Effective Propositional Inference

R&N: § 7.5-7.7

Michael Rovatsos

School of Informatics

University of Edinburgh

16th January 2015

Informatics 2D
Outline

Two families of efficient algorithms for propositional inference:

Complete backtracking search algorithms

• DPLL algorithm (Davis, Putnam, Logemann, Loveland)

• Incomplete local search algorithms
 - WalkSAT algorithm
Clausal Form (CNF)

- DPLL and WalkSAT manipulate formulae in conjunctive normal form (CNF).
- Sentence is formula whose satisfiability is to be determined.
 - conjunction of clauses.
- Clause is disjunction of literals
- Literal is proposition or negated proposition
- Example: \((A, \neg B), (B, \neg C)\)
 - i.e. \((A \lor \neg B) \land (B \lor \neg C)\)
Conversion to CNF

\[B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1}) \]

1. **Eliminate** \(\Leftrightarrow \), replacing \(\alpha \Leftrightarrow \beta \) with \((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha)\).

 \[(B_{1,1} \Rightarrow (P_{1,2} \lor P_{2,1})) \land ((P_{1,2} \lor P_{2,1}) \Rightarrow B_{1,1}) \]

2. **Eliminate** \(\Rightarrow \), replacing \(\alpha \Rightarrow \beta \) with \(\neg \alpha \lor \beta \).

 \[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg (P_{1,2} \lor P_{2,1}) \lor B_{1,1}) \]

3. **Move \(\neg \) inwards** using de Morgan's rules and double-negation:

 \[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land ((\neg P_{1,2} \land \neg P_{2,1}) \lor B_{1,1}) \]

4. **Apply distributivity law** \(\lor \) over \(\land \) and **flatten**:

 \[(\neg B_{1,1} \lor P_{1,2} \lor P_{2,1}) \land (\neg P_{1,2} \lor B_{1,1}) \land (\neg P_{2,1} \lor B_{1,1}) \]
The DPLL algorithm

Determine if an input propositional logic sentence (in CNF) is *satisfiable*.

Improvements over truth table enumeration:

1. Early termination
2. Pure symbol heuristic
3. Unit clause heuristic
Early termination

• A clause is true if one of its literals is true,
 – e.g. if A is true then \((A \lor \neg B)\) is true.

• A sentence is false if any of its clauses is false,
 – e.g. if A is false and B is true then \((A \lor \neg B)\) is false, so sentence containing it is false.
Pure symbol heuristic

• Pure symbol: always appears with the same “sign” or polarity in all clauses.
 e.g., In the three clauses \((A \lor \neg B), (\neg B \lor \neg C), (C \lor A)\):
 \(-A\) and \(B\) are pure, \(C\) is impure.

• Make literal containing a pure symbol true.
 • e.g. Let \(A\) and \(\neg B\) both be true
Unit clause heuristic

- **Unit clause**: only one literal in the clause
 - e.g. (A)
- The only literal in a unit clause must be true.
 - e.g. A must be true.
- Also includes clauses where all but one literal is false,
 - e.g. (A,B,C) where B and C are false since it is equivalent to (A, false, false) i.e. (A).
The DPLL algorithm

function DPLL-SATISFIABLE?(s) returns true or false
inputs: s, a sentence in propositional logic

clauses ← the set of clauses in the CNF representation of s
symbols ← a list of the proposition symbols in s
return DPLL(clauses, symbols, [])

function DPLL(clauses, symbols, model) returns true or false

if every clause in clauses is true in model then return true
if some clause in clauses is false in model then return false
P, value ← FIND-PURE-Symbol(symbols, clauses, model)
if P is non-null then return DPLL(clauses, symbols−P, [P = value | model])
P, value ← FIND-UNIT-CLAUSE(clauses, model)
if P is non-null then return DPLL(clauses, symbols−P, [P = value | model])
P ← FIRST(symbols); rest ← REST(symbols)
return DPLL(clauses, rest, [P = true | model]) or
DPLL(clauses, rest, [P = false | model])
Tautology Deletion (Optional)

- **Tautology**: both a proposition and its negation in a clause.
 - e.g. \((A, B, \neg A)\)
- Clause bound to be true.
 - e.g. whether \(A\) is true or false.
 - Therefore, can be deleted.
Mid-Lecture Exercise

• Apply DPLL heuristics to the following sentence:

$$(S_{2,1}), \neg(S_{1,1}), \neg(S_{1,2}),$$

$$\neg(S_{2,1}, W_{2,2}), \neg(S_{1,1}, W_{2,2}), \neg(S_{1,2}, W_{2,2}),$$

$$\neg(W_{2,2}, S_{2,1}, S_{1,1}, S_{1,2}).$$

• Use case splits if model not found by these heuristics.
Solution

- **Pure symbol heuristic:**
 No literal is pure.

- **Unit clause heuristic:**
 $S_{2,1}$ is true; $S_{1,1}$ and $S_{1,2}$ are false.

- **Early termination heuristic:**
 $(\neg S_{1,1}, W_{2,2}), (\neg S_{1,2}, W_{2,2})$ are both true.
 $(\neg W_{2,2}, S_{2,1}, S_{1,1}, S_{1,2})$ is true.

- **Unit clause heuristic:**
 $\neg S_{2,1}$ is false, so $(\neg S_{2,1}, W_{2,2})$ is unit clause.
 $W_{2,2}$ must be true.

Original sentence:

$(S_{2,1}), (\neg S_{1,1}), (\neg S_{1,2}),
(\neg S_{2,1}, W_{2,2}), (\neg S_{1,1}, W_{2,2}), (\neg S_{1,2}, W_{2,2}),
(\neg W_{2,2}, S_{2,1}, S_{1,1}, S_{1,2})$.

