Search Strategies

R&N: §3.3,3.4,3.7

Michael Rovatsos
School of

informatics
University of Edinburgh

22n January 2015

Informatics 2D

Search strategies

» A search strategy is defined by picking the order of node
expansion — nodes are taken from the frontier
+ Strategies are evaluated along the following dimensions:
— completeness: does it always find a solution if one exists?
— time complexity: number of nodes generated
— space complexity: maximum number of nodes in memory
— optimality: does it always find a least-cost solution?
+ Time and space complexity are measured in terms of
— b: maximum branching factor of the search tree
— d: depth of the least-cost solution
— m: maximum depth of the state space (may be «)

Informatics 2D

Outline

Uninformed search strategies use only
information in problem definition

Breadth-first search

Depth-first search

Depth-limited and Iterative deepening
search

Informatics 2D

Recall: Tree Search

function TREE-SEARCH(problem) returns a solution, or failure
initialize the frontier using the initial state of problem
loop do
if the frontier is empty then return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
expand the chosen node, adding the resulting nodes to the frontier

Chad >

Repeated state (=) ChuD

Repeated states Graph search

Failure to detect repeated states can turn a function GRAPH-SEARCH(problem) returns a solution, or failure
linear problem into an exponenti al one! initialize the frontier using the initial state of problem

initialize the explored set to be empty

loop do

if the frontier is empty ther return failure
choose a leaf node and remove it from the frontier
if the node contains a goal state then return the corresponding solution
add the node to the explored set
expand the chosen node, adding the resulting nodes to the frontier
only if not in the frontier or explored set

Augment TREE-SEARCH with a new data-structure:

« the explored set (closed list), which remembers every expanded node
» newly expanded nodes already in explored set are discarded
Informatics 2D i Informatics 2D i
Breadth-first search Breadth-first search
+ Expand shallowest unexpanded node + Expand shallowest unexpanded node
* Implementation: * Implementation:

— frontier is a FIFO queue, i.e., new successors go at end — frontier is a FIFO queue, i.e., new successors go at end

>® ()
> ©

Informatics 2D Informatics 2D

. &
R G

Breadth-first search

» Expand shallowest unexpanded node

* Implementation:
— frontier is a FIFO queue, i.e., new successors go at end

Informatics 2D

Breadth-first search algorithm*

function BREADTH-FIRST-SEARCH(problem) returns a solution, or failure

node «— a node with STATE = problem.INITIAL-STATE, PATH-COST =0
if problem.GOAL-TEST(node.STATE) then return SOLUTION(node)
frontier — a FIFO queue with node as the only element
explored «an empty set
foop do
if EMPTY 7(frontier) then return failure
node « POP(frontier) /* chooses the shallowest node in froniier */
add node STATE to explored
for each acfion in problem.ACTIONS(node.STATE) do
child «— CHILD-NODE(problem, node, action)
if child . STATE is not in explored or frontier then
if problem.GOAL-TEST(child.STATE) then return SOLUTION(child)
frontier « INSERT(child, frontier)

Informatics 2D

Breadth-first search

+ Expand shallowest unexpanded node

* Implementation:
— frontier is a FIFO queue, i.e., new successors go at end

(4)
(&) ()
pbO ©® © ©

Informatics 2D

[N

S,
z@’}
e

Properties of breadth-first search

« Complete? Yes (if b is finite)
* Time? b+b2+b3+... +bd = O(bY) (worst-case)

Space? O(bY) (keeps every node in memory)

* Optimal? Yes (if cost = 1 per step)

Space is the bigger problem (more than time)

&
Informatics 2D '

S,
.zgc

Depth-first search Depth-first search
+ Expand deepest unexpanded node » Expand deepest unexpanded node
* Implementation: * Implementation:
— frontier = LIFO queue, i.e., put successors at front — frontier = LIFO queue, i.e., put successors at front
+(D (4)
() (5]
Inf tics 2D i Inf tics 2D i

Depth-first search Depth-first search

+ Expand deepest unexpanded node + Expand deepest unexpanded node
* Implementation: * Implementation:
— frontier = LIFO queue, i.e., put successors at front — frontier = LIFO queue, i.e., put successors at front

Informatics 2D Informatics 2D

Depth-first search

+ Expand deepest unexpanded node
* Implementation:
— frontier = LIFO queue, i.e., put successors at front

Informatics 2D

Depth-first search

» Expand deepest unexpanded node
* Implementation:
— frontier = LIFO queue, i.e., put successors at front

