

Logical Agents: Knowledge Bases and the Wumpus World

R&N § 7.1-7.5

Michael Rovatsos

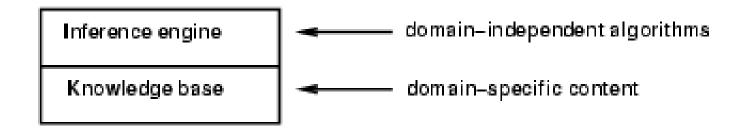
Informatics University of Edinburgh

15th January 2015

Outline

- Knowledge-based agents
- Wumpus world
- Logic in general models and entailment
- Propositional (Boolean) logic
- Equivalence, validity, satisfiability

Knowledge bases



- Knowledge base = set of sentences in a formal language
- Declarative approach to building an agent (or other system):
 - Tell it what it needs to know
- Then it can ${\tt Ask}$ itself what to do answers should follow from the KB
- Agents can be viewed at the knowledge level i.e., what they know, regardless of how implemented
- Or at the implementation level
 - i.e., data structures in KB and algorithms that manipulate them

A simple knowledge-based agent

```
function KB-AGENT( percept) returns an action

persistent KB, a knowledge base

t, a counter, initially 0, indicating time

TELL(KB, MAKE-PERCEPT-SENTENCE( percept, t))

action \leftarrow ASK(KB, MAKE-ACTION-QUERY(t))

TELL(KB, MAKE-ACTION-SENTENCE( action, t))

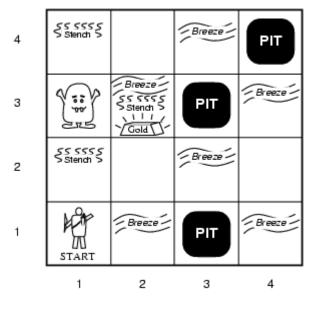
t \leftarrow t + 1

return action
```

- The agent must be able to:
 - represent states, actions, etc.
 - incorporate new percepts
 - update internal representations of the world
 - deduce hidden properties of the world
 - deduce appropriate actions

Wumpus World PEAS description

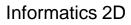
- Performance measure
 - gold +1000, death -1000
 - -1 per step, -10 for using the arrow
- Environment
 - Squares adjacent to wumpus are smelly
 - Squares adjacent to pits are breezy
 - Glitter iff gold is in the same square
 - Shooting kills wumpus if you are facing it
 - Shooting uses up the only arrow
 - Grabbing picks up gold if in same square
 - Releasing drops the gold in same square
- Actuators: Left turn, Right turn, Forward, Grab, Release, Shoot
- Sensors: Stench, Breeze, Glitter, Bump, Scream

