Intelligent Agents and their Environments

Michael Rovatsos

School of Informatics
University of Edinburgh

12 January 2016

Informatics 2D
Structure of Intelligent Agents

An agent:

– Perceives its *environment*,
– Through its *sensors*,
– Then achieves its *goals*
– By acting on its environment via *actuators*.
Examples of Agents 1

- **Agent**: mail sorting robot
- **Environment**: conveyor belt of letters
- **Goals**: route letter into correct bin
- **Percepts**: array of pixel intensities
- **Actions**: route letter into bin
Examples of Agents 2

- **Agent**: intelligent house
- **Environment**:
 - occupants enter and leave house,
 - occupants enter and leave rooms;
 - daily variation in outside light and temperature
- **Goals**: occupants warm, room lights are on when room is occupied, house energy efficient
- **Percepts**: signals from temperature sensor, movement sensor, clock, sound sensor
- **Actions**: room heaters on/off, lights on/off
Examples of Agents 3

• **Agent**: automatic car.

• **Environment**: streets, other vehicles, pedestrians, traffic signals/lights/signs.

• **Goals**: safe, fast, legal trip.

• **Percepts**: camera, GPS signals, speedometer, sonar.

• **Actions**: steer, accelerate, brake.

Simple Reflex Agents

• Action depends only on immediate percepts.
• Implement by *condition-action rules*.

Example:

– **Agent**: Mail sorting robot
– **Environment**: Conveyor belt of letters
– **Rule**: e.g. *city=Edin → put Scotland bag*
function SIMPLE-REFLEX-AGENT(percept)
returns action

persistent: rules (set of condition-action rules)

state ← INTERPRET-INPUT(percept)
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION

return action
Model-Based Reflex Agents

- Action may depend on history or unperceived aspects of the world.
- Need to maintain *internal world model*.

Example:

- **Agent**: robot vacuum cleaner
- **Environment**: dirty room, furniture.
- **Model**: map of room, which areas already cleaned.
- Sensor/model tradeoff.
Model-Based Reflex Agents

function REFLEX-AGENT-WITH-STATE(percept)
returns action
persistent: state, description of current world state
 model, description of how the next state depends on current state and action
 rules, a set of condition-action rules
 action, the most recent action, initially none
state ← UPDATE-STATE(state, action, percept, model)
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION
return action
Goal-Based Agents

- Agents so far have fixed, implicit goals.
- We want agents with variable goals.
- Forming plans to achieve goals is later topic.

Example:
- **Agent**: robot maid
- **Environment**: house & people.
- **Goals**: clean clothes, tidy room, table laid, etc
Goal-Based Agents

Diagram showing the flow of information from an agent to its environment through state, sensors, actuators, and goals.
Utility-Based Agents

- Agents so far have had a single goal.
- Agents may have to juggle conflicting goals.
- Need to optimise utility over a range of goals.
- **Utility**: measure of *goodness* (a real number).
- Combine with probability of success to get *expected utility*.

Example:
- **Agent**: automatic car.
- **Environment**: roads, vehicles, signs, etc.
- **Goals**: stay safe, reach destination, be quick, obey law, save fuel, etc.
We will not be covering utility-based agents, but this topic is discussed in Russell & Norvig, Chapters 16 and 17.
Learning Agents

How do agents improve their performance in the light of experience?

- Generate problems which will test performance.
- Perform activities according to rules, goals, model, utilities, etc.
- Monitor performance and identify non-optimal activity.
- Identify and implement improvements.

We will not be covering learning agents, but this topic is discussed in Russell & Norvig, Chapters 18-21.
Mid Lecture Exercise

Consider a chess playing program. What sort of agent would it need to be?
Solution

• **Simple-reflex agent:** but some actions require some memory (e.g. castling in chess - http://en.wikipedia.org/wiki/Castling).

• **Model-based reflex agent:** but needs to reason about future.

• **Goal-based agent:** but only has one goal.

• **Utility-based agent:** might consider multiple goals with limited lookahead.
Types of Environment 1

- **Fully Observable vs. Partially Observable:**
 - Observable: agent's sensors describe environment fully. Playing chess with a blindfold.
- **Deterministic vs. Stochastic:**
 - Deterministic: next state fully determined by current state and agent's actions. Chess playing in a strong wind.

An environment may appear stochastic if it is only partially observable.
Types of Environment 2

• **Episodic vs. Sequential:**
 Episodic: next episode does not depend on previous actions.
 Mail-sorting robot *vs* crossword puzzle.

• **Static vs. Dynamic:**
 Static: environment unchanged while agent deliberates.
 Robot car *vs* chess.
 Crossword puzzle *vs* tetris.
Types of Environment 3

- **Discrete vs. Continuous:**
 Discrete: percepts, actions and episodes are discrete.
 Chess *vs* robot car.

- **Single Agent vs. Multi-Agent:**
 How many objects must be modelled as agents.
 Crossword *vs* poker.

Element of choice over which objects are considered agents.
Types of Environment 4

• An agent might have any combination of these properties:
 – from “benign” (i.e., fully observable, deterministic, episodic, static, discrete and single agent)
 – to “chaotic” (i.e., partially observable, stochastic, sequential, dynamic, continuous and multi-agent).

• What are the properties of the environment that would be experienced by
 – a mail-sorting robot?
 – an intelligent house?
 – a car-driving robot?
Summary

- Simple reflex agents
- Model-based reflex agents
- Goal-based agents
- Utility-based agents
- Learning agents
- Properties of environments