
Informatics 2D. Tutorial 10
Decision Networks

Week 11

Decision Network
James needs to buy a flat. He has three options: a, b or c. As he
plans to resell the house in a few years, he is interested in an increase
of the flat’s value higher than inflation. Depending on the place he
chooses, there is some probability of public works in the area, that
will increase the value of the property. He also needs to go to work:
therefore he is interested in the distance to the bus stop on the route
that brings him to work.

As described in R&N, decision networks combine belief networks with additional
node types for actions and utilities. The network in Figure 1 shows the decision
network for the house purchase problem. It contains three types of nodes:

Chance nodes (Ovals) that represent random variables, just as they do in
belief nets. In this example, the agent may be uncertain about the increase
of the flat’s value and about the distance to the bus stop, as they both
depend on which flat is chosen. He is also uncertain about the works in the
area, as they depend both on the site of the chosen flat and on a decision
by the city council.

Decision nodes (Rectangular) that represent points where the decision-maker
has a choice of action. In this case the node Flat can take the values a, b
or c.

Utility nodes (Diamonds) represent the agent’s utility function. The utility
node has as parents all those variables describing the outcome state that
directly affect utility. The table associated with the a utility node is thus
a tabulation of the agent’s utility as a function of the attributes that
determine it.

Actions are selected by evaluating the decision network for each possible setting
of the decision node. Once the decision node is set, it behaves exactly like a
chance node that has been set as an evidence variable.

1

Flat (F)

Bus Service (BS)

Area Works (AW)

Value Increase (VI)

U

Figure 1: Decision Network

1. Given the conditional probabilities in table 1, compute the utilities for
flats a, b and c and then identify the flat with the highest utility.

F = 〈a, b, c〉

F P (AW)
a 0.4
b 0.2
c 0.4

F P (BS)

a 0.1
b 0.3
c 0.6

F AW P (V I)

a T 0.6
a F 0.1
b T 0.2
b F 0.1
c T 0.7
c F 0.2

BS VI U
T T 0.9
T F 0.3
F T 0.5
F F 0.1

Table 1: Conditional probabilities and utility function

Complex Decisions
As in R&N, sections 17.1-17.3.

2

0.7

0.3

s
1

s
2

s
3

s
4

+1

−1

2

1

1 2

−0.1

−0.1

Figure 2: 2× 2 environment that presents the agent with a sequential decision
problem

Decision networks are used for one-shot, episodic decision problems in which
the utility of each action outcome is well known. When the agent’s utility
depends on a sequence of decisions, another approach is needed. The problem
arises when the environment is non deterministic: actions are unreliable.

In the environment in Figure 2 each action achieves the intended effect with
probability 0.7, while the rest of the times the agent moves to the right. If the
agent bumps into a wall, it stays in the same cell. For example, if the agent is
in cell s1 and wants to go to cell s3, it will succeeds with a 70% of probability.
With 30% of probability, it will end up in cell s2. If the agent is in cell s3, and
wants to go back to cell s1, it will succeed with 70% of probability, and it will
remain in the same cell with 30% of probability (as he bumps against the wall).

Transition model

A specification of the outcome probabilities for each action in each possible
state is called a transition model : T (s, a, s′) denotes the probability of reaching
state s′ if action a is done in state s. Transitions are Markovian: probability of
reaching s′ from s depends only on s and not on the history of earlier states.

Reward

In each state s the agent receives a reward R(s), which may be positive or
negative. For the environment in figure, the reward is -0.1 for cells s1 and s3,
-1 for s2 and +1 for s4.

Utility of states

Because the decision problem is sequential, the utility function will depend on a
sequence of states rather than on a single state. The utility of an environment
history is the (discounted) sum of the rewards received.

The rewards can be additive:
Uh ([s0, s1, s2, . . .]) = R(so) +R(s1) +R(s2) + . . .
or discounted :
Uh ([s0, s1, s2, . . .]) = R(so) + γR(s1) + γ2R(s2) + . . .
where the discount factor γ is in [0,1]

3

Markov Decision Process

The specification of a sequential decision problem for a fully observable envir-
onment with a Markovian transition model and additive reward is called the
Markov Decision Process. The solution of a MDP cannot be a fixed sequence
of actions, as the agent might end up in a state that is other than the goal.
A solution must specify what the agent should do for any state that the agent
might reach. A solution of this kind is called policy.

The quality of a policy π is measured by the expected utility of the possible
environment histories generated by the policy. An optimal policy π∗ is a policy
that yields the highest expected utility.

Value iteration
Value iteration is an algorithm for calculating an optimal policy. The basic idea
is to calculate the utility of each state and then use the state utilities to select
an optimal action in each state.