Informatics 2D

S,

.@‘:

o
e

®

Depth-first search @
» Expand deepest unexpanded node

* Implementation:
— frontier = LIFO queue, i.e., put successors at front

Informatics 2D

Depth-first search ?
« Expand deepest unexpanded node

* Implementation:
— frontier = LIFO queue, i.e., put successors at front

Informatics 2D

Depth-first search

+ Expand deepest unexpanded node
* Implementation:
— frontier = LIFO queue, i.e., put successors at front

Informatics 2D

Depth-first search

+ Expand deepest unexpanded node
* Implementation:
— frontier = LIFO queue, i.e., put successors at front

Informatics 2D

i,
.t®/‘;
Pyl
yrd

®

Depth-first search @

» Expand deepest unexpanded node
* Implementation:
— frontier = LIFO queue, i.e., put successors at front

()

()
»(r) (S

Informatics 2D

Depth-first search

» Expand deepest unexpanded node
* Implementation:
— frontier = LIFO queue, i.e., put successors at front

Informatics 2D

Properties of depth-first search Mid-Lecture Exercise

Complete? No: fails in infinite-depth spaces, spaces with « Compare breadth-first and depth-first

loops
— Modify to avoid repeated states along path search.

+ complete in finite spaces — When would breadth-first be preferable?
Time? O(b™): terrible if m is much larger than d — When would depth-first be preferable?

— but if solutions are dense, may be much faster than breadth-first

Space? O(bm), i.e., linear space!

Optimal? No
Inf ics 2D i Inf ics 2D i
nformatics nformatics
Solution Depth-limited search
_— This is depth-first search with depth limit [, i.e., nodes at
* Breadth-First: depth | have no successors
— When completeness is important. Recursive implementation:
—When Optlmal solutions are important. function DEPTH-LIMITED-SEARCH(problem, limit) returns a solution, or failure/cutoff
; return RECURSIVE-DLS(MAKE-NODE(problemn. INITIAL-STATE), problem, limit)
° De pth_ F I rSt function RECURSIVE-DLS(node, problem, limnit) returns a solution, or failure/cutoff
. . if problem.GOAL-TEST(node. STATE) then return SOLUTION(node)
— When solutions are dense and low-cost is else if limit = 0 then return cutoff
important, especially space costs. "'S",W,ﬁ_m,m,?hfm

for each action in problem. ACTIONS(node. STATE) do
chald — CHILD-NODE(problemn., node, action)
result «— RECURSIVE-DLS(child, problemn, limit — 1)
if result = cutoff then cutoff_occurred? « true
else if result # failure then return result

if cutoff_occurred? then return cutoff else return failure

Informatics 2D Informatics 2D

. &
R G

i,

.zgc

e <
T

Iterative deepening search lterative deepening search | =0

function ITERATIVE-DEEPENING-SEARCH(problem,) returns a solution, or failure
for depth = 0 to co do
result «— DEPTH-LIMITED-SEARCH(problem, depth)
if result # cutoff then return result

Informatics 2D Informatics 2D

LN
[N

..........

lterative deepening search 1 =1 ™ lterative deepening search | =2 %

Limit=1 o) ./a\e ./.\. Limit =2 o) @ @ @
; 26, © B : v@ © o) ® o ©
G 3) Y G (& 6) 7 G G

Informatics 2D Informatics 2D

. &
R G

S,
.zgc

lterative deepening search | =3 ™~ Iterative deepening search

xi\
i

Informatics 2D ' Informatics 2D

» Number of nodes generated in an iterative deepening
search to depth d with branching factor b:

Nips = (d)b + (d-1) b? + ... + (2)b%1 + (1)bd

+ Some cost associated with generating upper levels multiple
times
+ Example: Forb =10, d =5,

Limit=3 20}

Ry

— Nggs =10 + 100 + 3,000 + 10,000 + 100,000 = 111,110
— Npps =50 + 400 + 3,000 + 20,000 + 100,000 = 123,450

* Overhead = (123,450 - 111,110)/111,110 = 11%

Properties of iterative
deepening search

Summary of algorithms

« Complete? Yes

Criterion Breadth- Uniform- Depth- Depth- lterative
. First Cost First Limited Deepening
M Tlme’) (d)b + (d'l)b2 +...+ (1)bd = O(bd) Complete? Yes Yes No No Yes
Time ort) oplcly o) o®) o)
Space o) oIy O@pm) O@l) O(bd)
° Space’? O(bd) Optimal? Yes Yes No No Yes

* Optimal? Yes, if step cost = 1

Informatics 2D Informatics 2D

Summary

+ Variety of uninformed search strategies:
— breadth-first, depth-first, iterative deepening

* lterative deepening search uses only linear
space and not much more time than other
uninformed algorithms

Informatics 2D

10

