures of A and Q imply structure of Φ:
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Nested bordered block-diagonal structure in Augmented System!
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Exploiting Structure: Bordered block-diagonal matrix
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Cholesky-like factors can be obtained by Schur-complement:

Φi = LiDiL
⊤

i Li ,0 = BiL
−⊤

i D−1
i , i = 1, . . .n

C = Φ0 −
∑n

i=1 Li ,0DiL
⊤

i ,0 C = LcDcL
⊤
c

And the system Φx = b can be solved by

zi = L−1
i bi

z0 = L−1
c (b0 −

∑

Li ,0zi)

yi = D−1
i zi

x0 = L−⊤

c y0

xi = L−⊤

i (yi − L⊤

i ,0x0)
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Parallelisation

• Distribution of computations:

Factorize
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proc n

proc 1

proc 1

Solve

x = L  (y − B L  D x )

nnn
−1

y = D  z1

z = L  b

1
−1

y = D  z−T
nn
−1

1

n n

1

L D L

n

n n n n
−T −1 T

C
 =

  
  

 −
  

  
C

Σ
i

0
Φ

i

Φ = L D L

z = L  b

n n

−
T

n n nl = B L  D z

−T
11111l = B L  D z−1

C = B L  D L  B

0
0

0x 
=

 L
  

y1

n

1

n

Φ = 

0
0

0−
1

T

1
−T

x = L  (y − B L  D x )n n n
−T

−T

−T

1 1 1
T

1 C = B L  D L  B1 1 1
−T

1 1 1
T−1

Σ i
i

l =
 b

 −
  

 l
0

1 1 1 011

0nnn

n C
 =

 L
 D

 L
0

T 0
0

y 
=

 D
  

z

−
1

0
0

n

z 
=

 L
  

l

• Storage:

Φ

Φ

0

n

1

n

n

T

T
1 x

y y y

x

x0

0

n

n

1

1

all processors

processor n

processor 1Φ

1B B

B

B

Communications

On all processors
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High Performance Computing

BlueGene/L (Edinburgh, Scotland)

2048 Processors

0.7GHz, 256Mb

Rmax = 4.7 TFlops

HPCx (Daresbury, England)

1600 IBM Power-4
Processors

1.7GHz, 800Mb

Rmax = 6.2 TFlops
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Results

Problem Stgs Blk |J| Scenarios Constraints Variables iter time procs machine

ALM1 5 10 5 11.111 66.667 166.666 14 86 1 SunFire 15K

ALM2 6 10 5 111.111 666.667 1.666.666 22 387 5 “

ALM3 6 10 10 111.111 1.222.222 3.333.331 29 1638 5 “

ALM4 5 24 5 346.201 2.077.207 5.193.016 33 856 8 “

UNS1 5 35 5 360.152 2.160.919 5.402.296 27 872 8 “

ALM5 4 64 12 266.305 3.461.966 9.586.981 18 1195 8 “

ALM6 4 120 5 1.742.521 10.455.127 26.137.816 18 1470 16 “

ALM7 4 120 10 1.742.521 19.167.732 52.275.631 19 8465 16 “

ALM8 7 128 6 12.831.873 64.159.366 153.982.477 42 3923 512 BlueGene

ALM9 7 64 14 6.415.937 96.239.056 269.469.355 39 4692 512 BlueGene

ALM10 7 128 13 12.831.873 179.646.223 500.443.048 45 6089 1024 BlueGene

ALM11 7 128 21 16.039.809 352.875.799 1.010.507.968 53 3020 1280 HPCx
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(Multilevel) Scenario Tree Approximations
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Approximate large problem on reduced tree

Can we to successive approximations

Very successfully done for problems in physical space
(multigrid), can this be done for probability space?
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Asynchronous computation

Synchronous Parallel Computation

Global operations result in parallelisation barriers

Especially pronounced for massive parallelism (> 1000 procs)
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Asynchronous computation

Synchronous Parallel Computation

Global operations result in parallelisation barriers

Especially pronounced for massive parallelism (> 1000 procs)

Asynchronous Parallel Computation

How to organise communications?

Does this still converge?
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