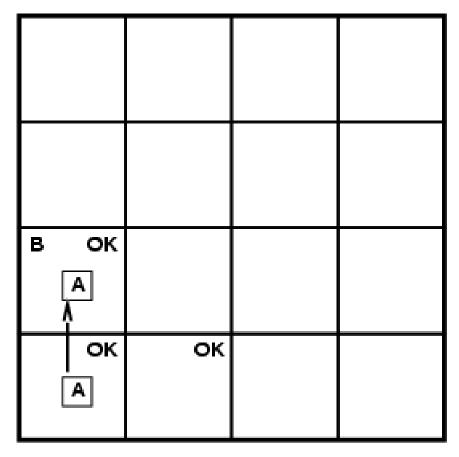


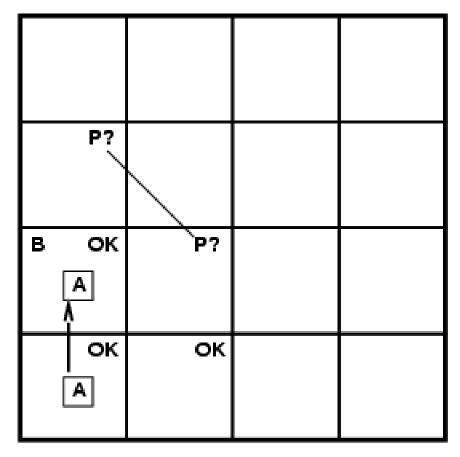
Wumpus world characterization

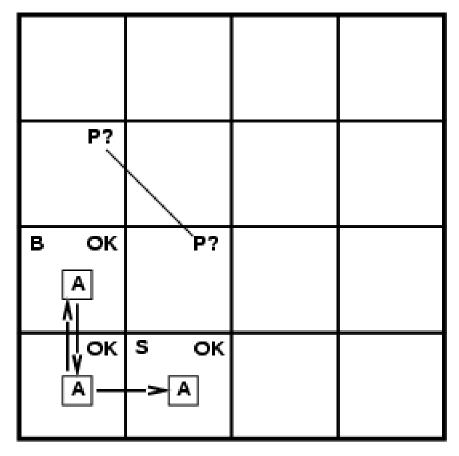
- Fully Observable? No only local perception
- Deterministic? Yes outcomes exactly specified
- Episodic? No sequential at the level of actions
- Static? Yes Wumpus and Pits do not move
- Discrete? Yes
- Single-agent? Yes Wumpus is essentially a natural feature

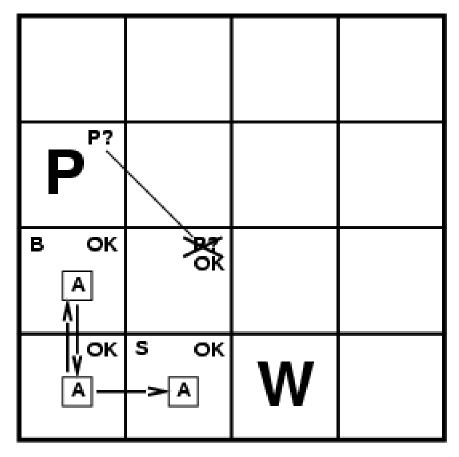
ок		
ок А	ок	

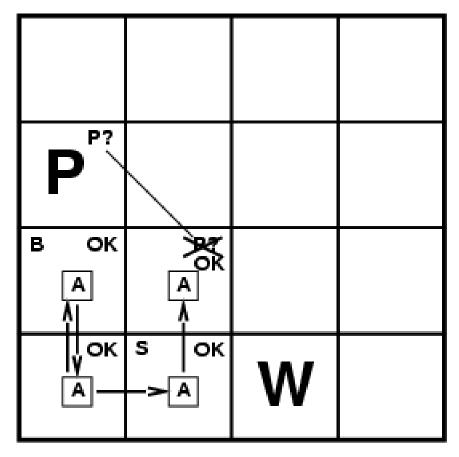


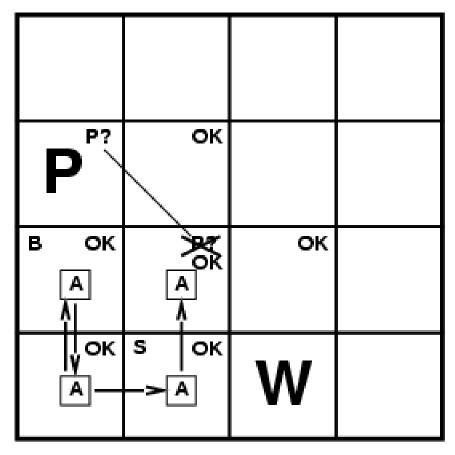


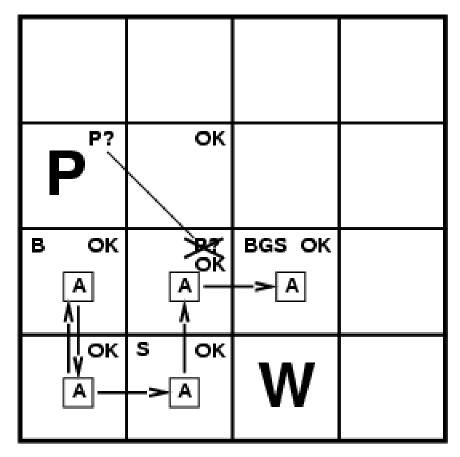












Logic in general

- Logics are formal languages for representing information such that conclusions can be drawn
- Syntax defines the sentences in the language
- Semantics defines the "meaning" of sentences;
 - i.e., define truth of a sentence in a world
- E.g., the language of arithmetic
 - $x+2 \ge y$ is a sentence; $x2+y \ge \{\}$ is not a sentence
 - x+2 ≥ y is true iff the number x+2 is no less than the number y
 - $x+2 \ge y$ is true in a world where x = 7, y = 1
 - $x+2 \ge y$ is false in a world where x = 0, y = 6