The utility of states is defined in terms of the utility of states sequences: the
utility function U(s) allows the agent to select actions by using the Maximum
Expected Utility:

π∗(s) = argmaxa
∑

s′ T (s, a, s
′)U(s′)

If the utility of a state is the expected sum of discounted rewards from that
point onwards, there is a direct relationship between the utility of a state and
the utility of its neighbours, the utility of a state is the immediate rewards for
that state plus the expected discounted utility of the next state, assuming that
the agent chooses the optimal action.

The utility, expressed by the Bellman equation, is:
U(s) = R (s) + γmax

∑
s′ T (s, a, s′)U (s′)

where T (s, a, s′) is the transition model from s to s′, γ is the discount factor
for the reward and U (s′) is the utility of state s′.

The utilities of states, defined as the expected utility of subsequent state
sequences, are solutions of the set of Bellman equations.

Bellman update

The Bellman equation is the basis of the value iteration algorithm for solving
MDPs. If there are n possible states, then there are n Bellman equations, one
for each state. The n equations contains n unknowns (the utilities of the states).

The equations are non linear, as they contain the max operator. One ap-
proach to solve non linear equations is to use an iterative method. We start
with arbitrary initial values for the utilities, calculate the right-hand side of the
equation, and plug it on the left-hand side, updating the utility of each state
from the utilities of each neighbours. We repeat until we reach an equilibrium.
The Bellman update has the form:

Ui+1(s)← R(s) + γmaxa
∑

s′ T (s, a, s
′)Ui(s

′)

4

Algorithm 1 Value Iteration
function Value-Iteration(mdp ,ε) returns a utility function
inputs: mdp , a Markov Decision Process defined by 〈S, T,R, γ〉

ε the maximum error allowed in the utility
local variables: U, U ′ vector of utilities for states in S

δ, the maximum change in the utility
of any state in an iteration

repeat
U ← U’; δ←0
for each state s in S do:

U’[s]←R[s]+γmaxa

∑
s′ T (s, a, s

′)U [s′]
if |U ′[s]− U [s]| > δ then δ ← |U ′[s]− U [s]|

until δ < ε(1− γ)/γ
return U

The applet at the url http://www.cs.ubc.ca/~poole/demos/mdp/vi.html
(under the link for value iteration) allows you to play with the discount factor
on a 10x10 grid: setting the factor close to 1, you will need a greater number of
iterations for the values to stabilise.

The number of iterations needed to reach an error of at most ε is given by:

N =


log

(
2Rmax

ε(1− γ)

)
log(1/γ)


2. Discuss the formula and the graph in figure 4: discuss how the value of N

changes depending on the different factors.

3. Use the formula to compute the number of iterations N needed to obtain
a maximum error ε of 0.01, given a Rmax of 0.45 andγ of 0.1.

4. The first iteration of the algorithm value Iteration in the grid world in
Figure 2 using a discount γ of 0.1 is given in Figure 3. Using the results
obtained from the first iteration, compute the utility for s1 in the second
iteration.

5

According to the transition model T (s, a, s′), the intended outcome of an action
occurs with probability 0.7, while with probability 0.3 the agents slips right.
U is the utility vector. Initially U0 = 〈0, 0, 0, 0〉
δ = 0

U1(s1) = R(s1) + γmaxa


0.7U0(s3) + 0.3U0(s2), (up)
0.7U0(s2) + 0.3U0(s1), (right)

1.0U0(s1), (down)
0.7U0(s1) + 0.3U0(s3) (left)


= −0.1 + 0.1maxa


0 (up)
0 (right)
0 (down)
0 (left)

 = −0.1 (any pick)

U1(s2) = R(s2) + γmaxa


0.7U0(s4) + 0.3U0(s2), (up)

1.0U0(s2), (right)
0.7U0(s3) + 0.3U0(s1), (down)
0.7U0(s1) + 0.3U0(s4) (left)


= −1 + 0.1maxa


0 + 0, (up)
0, (right)

0 + 0, (down)
0 + 0 (left)

 = −1 (any pick)

U1(s3) = R(s3) + γmaxa


0.7U0(s3) + 0.3U0(s4), (up)
0.7U0(s4) + 0.3U0(s1), (right)
0.7U0(s1) + 0.3U0(s3), (down)

1.0 ∗ U0(s3) (left)


= −0.1 + 0.1maxa


0 + 0, (up)
0 + 0, (right)
0 + 0, (down)

0 (left)

 = −0.1 (any pick)

U1(s4) = R(s4) + γmaxa


1.0U0(s4), (up)

0.7U0(s4) + 0.3U0(s2), (right)
0.7U0(s2) + 0.3U0(s3), (down)
0.7U0(s3) + 0.3U0(s4) (left)


= +1 + 0.1maxa


0 (up)

0 + 0 (right)
0 + 0 (down)
0 + 0 (left)

 = 1 (any pick)

Figure 3: Step 1 of Value iteration

6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

10

20

30

40

50

60

70

80

90

100

Figure 4: Number of iterations required for convergence for ε/Rmax= 0.1, 0.01,
0.001 depending on γ. (based on Fig 17.8 from R&N)

7

