
Coursework 1

Propositional Model Checking and
Satisfiability

Informatics 2D

Kobby K.A. Nuamah
k.nuamah@ed.ac.uk

28 January 2016

1

Aim

• Understand inference and satisfiability
problems in Propositional Logic

• Familiarize yourself with some
algorithms for solving inference/SAT
problems

• Implement satisfiability algorithms
using Haskell

Informatics 2D 2

Getting started

• Download coursework file :
http://www.inf.ed.ac.uk/teaching/courses/inf2d/course
work/Inf2dAssignment1.tar.gz

• Extract content using
tar -xvf Inf2dAssignment1.tar.gz

• Your algorithm implementations and auxiliary functions
go into the file:

Inf2d.hs
• Remember to type in your matriculation number at the

top of file.

Informatics 2D 3

http://www.inf.ed.ac.uk/teaching/courses/inf2d/coursework/Inf2dAssignment1.tar.gz

Coursework Overview

• You will implement two main algorithms for solving
satisfiability problems in Propositional Logic:
• Model Checking (Truth-Table Enumeration and Entailment)

• DPLL

• Your algorithms and several of their key functions will
be implemented and tested in a Haskell.

• Inf2d.hs file has the type declarations for each
algorithm that has to be implemented. These
declarations will inform you about the arguments of
the function and the expected output. Do not change
the type declarations.

Informatics 2D 4

Objectives & Grading

• This assignment has 5 core tasks, which will be
graded as follows
• Task 1: Convert to CNF (Representation) [2 marks]

• Task 2: General Helper Functions [10 marks]

• Task 3: Truth-Table Enumeration and Entailment [40
marks]

• Task 4: DPLL [43 marks]

• Task 5: Evaluation [5 marks]

Informatics 2D 5

Testing Your Implementation

• Launch GHCi (or WinGHCi) and run the following
commands (where > is the prompt in GHCi):

> :cd <path to your project dir>

> :load “Main.hs”

• This compiles all dependent modules of the program.

• Run the application by using the command

> main

6

Representation

• Logical sentences in this coursework will be
represented in Conjunctive Normal Form (CNF).

• A sentence is expressed as a conjunction of clauses.

• A clause is expressed as a disjunction of literals.

• A symbol is represented as a String in Haskell.

• Clauses are represented by a list of symbols.

• Conjunctions are represented as a list of clauses.

• A model (assignments to symbols) is represented as
a list of tuples of Strings and Booleans.

Informatics 2D 7

Representation (Examples)

• Symbol P is expressed as “P” in Haskell.

• ¬𝑃 is expressed as “-P”

• The clause 𝑃 ∨ 𝑄 is represented by [“P”,“Q”]

• 𝐴 ∨ ¬𝐵 ∨ 𝐶 is represented in Haskell as [“A”,“-B”,“C”]

• 𝑃 ∨ 𝑄 ∧ (¬𝑃 ∨ 𝑅) becomes [[“P”,“Q”],[“-P”,“R”]]

• Consider a domain with symbols A, B and C, and model
of the world where A is True, B is False and C is True.
This model is expressed as:
[(“A”,True),(“B”,False),(“C”,True)]

Informatics 2D 8

Task 1 : Convert to CNF

• In this task, you will convert the propositional fact
(sentence) below from the Wumpus world into
CNF and express this in Haskell.

𝐵1,1 ⇔ (𝑃1,1 ∨ 𝑃2,2 ∨ 𝐵3,1)

• The sentence in CNF should be assigned to the
variable:

wumpusFact :: Sentence

• The symbol 𝐵1,1 should be expressed as “B11” in Haskell.

Informatics 2D 9

Task 2: General Helper Functions

• Functions defined in this task will be useful in the
remaining tasks.
• lookupAssignment :: Symbol -> Model -> Maybe Bool

• negateSymbol :: Symbol -> Symbol

• isNegated :: Symbol -> Bool

• getUnsignedSymbol :: Symbol -> Symbol

• getSymbols :: [Sentence] -> [Symbol]

Informatics 2D 10

Task 3: Truth-Table Enumeration & Entailment

• Impementation of the truth-table enumeration
algorithm for deciding propositional entailment.

Informatics 2D 11

Task 3 (continued)

Functions to be implemented:

• generateModels :: [Symbol] -> [Model]

• pLogicEvaluate :: Sentence -> Model -> Bool

• plTrue :: [Sentence] -> Model -> Bool

• ttCheckAll :: [Sentence] -> Sentence -> [Symbols] -> [Model]

• ttEntails :: [Sentence] -> Sentence -> Bool

• ttEntailsModels :: [Sentence] -> Sentence -> [Model]

Informatics 2D 12

Task 4: DPLL

• DPLL is expected to be more efficient than truth-table
enumeration for checking satisfiability. The DPLL algorithm
is shown below.

Informatics 2D 13

Task 4: DPLL (continued)

• The efficiency of the DPLL is as a result of three key
heuristics: early termination, pure symbol and unit clause
heuristics. (See R&N Ch.7).