Entailment

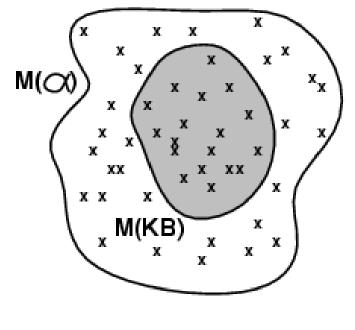
• Entailment means that one thing follows from another:

KB ⊧α

- Knowledge base KB entails sentence α if and only if α is true in all worlds where KB is true
 - e.g., the KB containing "Celtic won" and "Hearts won" entails "Either Celtic won or Hearts won"
 - e.g., x+y = 4 entails 4 = x+y
 - Entailment is a relationship between sentences
 (i.e., syntax) that is based on semantics

Models

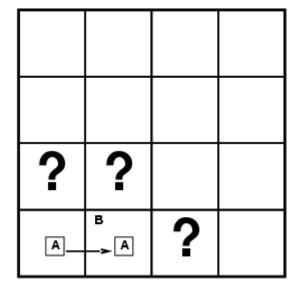
- Logicians typically think in terms of models, which are formally structured worlds with respect to which truth can be evaluated
- We say *m* is a model of a sentence α if α is true in *m*
- $M(\alpha)$ is the set of all models of α
- Then KB $\models \alpha$ iff $M(KB) \subseteq M(\alpha)$
- The *stronger* an assertion, the fewer models it has.



Entailment in the wumpus world

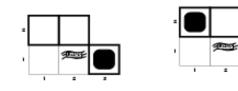
Situation after detecting nothing in [1,1], moving right, breeze in [2,1]

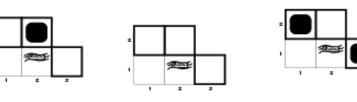
Consider possible models for *KB* assuming only pits

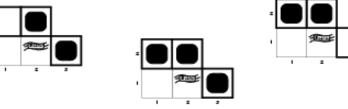


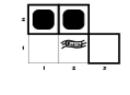
3 Boolean choices \Rightarrow 8 possible models

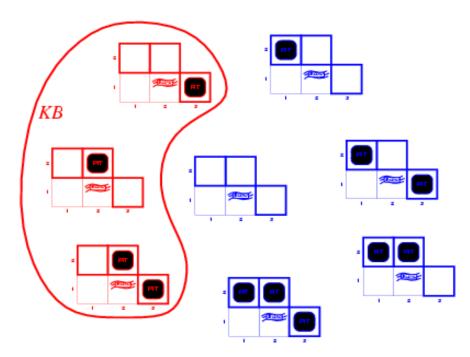
Mid-lecture Exercise: What are these 8 models?



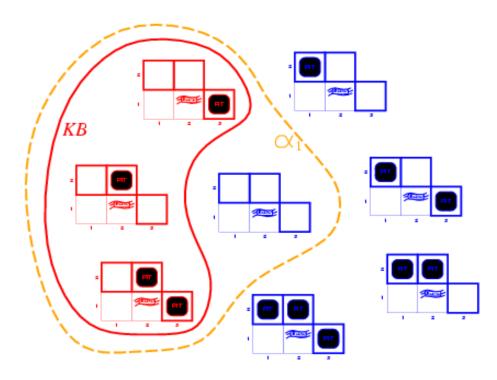




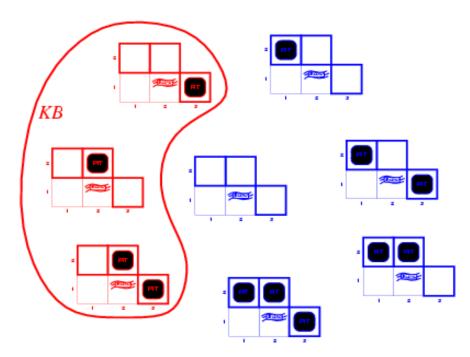




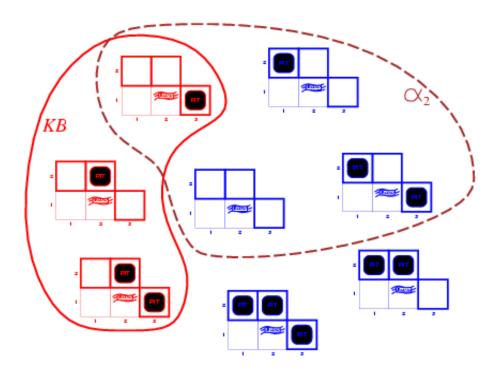
• *KB* = wumpus-world rules + observations



