Inf2D - Coursework 2 Situation Calculus and Planning

Mihai Dobre M.S.Dobre@sms.ed.ac.uk

March 4, 2016

Outline

- ► Golog and Prolog
- ▶ Parking Agent

Golog

- Language based on Situation Calculus.
 - Situations
 - Actions
 - Predicates (atemporal, fluent)
 - Axioms (descriptive, precondition, successor state)
- How to automatize inference in this language?
 - We have Prolog
- Golog interpreter is written in Prolog

Prolog

- Declarative language (relations)
 - Knowledge base (facts and rules)
 - Queries (can you prove/satisfy this?)
- User can provide a KB and ask a query.
- Prolog uses resolution (backward chaining) over KB to answer.

The Syntax of Prolog

- Predicates & constants start with lower-case.
- Variables start with upper-case.
- A Term is a constant, variable or composite from other terms.
- No quantifiers
 - variables in KB are implicitly universal
 - queries ask for satisfaction (existential-like)

,	conjunction
,	disjunction
:-	if (rev implication)
	end of sentence
=	unification
_	anonymous variable

Example of Prolog syntax

```
KB:
```

```
horse(bluebeard).
offspring(charlie, bluebeard).
horse(H) :- offspring(H,X), horse(X).
```

Queries:

```
horse(charlie).
horse(X).
lion(X).
```

":-" is only used in rules. Rules cannot be queries.

Prolog Demo

- Create a KB file, e.g., demo.pl
- ▶ Load the file in Prolog with command [demo].
- Useful predicates:
 - ▶ listing/0 : list all facts in KB
 - assert/1 : save a fact into KB
 - retract/1 : remove a fact from KB
 - halt/0 : exit Prolog

Numbers in Prolog

- Numbers are constants.
- Some arithmetic operators:

$$+ - / * > < > = < = is = :=$$

KB:

```
price(book,10).
price(coffee,3).
canBuy(Money,Item) :-
  price(X,P), Money>=P, Item=X.
```

Queries:

```
canBuy(2,Item).
canBuy(6,Item).
canBuy(12,Item).
```

Numbers in Prolog

Create alternative definition of numbers:

Use a predicate "s" that stands for successor!

Rule:

```
can(A,X) :- A = move, X = s(s(_));

A = jump, X = s(s(s(_))).
```

Queries:

```
can(jump, s(s(s(s(0))))).
can(move, s(0)).
can(X, s(s(s(s(0))))).
```

Parking Agent

Coursework 2

You are asked to:

- 1. Formalise the problem in the Situation Calculus
- 2. Implement in Golog

Problem Description

The grounds:

A: agent

A can move and drive cars between connected areas.

A can also park or deliver cars.

Part 1: Formalise

The environment:

- which locations are connected?
- where is A and Car?
- what is the state of the Car?

The actions:

- what can A do?
- when can it do it? (preconditions)
- how do actions change the environment? (effects)

Part 1: Formalise

Please:

- be as compact as possible (remove unused predicates or fluents)
- use Russell & Norvig notations
 - Constants and predicates begin with a capital letter
 - Variables begin with a lower-case letter
 - ▶ and, or, not, =>, <=>

Part 2 & 3: Implement and extend

Part 2:

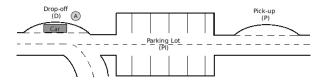
- Translate Part 1 into the syntax of Golog.
- ► Test on some initial states & goals.

Part 3:

- Add more predicates
- ▶ Change your axioms to suit the new predicates.
- ► Test.

Tips

Being concise will help you:


- Remove unused predicates
- Remove arguments in predicates that don't need them.

Balance abstraction:

- Don't add a new predicate for every action (e.g., moveAfromDtoPl).
- ▶ Don't use same predicates for things that are essentially different.

Tips

Test on simple tasks, specially when debugging.

Tips

Start with:

- The first two chapters of "Learn Prolog Now!" by Patrick Blackburn, Johan Bos, and Kristina Striegnitz (online version);
- Play with the block example;
- Start with the simple tasks and build up.

Assignment package

- ▶ 8 files
- A Golog-based planner only available on DICE machines
- Domain and problem template files
- All text should go in answer.txt
- Blocks world example.

Submission Package

All original files

- Part 1 answers should be in answer.txt
- ▶ Part 2
 - a domain file: domain-task21.pl
 - problem instances: instance-task22.pl, instance-task23.pl, instance-task24.pl
- Part 3
 - domain-task31.pl, instance-task31.pl
 - domain-task32.pl, instance-task32.pl
 - domain-task33.pl, instance-task33a.pl and instance-task33b.pl

To conclude

Worth 12.5% of the final mark

Deadline:

- 4pm on Monday 21st March
- Electronic submission through submit software (available on any DICE machine)