• This tasks implements the DPLL algorithm with the heuristic
functions. These are:
• earlyTerminate :: Sentence -> Model -> Bool

• findPureSymbol :: [Symbol] -> [Clause] -> Model -> Maybe
(Symbol, Bool)

• findUnitClause :: [Clause] -> Model -> Maybe (Symbol, Bool)

• dpll :: [Clause] -> [Symbol] -> Bool

• dpllSatisfiable :: [Clause] -> Bool

Informatics 2D 14

Task 5: Evaluation

• This task focuses on checking the efficiency of DPLL
over Truth-Table enumeration for checking satisfiability
of propositional sentences.

• To do this, you must create your own set of facts
(propositional sentences) and assign to the variable

evalKB::[Sentence]

• You will also define a query to be checked for
entailment based on your facts. This sentence should
be assigned to the variable

evalQuery::Sentence

• All sentences are expected to be in CNF.

Informatics 2D 15

Task 5: Evaluation (continued)

• To evaluate your algorithms, run both TT-Entails
and DPLL algorithms using the facts in evalKB and
the query in evalQuery.

• Do this a number of times and find the average run
time in milliseconds for each algorithm.

• Assign the average run time values to

runtimeTtentails::Double

runtimeDpll::Double

Informatics 2D 16

Notes:

• Read the assignment sheet carefully before starting.

• Code clarity is important. Comment you code
adequately.

• Reuse functions as much as possible.

• You can add your own helper functions, but you should
explain why they are necessary in your comments.

• Test code and make sure they run before submitting.

• Deadline:

3rd March 2016

@ 4pm

Informatics 2D 17

Haskell Refresher
Informatics 2D

Kobby. K.A. Nuamah

Informatics 2D 18

Haskell

• Purely functional! : “Everything is a function”

• Main topics:
• Recursion
• Currying
• Higher-order functions
• List processing functions such as map, filter, foldl, sortBy, etc
• The Maybe monad

• More on Haskell:
http://www.haskell.org/haskellwiki/Haskell

Informatics 2D 19

Types

• Unlike other programming languages like Java, Haskell
has type inference.

• However, type declarations ensures that you are
specific about the input arguments of your function
and the output values.

• Example:

pLogicEvaluate :: Sentence -> Model -> Bool

• The pLogicEvaluate function takes arguments of
type Sentence and Model and returns a Bool type.

Informatics 2D 20

Type Synonyms

type Symbol = String

type Model = [(Symbol, Bool)]

• The type Symbol is a synonym for a String, and type
Model is a synonym for a list of (Symbol,Bool)
tuples.

• Types synonyms are good for code clarity.

Informatics 2D 21

Recursion

• Important role in Haskell.

• A function is recursive when one part of its
definition includes the function itself again.

• It is important to have a termination condition to
avoid infinite loop.

length :: [a] -> Int

length [] = 0

length (x:xs) = 1 + length xs

Informatics 2D 22

Currying

• The process of creating intermediate functions when
feeding arguments into a complex function.

• Note: all functions in Haskell really only take one
argument

• Example:
2 * 3 in Haskell:
• (*) function takes first argument 2, and returns an intermediate

function (2*)
• The new function (2*) takes one argument,3, and completes

the multiplication

• Applying only one parameter to a function that takes two
parameters returns a function that takes one parameter

Informatics 2D 23

Higher-Order Functions

• Functions are just like any other value in Haskell.

• Functions can take functions as parameters and
also return functions.

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x: xs) = f x : map f xs

• Map takes a function and list and applies that
function to every element in the list.

Informatics 2D 24

List Processing Functions (map, filter, foldl, etc.)

• map : takes a function and list and applies that
function to every element in the list.

map :: (a -> b) -> [a] -> [b]

• filter: takes a predicate (function that returns
true or false) and a list and then returns the list of
all elements that satisfy the predicate.

filter:: (a -> Bool) -> [a] -> [a]

• foldl: takes a binary function, an accumulator
and a list. It ‘folds’ up the items in the list and
return a single value.

foldl:: (a -> b -> a) -> a -> [b] -> a

Informatics 2D 25

List Comprehension

• Build more specific sets out of general sets.

• Example: to create a list of integers that are
multiples of 2 and greater than than 20:

[x*2 | x <- [1..25] , x*2 >= 20]

Informatics 2D 26

Condition Or
Predicate

Elements
bound to x

Output
function

Maybe Monad

• The Maybe monad represents computations which
might "go wrong" by not returning a value.

• If a value is returned, it uses Just a, where a is the
type of the value.

• If no value is available, it returns Nothing.

• Example:
safeDiv::Double->Double->Maybe Double

safeDiv x y

| y == 0 = Nothing

| otherwise = Just (x/y)

Informatics 2D 27

Deadline

3rd March 2016

@ 4pm

Good Luck!!!

Informatics 2D 28