- *KB* = wumpus-world rules + observations
- $\alpha_1 = [1,2]$ has no pit", $KB \models \alpha_1$, proved by model checking
 - In every model in which KB is true, α_1 is also true



• *KB* = wumpus-world rules + observations



- *KB* = wumpus-world rules + observations
- $\alpha_2 = "[2,2]$ has no pit", *KB* $\not\neq \alpha_2$
 - In some models in which KB is true, α_2 is false

Inference

- $KB \models_i \alpha$ = sentence α can be derived from KB by procedure *i*
- Soundness: *i* is sound if whenever $KB \models_i \alpha$, it is also true that $KB \models \alpha$
- Completeness: *i* is complete if whenever $KB \models \alpha$, it is also true that $KB \models_i \alpha$
- Preview: we will define first-order logic:
 - expressive enough to say almost anything of interest,
 - sound and complete inference procedure exists.
 - But first…

Propositional logic: Syntax

Propositional logic is the simplest logic – illustrates basic ideas:

- The proposition symbols P_1 , P_2 etc are sentences
- If S is a sentence, \neg S is a sentence (negation)
- If S_1 and S_2 are sentences, $S_1 \wedge S_2$ is a sentence (conjunction)
- If S_1 and S_2 are sentences, $S_1 \lor S_2$ is a sentence (disjunction)
- If S_1 and S_2 are sentences, $S_1 \Rightarrow S_2$ is a sentence (implication)
- If S_1 and S_2 are sentences, $S_1 \Leftrightarrow S_2$ is a sentence (biconditional)

Propositional logic: Semantics

Each model specifies true/false for each proposition symbol

e.g.	P _{1,2}	P _{2,2}	P _{3,1}	
	false	true	false	

With these symbols, 8 possible models, can be enumerated automatically. Rules for evaluating truth with respect to a model *m*:

−¬S	is true	iff	S is false
$\boldsymbol{S}_1 \wedge \boldsymbol{S}_2$	is true	iff	S_1 is true and S_2 is true
$\boldsymbol{S_1} \vee \boldsymbol{S_2}$	is true	iff	S_1 is true or S_2 is true
$S_1 \Rightarrow S_2$	is true	iff	S_1 is false or S_2 is true
i.e.,	is false	iff	S_1 is true and S_2 is false
$S_1 \Leftrightarrow S_2$	is true	iff	$S_1 \Rightarrow S_2$ is true and $S_2 \Rightarrow S_1$ is true

Simple recursive process evaluates an arbitrary sentence, e.g.,

 $\neg P_{1,2} \land (P_{2,2} \lor P_{3,1}) = true \land (true \lor false) = true \land true = true$

Truth tables for connectives

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
false	false	true	false	false	true	true
false	true	true	false	true	true	false
true	false	false	false	true	false	false
true	true	false	true	true	true	true

Wumpus world sentences

Let $P_{i,j}$ be true if there is a pit in [i, j]. Let $B_{i,j}$ be true if there is a breeze in [i, j]. $\neg P_{1,1}$ $\neg B_{1,1}$ $B_{2,1}$

• "Pits cause breezes in adjacent squares" $B_{1,1} \Leftrightarrow (P_{1,2} \lor P_{2,1})$ $B_{2,1} \Leftrightarrow (P_{1,1} \lor P_{2,2} \lor P_{3,1})$

Truth tables for inference

$B_{1,1}$	$B_{2,1}$	$P_{1,1}$	$P_{1,2}$	$P_{2,1}$	$P_{2,2}$	$P_{3,1}$	KB	α_1
false	true							
false	false	false	false	false	false	true	false	true
:	-	:	:	-	:	:	:	:
false	true	false	false	false	false	false	false	true
false	true	false	false	false	false	true	\underline{true}	\underline{true}
false	true	false	false	false	true	false	\underline{true}	\underline{true}
false	true	false	false	false	true	true	\underline{true}	\underline{true}
false	true	false	false	true	false	false	false	true
:	:	:	:	:	:	:	:	:
true	false	false						

