Informatics 2D – Reasoning and Agents Semester 2, 2019–2020

Alex Lascarides alex@inf.ed.ac.uk

Lecture 28 – Dynamic Bayesian Networks 24th March 2020

informatic

Where are we?

Last time ...

- Inference in temporal models
- Discussed general model (forward-backward, Viterbi etc.)
- Specific instances: HMMs
- But what is the connection to Bayesian networks?

Today . . .

Dynamic Bayesian Networks

Dynamic Bayesian Networks

- ▶ We've already seen an example of a DBN—Umbrella World
- ▶ A DBN is a BN describing a temporal probability model that can have any number of state variables \mathbf{X}_t and evidence variables \mathbf{E}_t
- ► HMMs are DBNs with a single state and a single evidence variable
- But recall that one can combine a set of discrete (evidence or state) variables into a single variable (whose values are tuples).
- So every discrete-variable DBN can be described as a HMM.
- So why bother with DBNs?
- Because decomposing a complex system into constituent variables, as a DBN does, ameliorates sparseness in the temporal probability model

informatics

Constructing DBNs

- We have to specify prior distribution of state variables $P(X_0)$, transition model $P(X_{t+1}|X_t)$, and sensor model $P(E_t|X_t)$
- Also, we have to fix topology of nodes
- Stationarity assumption most convenient to specify topology for first slice
- Umbrella world example:

An example

- ightharpoonup Consider a battery-driven robot moving in the $X \times Y$ plane
- Let $\mathbf{X}_t = (X_t, Y_t)$ and $\dot{\mathbf{X}}_t = (\dot{X}_t, \dot{Y}_t)$ state variables for position and velocity, and \mathbf{Z}_t measurements of position (e.g. GPS)
- Add Battery_t for battery charge level and BMeter_t for the measurement of it
- ▶ We obtain the following basic model:

Modelling failure

- Assume Battery_t and BMeter_t take on discrete values (e.g. integer between 0 and 5)
- ► These variables should be identically distributed (CPT=identity matrix) unless error creeps in
- One way to model error is through Gaussian error model, i.e. a small Gaussian error is added to the meter reading
- ► We can approximate this also for the discrete case through an appropriate distribution
- ▶ But problem is usually much worse: sensor failure rather than inaccurate measurements

Transient failure

- Transient failure: sensor occasionally sends inaccurate data
- Robot example: after 20 consecutive readings of 5 suddenly $BMeter_{21} = 0$
- ▶ In Gaussian error model belief about Battery₂₁ depends on:
 - ▶ Sensor model: $P(BMeter_{21} = 0 | Battery_{21})$ and
 - Prediction model: $P(Battery_{21}|BMeter_{1:20})$
- ▶ If probability of large sensor error is smaller than sudden transition to 0, then with high probability battery is considered empty
- A measurement of zero at t = 22 will make this (almost) certain
- After a reading of 5 at t = 23 the probability of full battery will go back to high level
- But robot made completely wrong judgement . . .

informatic

Transient failure

Curves for prediction depending on whether $BMeter_t$ is only 0 for t = 22/23 or whether it stays 0 indefinitely

Transient failure model

- To handle failure properly, sensor model must include possibility of failure
- Simplest failure model: assign small probability to incorrect values, e.g. $P(BMeter_t = 0|Battery_t = 5) = 0.03$
- ▶ When faced with 0 reading, provided that predicted probability of empty battery is much less than 0.03, best explanation is failure
- ► This model is much less susceptible to failure, because an explanation is available
- However, it cannot cope with persistent failure either

Transient failure model

- ► Handling transient failure with explicit error models
- In case of permanent failure the robot will (wrongly) believe the battery is empty

Persistent failure

- Persistent failure models describe how sensor behaves under normal conditions and after failure
- Add additional variable BMBroken, and CPT to next BMBroken state has a very small probability if not broken, but 1.0 if broken before (persistence arc)
- ▶ When *BMBroken* is true, *BMeter* will be 0 regardless of *Battery*:

informatics

Persistent failure

- ▶ In case of temporary blip probability of broken sensor rises quickly but goes back if 5 is observed
- In case of persistent failure, robot assumes discharge of battery at "normal" rate

Exact inference in DBNs

Since DBNs are BNs, we already have inference algorithms like variable elimination

Introduction Constructing DBNs

Inference in DRNs Summary

- Essentially DBN equivalent to infinite "unfolded" BN, but slices beyond required inference period are irrelevant
- Unrolling: reproducing basic time slice to accommodate observation sequence

Exact inference in DBNs

- Exact inference in DBNs is intractable, and this is a major problem.
- There are approximate inference methods that work well in practice.
- ► This issue is currently a hot topic in Al. . .

Summary

- Account of time and uncertainty complete
- Looked at general Markovian models
- ► HMMs
- DBNs as general case
- Quite intractable, but powerful
- Next time: Decision Making under Uncertainty