Where are we?

Last time . . .
- Time in reasoning about uncertainty
- Markov assumption, stationarity
- Algorithms for reasoning about temporal processes
- Filtering and prediction

Today . . .
- Time and uncertainty II

Smoothing

Formula for backward message:
\[P(e_{k+1:t} | x_k) = \sum_{x_{k+1}} P(e_{k+1} | x_{k+1}) P(e_{k+2:t} | x_{k+1}) P(x_{k+1} | x_k) \]

- First term is sensor model; third term is transition model; second is ‘recursive call’
- Define \(b_{k+1:t} = \text{BACKWARD}(b_{k+2:t}, e_{k+1:t}) \)
- The backward phase has to be initialised with \(b_{t+1:t} = P(e_{t+1:t} | x_t) = 1 \) (a vector of 1s) because probability of observing empty sequence is 1
- As before, all this is quite abstract, back to our example

Smoothing

- Smoothing is computation of distribution of past states given current evidence, i.e. \(P(X_k | e_{1:t}) \), \(1 \leq k < t \)
- Easiest to view as 2-step process (up to \(k \), then \(k+1 \) to \(t \))

\[
\begin{align*}
P(X_k | e_{1:t}) &= P(X_k | e_{1:k}, e_{k+1:t}) \\
&= \alpha P(X_k | e_{1:k}) P(e_{k+1:t} | X_k, e_{1:k}) \\
&= \alpha P(X_k | e_{1:k}) P(e_{k+1:t} | X_k) \\
&= \alpha f_{1:k} b_{k+1:t}
\end{align*}
\]
- Here “backward” message is \(b_{k+1:t} = P(e_{k+1:t} | X_k) \) analogous to forward message
Umbrella World: Compute $P(R_1|u_1, u_2)$

![Diagram of umbrella world]

We have $P(R_1|u_1, u_2) = \alpha P(R_1|u_1)P(u_2|R_1)$

So we'll need to remind ourselves of $P(R_1|u_1)$ from last lecture:

$P(R_1) = \sum R_0 P(R_1|R_0) P(R_0) = \langle 0.7, 0.3 \rangle \times 0.5 + \langle 0.3, 0.7 \rangle \times 0.5 = \langle 0.5, 0.5 \rangle$

\triangledown Update with evidence $U_1 = true$ yields:

$P(R_1|u_1) = \alpha P(u_1|R_1)P(R_1) = \alpha \langle 0.9, 0.2 \rangle \langle 0.5, 0.5 \rangle \approx \langle 0.818, 0.182 \rangle$

\triangledown Forward filtering process yielded $\langle 0.818, 0.182 \rangle$ for first term

\triangledown The second term can be obtained through backward recursion:

$P(u_2|R_1) = \sum R_2 P(u_2|R_2) P(R_2|R_1)$

$= (0.9 \times 1 \times \langle 0.7, 0.3 \rangle) + (0.2 \times 1 \times \langle 0.3, 0.7 \rangle) = \langle 0.69, 0.41 \rangle$

\triangledown Plugged into the above equation this yields

$P(R_1|u_1, u_2) = \alpha \langle 0.818, 0.182 \rangle \times \langle 0.69, 0.41 \rangle \approx \langle 0.883, 0.117 \rangle$

\triangledown So our confidence that it rained on Day 1 increases when we see the umbrella on the second day as well as the first.

\triangledown A simple improved version of this that stores results runs in linear time (forward-backward algorithm)

Finding the most likely sequence

\triangledown Suppose $[true, true, false, true, true]$ is the umbrella sequence for first five days, what is the most likely weather sequence that caused it?

\triangledown Could use smoothing procedure to find posterior distribution for weather at each step and then use most likely weather at each step to construct sequence

\triangledown NO! Smoothing considers distributions over individual time steps, but we must consider joint probabilities over all time steps

\triangledown Actual algorithm is based on viewing each sequence as path through a graph (nodes=states at each time step)

Smoothing Example Continued

$P(R_1|u_1, u_2) = \alpha P(R_1|u_1)P(u_2|R_1)$

\triangledown Forward filtering process yielded $\langle 0.818, 0.182 \rangle$ for first term

\triangledown The second term can be obtained through backward recursion:

$P(u_2|R_1) = \sum R_2 P(u_2|R_2) P(R_2|R_1)$

$= (0.9 \times 1 \times \langle 0.7, 0.3 \rangle) + (0.2 \times 1 \times \langle 0.3, 0.7 \rangle) = \langle 0.69, 0.41 \rangle$

\triangledown Plugged into the above equation this yields

$P(R_1|u_1, u_2) = \alpha \langle 0.818, 0.182 \rangle \times \langle 0.69, 0.41 \rangle \approx \langle 0.883, 0.117 \rangle$

\triangledown So our confidence that it rained on Day 1 increases when we see the umbrella on the second day as well as the first.

\triangledown A simple improved version of this that stores results runs in linear time (forward-backward algorithm)
Finding the most likely sequence

- There is a recursive relationship between most likely paths to x_{t+1} and most likely paths to each state x_t
 \[
 \max_{x_1, \ldots, x_t} P(x_1, \ldots, x_t, x_{t+1} | e_{1:t+1}) = \alpha P(e_{t+1} | x_{t+1}) \max_{x_t} (P(x_{t+1} | x_t) \max_{x_1, \ldots, x_{t-1}} P(x_1, \ldots, x_{t-1}, x_t | e_{1:t}))
 \]

- This is like filtering only that the forward message is replaced by
 \[
 m_{1:t} = \max_{x_1, \ldots, x_{t-1}} P(x_1, \ldots, x_{t-1}, X_t | e_{1:t})
 \]

- And summation is now replaced by maximisation

Finding the most likely sequence

- This algorithm (Viterbi algorithm) is similar to filtering
- Runs forward along sequence computing m message in each step
- Progress in example shown in part (b) of diagram above
- In the end it has probability for most likely sequence for reaching each final state

 Easy to determine overall most likely sequence

- Has to keep pointers from each state back to the best state that leads to it

Hidden Markov Models

- So far, we have seen a general model for temporal probabilistic reasoning (independent of transition/sensor models)
- In this and the following lecture we are going to look at more concrete models and applications
- **Hidden Markov Models (HMMs):** temporal probabilistic model in which state of the process is described by a single variable
- Like our umbrella example (single variable Rain_t)
- More than one variable can be accommodated, but only by combining them into a single “mega-variable”
- Structure of HMMs allows for a very simple and elegant matrix implementation of basic algorithms

Summary

- The forward-backward algorithm
- Finding the most likely sequence (Viterbi algorithm)
- Talked about HMMs
- HMMs: single state variable, simplifies algorithms (see other courses for these)
- Huge significance, for example in speech recognition:
 \[
 P(\text{words} | \text{signal}) = \alpha P(\text{signal} | \text{words}) P(\text{words})
 \]
- Vast array of applications, but also limits.
- Next time: **Dynamic Bayesian Networks**