Inference by enumeration

• Depth-first enumeration of all models is sound and complete

```
function TT-ENTAILS? (KB, \alpha) returns true or false
```

```
symbols \leftarrow a list of the proposition symbols in KB and \alpha
return TT-CHECK-ALL(KB, \alpha, symbols, [])
```

```
function TT-CHECK-ALL(KB, \alpha, symbols, model) returns true or false

if EMPTY?(symbols) then

if PL-TRUE?(KB, model) then return PL-TRUE?(\alpha, model)

else return true

else do

P \leftarrow \text{FIRST}(symbols); rest \leftarrow \text{REST}(symbols)
```

return TT-CHECK-ALL(*KB*, α , rest, EXTEND(*P*, true, model) and TT-CHECK-ALL(*KB*, α , rest, EXTEND(*P*, false, model)

- PL-TRUE? returns true if a sentence holds within a model
- EXTEND(*P*,*val*,*model*) returns a new partial model in which *P* has value *val*
- For *n* symbols, time complexity is $O(2^n)$, space complexity is O(n)

Logical equivalence

Two sentences are logically equivalent iff true in the same models: α ≡ ß iff α ⊨ β and β ⊨ α

 $(\alpha \wedge \beta) \equiv (\beta \wedge \alpha)$ commutativity of \wedge $(\alpha \lor \beta) \equiv (\beta \lor \alpha)$ commutativity of \lor $((\alpha \land \beta) \land \gamma) \equiv (\alpha \land (\beta \land \gamma))$ associativity of \land $((\alpha \lor \beta) \lor \gamma) \equiv (\alpha \lor (\beta \lor \gamma))$ associativity of \lor $\neg(\neg \alpha) \equiv \alpha$ double-negation elimination $(\alpha \Rightarrow \beta) \equiv (\neg \beta \Rightarrow \neg \alpha)$ contraposition $(\alpha \Rightarrow \beta) \equiv (\neg \alpha \lor \beta)$ implication elimination $(\alpha \Leftrightarrow \beta) \equiv ((\alpha \Rightarrow \beta) \land (\beta \Rightarrow \alpha))$ biconditional elimination $\neg(\alpha \land \beta) \equiv (\neg \alpha \lor \neg \beta)$ de Morgan $\neg(\alpha \lor \beta) \equiv (\neg \alpha \land \neg \beta)$ de Morgan $(\alpha \land (\beta \lor \gamma)) \equiv ((\alpha \land \beta) \lor (\alpha \land \gamma))$ distributivity of \land over \lor $(\alpha \lor (\beta \land \gamma)) \equiv ((\alpha \lor \beta) \land (\alpha \lor \gamma))$ distributivity of \lor over \land

Validity and satisfiability

A sentence is valid if it is true in all models,

e.g., *True*, $A \lor \neg A$, $A \Rightarrow A$, $(A \land (A \Rightarrow B)) \Rightarrow B$

Validity is connected to inference via the Deduction Theorem:

KB $\models \alpha$ if and only if (*KB* $\Rightarrow \alpha$) is valid

- A sentence is satisfiable if it is true in some model e.g., Av B, C
- A sentence is unsatisfiable if it is true in no models e.g., A $\wedge \neg A$

Satisfiability is connected to inference via the following:

KB $\models \alpha$ if and only if (*KB* $\land \neg \alpha$) is unsatisfiable

Proof methods

- Proof methods divide into (roughly) two kinds:
 - Application of inference rules
 - Legitimate (sound) generation of new sentences from old
 - Proof = a sequence of inference rule applications Can use inference rules as operators in a standard search algorithm
 - Typically require transformation of sentences into a normal form
 - Example: resolution
 - Model checking
 - truth table enumeration (always exponential in *n*)
 - improved backtracking, e.g., Davis-Putnam-Logemann-Loveland (DPLL) method
 - heuristic search in model space (sound but incomplete)
 e.g., min-conflicts-like hill-climbing algorithms

Summary

- Logical agents apply inference to a knowledge base to derive new information and make decisions
- Basic concepts of logic:
 - syntax: formal structure of sentences
 - semantics: truth of sentences wrt models
 - entailment: necessary truth of one sentence given another
 - inference: deriving sentences from other sentences
 - soundness: derivations produce only entailed sentences
 - completeness: derivations can produce all entailed sentences
- Wumpus world requires the ability to represent partial and negated information, reason by cases, etc.
- Propositional logic lacks expressive power