
Informatics 2D

Problem Solving by Searching

R&N: § 3.1-3.3

Michael Rovatsos

University of Edinburgh

20th January 2015

Informatics 2D

Outline

• Problem-solving agents

• Problem types

• Problem formulation

• Example problems

• Basic search algorithms

Informatics 2D

Problem-solving agents

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action

persistent: seq, an action sequence, initially empty

state, some description of the current world state

goal, a goal, initially null

problem, a problem formulation

state UPDATE-STATE(state, percept)

if seq is empty then do

goal FORMULATE-GOAL(state)

problem FORMULATE-PROBLEM(state, goal)

seq SEARCH(problem)

if seq = failure then return a null action

action FIRST(seq)

seq REST(seq)

return action

Agent has a “Formulate, Search, Execute” design

Informatics 2D

Example: Romania

• On holiday in Romania; currently in Arad.

• Flight leaves tomorrow from Bucharest

• Formulate goal:
– be in Bucharest

• Formulate problem:
– states: various cities

– actions: drive between cities

• Find solution:
– sequence of cities, e.g., Arad, Sibiu, Fagaras,

Bucharest

Informatics 2D

Example: Romania

Informatics 2D

Problem types

• Deterministic, fully observable single-state problem
– Agent knows exactly which state it will be in; solution is a

sequence

• Non-observable sensorless problem (conformant

problem)
– Agent may have no idea where it is; solution is a sequence

• Nondeterministic and/or partially observable

contingency problem

– percepts provide new information about current state

– often interleave search, execution

• Unknown state space exploration problem

Informatics 2D

Example: vacuum world

• Single-state, start in #5.

Solution?

Informatics 2D

Example: vacuum world

• Single-state, start in #5.

Solution? [Right, Suck]

• Sensorless, start in

{1,2,3,4,5,6,7,8} e.g.,

Right goes to {2,4,6,8}

Informatics 2D

Example: vacuum world

• Sensorless, start in

{1,2,3,4,5,6,7,8} e.g.,

Right goes to {2,4,6,8}

Solution?

[Right,Suck,Left,Suck]

• Contingency

– Nondeterministic: Suck may dirty a clean carpet

– Partially observable: location, dirt at current location.

– Percept: [L, Clean], i.e., start in #5 or #7

Solution?

Informatics 2D

Example: vacuum world

• Sensorless, start in

{1,2,3,4,5,6,7,8} e.g.,

Right goes to {2,4,6,8}

Solution?

[Right,Suck,Left,Suck]

• Contingency

– Nondeterministic: Suck may dirty a clean carpet

– Partially observable: location, dirt at current location.

– Percept: [L, Clean], i.e., start in #5 or #7

Solution? [Right, if dirt then Suck]

Informatics 2D

Single-state problem formulation

A problem is defined by four items:

1. initial state e.g., “in Arad"

2. actions or successor function S(x) = set of action–state pairs

– e.g., S(Arad) = {<Arad Zerind, Zerind>, … }

3. goal test, can be
– explicit, e.g., x = “in Bucharest"

– implicit, e.g., Checkmate(x)

4. path cost (additive)
– e.g., sum of distances, number of actions executed, etc.

– c(x,a,y) is the step cost of taking action a in state x to reach state y,

assumed to be ≥ 0

• A solution is a sequence of actions leading from the initial state to a
goal state

Informatics 2D

Selecting a state space

• Real world is absurdly complex
 state space must be abstracted for problem solving

• (Abstract) state = set of real states

• (Abstract) action = complex combination of real actions

– e.g., "Arad Zerind" represents a complex set of possible routes,
detours, rest stops, etc.

• For guaranteed realizability, any real state "in Arad“ must

get to some real state "in Zerind"

• (Abstract) solution =

– set of real paths that are solutions in the real world

• Each abstract action should be "easier" than the original

problem

Informatics 2D

Vacuum world state space graph

• states?

• actions?

• goal test?

• path cost?

Informatics 2D

Vacuum world state space graph

• states? Pair of dirt and robot locations

• actions? Left, Right, Suck

• goal test? no dirt at any location

• path cost? 1 per action

Informatics 2D

Example: The 8-puzzle

• states?

• actions?

• goal test?

• path cost?

Informatics 2D

Example: The 8-puzzle

• states? locations of tiles

• actions? move blank left, right, up, down

• goal test? = goal state (given)

• path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]

Informatics 2D

Example: robotic assembly

• states?: real-valued coordinates of robot joint angles & parts of
the object to be assembled

• actions?: continuous motions of robot joints

• goal test?: complete assembly

• path cost?: time to execute

Informatics 2D

Tree search algorithms

• Basic idea:

– offline, simulated exploration of state space by

generating successors of already-explored states

(a.k.a. expanding states)

function TREE-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state then return the corresponding solution

expand the chosen node, adding the resulting nodes to the frontier

Informatics 2D

Tree search example

Informatics 2D

Tree search example

Informatics 2D

Tree search example

Informatics 2D

Implementation: general tree search

function TREE-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state then return the corresponding solution

expand the chosen node, adding the resulting nodes to the frontier

function CHILD-NODE(problem, parent, action) returns a node

return a node with

STATE = problem.RESULT(parent.STATE, action),

PARENT = parent, ACTION = action,

PATH-COST = parent.PATH-COST + problem.STEP-COST(parent.STATE,

action)

Informatics 2D

Implementation: states vs. nodes

• A state is a (representation of) a physical
configuration

• A node is a book-keeping data structure constituting
part of a search tree includes state, parent node,
action, path cost

• Using these it is easy to compute the components for
a child node. (The CHILD-NODE function)

Informatics 2D

Summary

• Problem formulation usually requires abstracting away

real-world details to define a state space that can

feasibly be explored.

