
Haskell Refresher
Informatics 2D

Kobby. K.A. Nuamah

30 January 2015

Informatics 2D 1

Haskell

• Purely functional! : “Everything is a function”

• Main topics:
• Recursion

• Currying

• Higher-order functions

• List processing functions such as map, filter, foldl, sortBy, etc

• The Maybe monad

• More on Haskell: http://www.haskell.org/haskellwiki/Haskell

Informatics 2D 2

Types

• Unlike other programming languages like Java, Haskell has type
inference.

• However, type declarations ensures that you are specific about the
input arguments of your function and the output values.

• Example:

next :: Trace -> [Trace]

• The next function takes an argument of type Trace and returns a list
of Traces

Informatics 2D 3

Type Synonyms

type Trace = [(Int,Int)]

type Game = [Int]

• The type Trace is a synonym for a list of (Int,Int) tuples.

• For code clarity.

Informatics 2D 4

Recursion

• Important role in Haskell.

• Function is recursive when one part of its definition includes the
function itself again.

• Always have a termination condition to avoid infinite loop.

length :: [a] -> Int

length [] = 0

length (x:xs) = 1 + length xs

Informatics 2D 5

Currying

• The process of creating intermediate functions when feeding arguments
into a complex function.

• Note: all functions in Haskell really only take one argument

• Example:

2 * 3 in Haskell:
• (*) function takes first argument 2, and return an intermediate

function (2*)
• The new function (2*) takes one argument,3, and completes the

multiplication

• Applying only one parameter to a function that takes two parameters
returns a function that takes one parameter

Informatics 2D 6

Higher-Order Functions

• Functions are just like any other value in Haskell.

• Functions can take functions as parameters and also return functions.

map :: (a -> b) -> [a] -> [b]

map _ [] = []

map f (x: xs) = f x : map f xs

• Map takes a function and list and applies that function to every
element in the list.

Informatics 2D 7

List Processing Functions
(map, filter, foldl, etc.)
• map : takes a function and list and applies that function to every

element in the list.

map :: (a -> b) -> [a] -> [b]

• filter: takes a predicate (function that returns true or false) and
list and then returns the list of all elements that satisfy the predicate.

filter:: (a -> Bool) -> [a] -> [a]

• foldl: takes a binary function, an accumulator and a list. It ‘folds’ up
the items in the list and return a single value.

foldl:: (a -> b -> a) -> a -> [b] -> a

Informatics 2D 8

List Comprehension

• Build more specific sets out of general sets.

• Example: to create a list of integers that are multiples of 2 and greater
than than 20:

[x*2 | x <- [1..25] , x*2 >= 20]

Condition Or
Predicate

Elements
bound to x

Output
function

Informatics 2D 9

Maybe Monad

• The Maybe monad represents computations which might "go wrong"
by not returning a value.

• If a value is returned, it uses Just a, where a is the type of the value.

• If no value is available, it returns Nothing.

• Example:

safeDiv::Double->Double->Maybe Double

safeDiv x y

| y == 0 = Nothing

| otherwise = Just (x/y)

Informatics 2D 10

Coursework Overview

• Trace type for search problems

type Trace = [(Int,Int)]

• Example :

• A path from (1,1) to (4,2)

[(1,1),(1,2),(2,2),(3,2),(4,2)]

1 2 3 4 5 6 7 8 9 10

1 x x

2 x

3 x

4 x

5

6

7

8

9

10

Informatics 2D 11

Successor Function

• The next function returns the possible continuations of the path

next::Trace->[Trace]

• Example :

• Suppose we start from are at (4,2)

• Possible continuations generated by next
[[(1,1),(1,2),(2,2),(3,2),(4,2),(4,1)],

[(1,1),(1,2),(2,2),(3,2),(4,2),(3,2)],

[(1,1),(1,2),(2,2),(3,2),(4,2),(4,3)],

[(1,1),(1,2),(2,2),(3,2),(4,2),(5,2)]]

1 2 3 4 5 6 7 8 9 10

1

2

3

4 x

5

6

7

8

9

10

Informatics 2D 12

Consistency with representation

• Be consistent with your representation of Traces in Haskell

[(1,1),(1,2),(2,2),(3,2),(4,2)]

[(4,2),(3,2),(2,2),(1,2),(1,1)]

• Both are ok, provided you are consistent with the head and tail of
your list.

• Same applies to [Trace]

Informatics 2D 13

Higher-Order Functions in Coursework

Example:

bestFirstSearch::(Trace -> Bool) -> (Trace ->[Trace]) ->
((Int,Int) -> Int)->[Trace] -> Maybe Trace

• (Trace → Bool) is the type of the goal function (same as uninformed search).
• (Trace → [Trace]) is the type of the next function (same as uninformed

search).
• ((Int,Int) → Int) is the type of the heuristic function, which defines at least an

ordering on the nodes in the search agenda.
• [Trace] is the search agenda (same as uninformed search).
• Maybe Trace is the value the function returns (same as uninformed search).

Informatics 2D 14

Game (Tic-Tac-Toe) Representation

X O X

O X O

O O X

• Game represented as a list of Integers

type Game = [Int]

• A new game will be represented as

• [-1,-1,-1,-1,-1,-1,-1,-1,-1]

• Max player is represented by a 1 in the list.

• Min player is represented as 0 in the list.

• An unplayed cell is represented as -1

• Types for Cell and Player

type Player = Int

type Cell = (Int,Int)

Informatics 2D 15

Game Representation Examples

• New Game: [-1,-1,-1,-1,-1,-1,-1,-1,-1]

• Min Move: [-1,-1,-1,-1, 0,-1,-1,-1,-1]

• Max Move: [1,-1,-1,-1, 0,-1,-1,-1,-1]

O

X

O

Informatics 2D 16

Lines in Game

• The Line type represents any of the lines on the game board: rows,
columns and diagonals.

type Line = [Int]

• Examples of Lines for the game state given:

• Row 1: [1,0,1] Row 3: [0,0,1]

• Column 1: [1,0,0] Diagonal 1: [1,1,1]

• To get all lines for a game state, use function:

getLines::Game->[Line]

X O X

O X O

O O X

Informatics 2D 17

Other useful functions
• maxPlayer function checks if the given player is max, and returns a Boolean.

maxPlayer::Player->Bool

• switch function alternates between players.

switch::Player->Player

• terminal function checks if the game argument is in a terminal state.

terminal::Game->Bool

• isMoveValid checks if a move made in a given game state is a valid one for a given player.

isMoveValid::Game->Player->Cell->Bool

• playMove makes a move to a cell and returns the new game state. This functions is called for human player
moves.

playMove::Game->Player->Cell->Game

• moves function returns a list of possible moves/successor states that a player can make given a game state.

moves::Game->Player->[Game]

• checkWin function checks if the game state is a win for the player argument.

checkWin::Game->Player->Bool

Informatics 2D 18

