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Problem-solving agents

function SIMPLE-PROBLEM-SOLVING-AGENT(percept) returns an action

persistent: seq, an action sequence, initially empty

state, some description of the current world state

goal, a goal, initially null

problem, a problem formulation

state  UPDATE-STATE(state, percept)

if seq is empty then do

goal  FORMULATE-GOAL(state)

problem  FORMULATE-PROBLEM(state, goal)

seq  SEARCH(problem)

if seq = failure then return a null action

action  FIRST(seq)

seq  REST(seq)

return action

Agent has a “Formulate, Search, Execute” design
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Example: Romania

• On holiday in Romania; currently in Arad.

• Flight leaves tomorrow from Bucharest

• Formulate goal:
– be in Bucharest

• Formulate problem:
– states: various cities

– actions: drive between cities

• Find solution:
– sequence of cities, e.g., Arad, Sibiu, Fagaras, 

Bucharest
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Example: Romania
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Problem types

• Deterministic, fully observable  single-state problem
– Agent knows exactly which state it will be in; solution is a 

sequence

• Non-observable  sensorless problem (conformant 

problem)
– Agent may have no idea where it is; solution is a sequence

• Nondeterministic and/or partially observable 

contingency problem

– percepts provide new information about current state

– often interleave search, execution

• Unknown state space  exploration problem
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Example: vacuum world

• Single-state, start in #5. 

Solution?
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Example: vacuum world

• Single-state, start in #5. 

Solution? [Right, Suck]

• Sensorless, start in 

{1,2,3,4,5,6,7,8} e.g., 

Right goes to {2,4,6,8} 
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Example: vacuum world

• Sensorless, start in 

{1,2,3,4,5,6,7,8} e.g., 

Right goes to {2,4,6,8} 

Solution?

[Right,Suck,Left,Suck]

• Contingency

– Nondeterministic: Suck may dirty a clean carpet

– Partially observable: location, dirt at current location.

– Percept: [L, Clean], i.e., start in #5 or #7

Solution?
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Example: vacuum world

• Sensorless, start in 

{1,2,3,4,5,6,7,8} e.g., 

Right goes to {2,4,6,8} 

Solution?

[Right,Suck,Left,Suck]

• Contingency

– Nondeterministic: Suck may dirty a clean carpet

– Partially observable: location, dirt at current location.

– Percept: [L, Clean], i.e., start in #5 or #7

Solution? [Right, if dirt then Suck]
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Single-state problem formulation

A problem is defined by four items:

1. initial state e.g., “in Arad"

2. actions or successor function S(x) = set of action–state pairs 

– e.g., S(Arad) = {<Arad  Zerind, Zerind>, … }

3. goal test, can be
– explicit, e.g., x = “in Bucharest"

– implicit, e.g., Checkmate(x)

4. path cost (additive)
– e.g., sum of distances, number of actions executed, etc.

– c(x,a,y) is the step cost of taking action a in state x to reach state y, 

assumed to be ≥ 0

• A solution is a sequence of actions leading from the initial state to a 
goal state
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Selecting a state space

• Real world is absurdly complex 
 state space must be abstracted for problem solving

• (Abstract) state = set of real states

• (Abstract) action = complex combination of real actions

– e.g., "Arad  Zerind" represents a complex set of possible routes, 
detours, rest stops, etc. 

• For guaranteed realizability, any real state "in Arad“ must 

get to some real state "in Zerind"

• (Abstract) solution = 

– set of real paths that are solutions in the real world

• Each abstract action should be "easier" than the original 

problem
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Vacuum world state space graph

• states?

• actions?

• goal test?

• path cost?
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Vacuum world state space graph

• states? Pair of dirt and robot locations

• actions? Left, Right, Suck

• goal test? no dirt at any location

• path cost? 1 per action
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Example: The 8-puzzle

• states?

• actions?

• goal test?

• path cost?
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Example: The 8-puzzle

• states? locations of tiles 

• actions? move blank left, right, up, down 

• goal test? = goal state (given)

• path cost? 1 per move

[Note: optimal solution of n-Puzzle family is NP-hard]
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Example: robotic assembly

• states?: real-valued coordinates of robot joint angles & parts of 
the object to be assembled

• actions?: continuous motions of robot joints

• goal test?: complete assembly

• path cost?: time to execute
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Tree search algorithms

• Basic idea:

– offline, simulated exploration of state space by 

generating successors of already-explored states 

(a.k.a. expanding states)

function TREE-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state then return the corresponding solution

expand the chosen node, adding the resulting nodes to the frontier
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Tree search example
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Tree search example
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Tree search example
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Implementation: general tree search

function TREE-SEARCH(problem) returns a solution, or failure

initialize the frontier using the initial state of problem

loop do

if the frontier is empty then return failure

choose a leaf node and remove it from the frontier

if the node contains a goal state then return the corresponding solution

expand the chosen node, adding the resulting nodes to the frontier

function CHILD-NODE(problem, parent, action) returns a node

return a node with

STATE = problem.RESULT(parent.STATE, action),

PARENT = parent, ACTION = action,

PATH-COST = parent.PATH-COST + problem.STEP-COST(parent.STATE, 

action)
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Implementation: states vs. nodes

• A state is a (representation of) a physical 
configuration

• A node is a book-keeping data structure constituting 
part of a search tree includes state, parent node, 
action, path cost

• Using these it is easy to compute the components for 
a child node. (The CHILD-NODE function)
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Summary

• Problem formulation usually requires abstracting away 

real-world details to define a state space that can 

feasibly be explored.