Symbols are: $S_{1,1}, S_{1,2}, S_{2,1}, W_{2,2}$
The WalkSAT algorithm

- Incomplete, local search algorithm
- Evaluation function: The min-conflict heuristic of minimizing the number of unsatisfied clauses
- Balance between greediness and randomness
The **WalkSAT** algorithm

```plaintext
function WalkSAT(clauses, p, max-flips) returns a satisfying model or failure
  inputs: clauses, a set of clauses in propositional logic
         p, the probability of choosing to do a "random walk" move
         max-flips, number of flips allowed before giving up
  model ← a random assignment of true/false to the symbols in clauses
  for i = 1 to max-flips do
    if model satisfies clauses then return model
    clause ← a randomly selected clause from clauses that is false in model
    with probability p flip the value in model of a randomly selected symbol
    from clause
    else flip whichever symbol in clause maximizes the number of satisfied clauses
  return failure
```

Algorithm checks for satisfiability by randomly flipping the values of variables
Hard satisfiability problems

Consider random 3-CNF sentences.

– Example:

$$(\neg D \lor \neg B \lor C) \land (B \lor \neg A \lor \neg C) \land (\neg C \lor \neg B \lor E) \land (E \lor \neg D \lor B) \land (B \lor E \lor \neg C)$$

$m = \text{number of clauses}$

$n = \text{number of symbols}$

– Hard problems seem to cluster near $m/n = 4.3$ (critical point)
Hard satisfiability problems
Hard satisfiability problems

Median runtime for 100 satisfiable random 3-CNF sentences, $n = 50$
Inference-based agents in the wumpus world

A wumpus-world agent using propositional logic:

\[-P_{1,1}\]
\[-W_{1,1}\]

\[B_{x,y} \iff (P_{x,y+1} \lor P_{x,y-1} \lor P_{x+1,y} \lor P_{x-1,y})\]

\[S_{x,y} \iff (W_{x,y+1} \lor W_{x,y-1} \lor W_{x+1,y} \lor W_{x-1,y})\]

\[W_{1,1} \lor W_{1,2} \lor \ldots \lor W_{4,4}\]

\[-W_{1,1} \lor -W_{1,2}\]

\[-W_{1,1} \lor -W_{1,3}\]

\[\ldots\]

\[\Rightarrow 64\ \text{distinct proposition symbols},\ 155\ \text{sentences}\]
The Wumpus Agent (1)

function HYBRID-WUMPUS-AGENT (percept) returns an action
inputs: percept, a list, [stench, breeze, glitter, bump, scream]
persistent: KB, a knowledge base, initially the atemporal “wumpus physics”
t, a counter, initially 0, indicating time
plan, an action sequence, initially empty

TELL(KB, MAKE-PERCEPT-SENTENCE(percept, t))

TELL the KB the temporal “physics” sentences for time t

safe ← \{[x,y] : ASK(KB,OK'_xy) = true\}

if ASK(KB, Glitter') = true then
 plan ← [Grab] + PLAN-ROUTE(current, {{1,1}}, safe) + [Climb]

if plan is empty then
 unvisited ← \{[x,y] : ASK(KB,L'_xy) = false for all t'≤ t \}
 plan ← PLAN-ROUTE(current, unvisited ∩ safe, safe)

if plan is empty and ASK(KB,HaveArrow') = true then
 possible_wumpus ← \{[x,y] : ASK(KB,¬W'_xy) = false \}
 plan ← PLAN-SHOT(current, possible_wumpus, safe)

if plan is empty then // no choice but to take a risk
 not_unsafe ← \{[x,y] : ASK(KB,¬OK'_xy) = false \}
 plan ← PLAN-ROUTE(current, unvisited ∩ not_unsafe, safe)

if plan is empty then
 plan ← PLAN-ROUTE(current, {{1,1}}, safe) + [Climb]

action ← POP(plan)

TELL(KB, MAKE-ACTION-SENTENCE(action, t))

t ← t+1

return action
The Wumpus Agent (2)

function `PLAN-ROUTE(current, goals, allowed)` returns an action sequence
inputs: `current`, the agent’s current position
`goals`, a set of squares; try to plan a route to one of them
`allowed`, a set of squares that can form part of the route

problem \leftarrow `ROUTE-PROBLEM(current, goals, allowed)`

return $\text{A*-GRAPH-SEARCH}(problem)$

We will look at this later on.
We need more!

• Effect axioms:
 \[L_{1,1}^0 \land FacingEast^0 \land Forward^0 \implies L_{2,1}^1 \land \neg L_{1,1}^1 \]

• We need extra axioms *about the world*.

• Representational frame problem
 • Frame axioms:
 \[Forward^t \implies (HaveArrow^t \iff HaveArrow^{t+1}) \]
 \[Forward^t \implies (WumpusAlive^t \iff WumpusAlive^{t+1}) \]

• Inferential frame problem
 • Successor-state axioms:
 \[HaveArrow^{t+1} \iff (HaveArrow^t \land \neg Shoot^t) \]
Expressiveness limitation of propositional logic

• KB contains "physics" sentences for every single square

• For every time t and every location $[x,y]$,

$$L^t_{x,y} \land FacingRight^t \land Forward^t \Rightarrow L^{t+1}_{x+1,y}$$

• Rapid proliferation of clauses
Summary

• Logical agents apply inference to a knowledge base to derive new information and make decisions.

• Two algorithms: DPLL & WalkSAT

• Hard satisfiability problems

• Applications to Wumpus World.

• Propositional logic lacks expressive power