Informatics 2D – Reasoning and Agents
Semester 2, 2018–2019

Alex Lascarides
alex@inf.ed.ac.uk

Lecture 28 – Dynamic Bayesian Networks
26th March 2019
Where are we?

Last time . . .

- Inference in temporal models
- Discussed general model (forward-backward, Viterbi etc.)
- Specific instances: HMMs
- But what is the connection to Bayesian networks?

Today . . .

- Dynamic Bayesian Networks
Dynamic Bayesian Networks

- We’ve already seen an example of a DBN—Umbrella World
- A DBN is a BN describing a temporal probability model that can have *any number* of state variables X_t and evidence variables E_t
- HMMs are DBNs with a single state and a single evidence variable
- But recall that one can *combine* a set of discrete (evidence or state) variables into a single variable (whose values are tuples).
- So every discrete-variable DBN can be described as a HMM.
- So why bother with DBNs?
- Because *decomposing a complex system into constituent variables, as a DBN does, ameliorates sparseness in the temporal probability model*
Constructing DBNs

- We have to specify prior distribution of state variables $P(X_0)$, transition model $P(X_{t+1}|X_t)$, and sensor model $P(E_t|X_t)$.
- Also, we have to fix topology of nodes.
- Stationarity assumption most convenient to specify topology for first slice.
- Umbrella world example:
An example

- Consider a battery-driven robot moving in the $X \times Y$ plane
- Let $\mathbf{X}_t = (X_t, Y_t)$ and $\dot{\mathbf{X}}_t = (\dot{X}_t, \dot{Y}_t)$ state variables for position and velocity, and Z_t measurements of position (e.g. GPS)
- Add $Battery_t$ for battery charge level and $BMeter_t$ for the measurement of it
- We obtain the following basic model:
Modelling failure

- Assume $Battery_t$ and $BMeter_t$ take on discrete values (e.g. integer between 0 and 5)
- These variables should be identically distributed (CPT=identity matrix) unless error creeps in
- One way to model error is through Gaussian error model, i.e. a small Gaussian error is added to the meter reading
- We can approximate this also for the discrete case through an appropriate distribution
- But problem is usually much worse: sensor failure rather than inaccurate measurements
Transient failure

- **Transient failure**: sensor occasionally sends inaccurate data
- Robot example: after 20 consecutive readings of 5 suddenly \(BMeter_{21} = 0 \)
- In Gaussian error model belief about \(Battery_{21} \) depends on:
 - Sensor model: \(P(BMeter_{21} = 0 | Battery_{21}) \) and
 - Prediction model: \(P(Battery_{21} | BMeter_{1:20}) \)
- If probability of large sensor error is smaller than sudden transition to 0, then with high probability battery is considered empty
- A measurement of zero at \(t = 22 \) will make this (almost) certain
- After a reading of 5 at \(t = 23 \) the probability of full battery will go back to high level
- But robot made completely wrong judgement . . .
Transient failure

- Curves for prediction depending on whether $BMeter_t$ is only 0 for $t = 22/23$ or whether it stays 0 indefinitely
Transient failure model

- To handle failure properly, sensor model must include possibility of failure
- Simplest failure model: assign small probability to incorrect values, e.g. $P(BMeter_t = 0 | Battery_t = 5) = 0.03$
- When faced with 0 reading, provided that predicted probability of empty battery is much less than 0.03, best explanation is failure
- This model is much less susceptible to failure, because an explanation is available
- However, it cannot cope with persistent failure either
Transient failure model

- Handling transient failure with explicit error models
- In case of permanent failure the robot will (wrongly) believe the battery is empty

![Graph showing transient failure model with a dashed line representing the expected battery level and a solid line representing the actual battery level. The x-axis represents time steps, and the y-axis represents the expected battery level.]
Persistent failure

- **Persistent failure models** describe how sensor behaves under normal conditions and after failure.
- Add additional variable $BMBroken$, and CPT to next $BMBroken$ state has a very small probability if not broken, but 1.0 if broken before (persistence arc).
- When $BMBroken$ is true, $BMeter$ will be 0 regardless of $Battery$:

<table>
<thead>
<tr>
<th>B_0</th>
<th>$P(B_1)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>1.000</td>
</tr>
<tr>
<td>f</td>
<td>0.001</td>
</tr>
</tbody>
</table>

![Diagram of persistent failure models](image-url)
Persistent failure

- In case of temporary blip, probability of broken sensor rises quickly but goes back if 5 is observed.
- In case of persistent failure, robot assumes discharge of battery at “normal” rate.

![Graph showing probability of broken sensor over time.](image)
Exact inference in DBNs

- Since DBNs are BNs, we already have inference algorithms like variable elimination.
- Essentially DBN equivalent to infinite “unfolded” BN, but slices beyond required inference period are irrelevant.
- **Unrolling**: reproducing basic time slice to accommodate observation sequence.
Exact inference in DBNs

- Exact inference in DBNs is intractable, and this is a major problem.
- There are approximate inference methods that work well in practice.
- This issue is currently a hot topic in AI...
Account of time and uncertainty complete
Looked at general Markovian models
HMMs
DBNs as general case
Quite intractable, but powerful
Next time: Decision Making under Uncertainty