Inf2D 01: Intelligent Agents and their Environments

Vaishak Belle

School of Informatics, University of Edinburgh

15/01/19

informatics

Slide Credits: Jacques Fleuriot, Michael Rovatsos, Michael Herrmann
Structure of Intelligent Agents

An agent:

- Perceives its environment,
- Through its sensors,
- Then achieves its goals
- By acting on its environment via actuators.
Structure of Intelligent Agents

Environment

Agent

Goals

Sensations

Actions
Examples of Agents 1

- **Agent**: mail sorting robot
- **Environment**: conveyor belt of letters
- **Goals**: route letter into correct bin
- **Percepts**: array of pixel intensities
- **Actions**: route letter into bin

Side info: https://en.wikipedia.org/wiki/Mail_sorter
Examples of Agents 2

- **Agent:** intelligent house
- **Environment:**
 - occupants enter and leave house,
 - occupants enter and leave rooms;
 - daily variation in outside light and temperature
- **Goals:** occupants warm, room lights are on when room is occupied, house energy efficient
- **Percepts:** signals from temperature sensor, movement sensor, clock, sound sensor
- **Actions:** room heaters on/off, lights on/off

Examples of Agents 3

- **Agent**: autonomous car.
- **Environment**: streets, other vehicles, pedestrians, traffic signals/lights/signs.
- **Goals**: safe, fast, legal trip.
- **Percepts**: camera, GPS signals, speedometer, sonar.
- **Actions**: steer, accelerate, brake.

Side info: https://en.wikipedia.org/wiki/Autonomous_car
Simple Reflex Agents

- Action depends only on immediate percepts.
- Implement by condition-action rules.
- Example:
 - **Agent**: Mail sorting robot
 - **Environment**: Conveyor belt of letters
 - **Rule**: e.g. \(\text{city}=\text{Edinburgh} \rightarrow \text{put Scotland bag}\)

Simple Reflex Agents

The diagram illustrates the interaction between an **Agent** and an **Environment**. The Agent processes sensory information through **Condition-action rules** to determine its current state. The state then influences the selection of an **action** through a matching process with the rules.

```plaintext
function SIMPLE-REFLEX-AGENT(percept)
returns action

  persistent: rules (set of condition-action rules)

  state ← INTERPRET-INPUT(percept)
  rule ← RULE-MATCH(state, rules)
  action ← rule.ACTION

return action
```
Model-Based Reflex Agents

- Action may depend on history or unperceived aspects of the world.
-需 to maintain internal world model.
- Example:
 - Agent: robot vacuum cleaner
 - Environment: dirty room, furniture.
 - Model: map of room, which areas already cleaned.
 - Sensor/model trade-off.
Model-Based Agents

function REFLEX-AGENT-WITH-STATE(percept)
returns action

persistent: state, description of current world state
 model, description of how the next state depends on
 current state and action
 rules, a set of condition-action rules
 action, the most recent action, initially none

state ← UPDATE-STATE(state, action, percept, model)
rule ← RULE-MATCH(state, rules)
action ← rule.ACTION
return action
Goal-Based Agents

- Agents so far have fixed, implicit goals.
- We want agents with variable goals.
- Forming plans to achieve goals is later topic.
- Example:
 - Agent: household service robot
 - Environment: house & people.
 - Goals: clean clothes, tidy room, table laid, etc.
Goal-Based Agents

Diagram showing the interaction between an agent and its environment through sensors, actuators, state, and goals.
Utility-Based Agents

− Agents so far have had a single goal.
− Agents may have to juggle conflicting goals.
− Need to optimise utility over a range of goals.
− **Utility**: measure of *goodness* (a real number).
− Combine with probability of success to get *expected utility*.

− **Example**:

 ▶ **Agent**: automatic car.
 ▶ **Environment**: roads, vehicles, signs, etc.
 ▶ **Goals**: stay safe, reach destination, be quick, obey law, save fuel, etc.
Utility-Based Agents

We will not be covering utility-based agents, but this topic is discussed in Russell & Norvig, Chapters 16 and 17.
Learning Agents

How do agents improve their performance in the light of experience?

− Generate problems which will test performance.
− Perform activities according to rules, goals, model, utilities, etc.
− Monitor performance and identify non-optimal activity.
− Identify and implement improvements.

We will not be covering learning agents, but this topic is dealt with in several honours-level courses (see also R&N, Ch. 18-21).
Mid-Lecture Problem

Consider a chess playing program. What sort of agent would it need to be?
Solution(s)

- **Simple-reflex agent**: but some actions require some memory (e.g. castling in chess: http://en.wikipedia.org/wiki/Castling).
- **Model-based reflex agent**: but needs to reason about future.
- **Goal-based agent**: but only has one goal.
- **Utility-based agent**: might consider multiple goals with limited lookahead.
- **Learning agent**: Learns from experience or self-play
Types of Environment 1

– Fully Observable vs. Partially Observable:
 ▶ Full: agent’s sensors describe environment state fully.
 ▶ Partial: some parts of environment not visible, noisy sensors.

– Deterministic vs. Stochastic:
 ▶ Deterministic: next state fully determined by current state and agent’s actions.
 ▶ Stochastic: random changes (can’t be predicted exactly).

An environment may appear stochastic if it is only partially observable.
Types of Environment 2

– Episodic vs. Sequential:
 ▶ Episodic: next action does not depend on previous actions.
 ▶ Mail-sorting robot vs. crossword puzzle.

– Static vs. Dynamic:
 ▶ Static: environment unchanged while agent deliberates.
 ▶ Crossword puzzle vs. chess.
 ▶ Industrial robot vs. robot car
Types of Environment 3

- **Discrete vs. Continuous:**
 - Discrete: percepts, actions and episodes are discrete.
 - Chess vs. robot car.

- **Single Agent vs. Multi-Agent:**
 - How many objects must be modelled as agents.
 - Crossword vs. poker.

Element of choice over which objects are considered agents.
Types of Environment 4

- An agent may have any combination of these properties:
 - from “benign” (i.e., fully observable, deterministic, episodic, static, discrete and single agent)
 - to “chaotic” (i.e., partially observable, stochastic, sequential, dynamic, continuous and multi-agent).

- What are the properties of the environment that would be experienced by
 - a mail-sorting robot?
 - an intelligent house?
 - a car-driving robot?
Summary

- Simple reflex agents
- Model-based reflex agents
- Goal-based agents
- Utility-based agents
- Learning agents
- Properties of environments