Introduction Time and uncertainty Inference in temporal models

ng and Aganta

Informatics 2D – Reasoning and Agents Semester 2, 2019–2020

Alex Lascarides alex@inf.ed.ac.uk

informatics

Lecture 26 – Time and Uncertainty I 19th March 2020

Last time ...

Where are we?

- Completed our account of Bayesian Networks
- Dealt with methods for exact and approximate inference in BNs
- Enumeration, variable elimination, sampling, MCMC

Today ...

► Time and uncertainty I

		informatics			informatics
Informatics UoE	Informatics 2D	1	Informatics UoE	Informatics 2D	156
	States and observations Stationary processes and the Markov assumption			States and observations Stationary processes and the Markov assumption	

Time and uncertainty

States and observations

- So far we have only seen methods for describing uncertainty in static environments
- Every variable had a fixed value, we assumed that nothing changes during evidence collection or diagnosis
- Many practical domains involve uncertainty about processes that can be modelled with probabilistic methods
- Basic idea straightforward: imagine one BN model of the problem for every time step and reason about changes between them

- Adopted approach similar to situation calculus: series of snapshots (time slices) will be used to describe process of change
- Snapshots consist of observable random variables E_t and non-observable ones X_t
- For simplicity, we assume sets of (non)observable variables remain constant over time, but this is not necessary
- Observation at t will be $\mathbf{E}_t = \mathbf{e}_t$ for some set of values \mathbf{e}_t
- Assume that states start at t = 0 and evidence starts arriving at t = 1

informatics

States and observations

Example: underground security guard wants to predict whether it is raining but only observes every morning whether director comes in carrying umbrella

States and observations

Stationary processes and the Markov assumption

- For each day, E_t contains variable U_t (whether the umbrella appears) and X_t contains state variable R_t (whether it's raining)
- Evidence U_1, U_2, \ldots , state variables R_0, R_1, \ldots
- Use notation a : b to denote sequences of integers, e.g. U₁, U₂, U₃ = U_{1:3}

Time and uncertainty

Inference in temporal models

Stationary processes and the Markov assumption

Time and uncertainty

Inference in temporal models

ntroduction

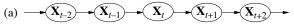
- How do we specify dependencies among variables?
- Natural to arrange them in temporal order (causes usually precede effects)

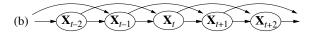
States and observations

Stationary processes and the Markov assumption

- Problem: set of variables is unbounded (one for each time slice), so we would have to
 - specify unbounded number of conditional probability tables
 - specify an unbounded number of parents for each of these
- Solution to first problem: we assume that changes are caused by a stationary process – the laws that govern the process do not change themselves over time (not to be confused with "static")
- For example, $\mathbf{P}(U_t | Parents(U_t))$ does not depend on t

		informatics			Informatics
Informatics UoE	Informatics 2D	159	Informatics UoE	Informatics 2D	160
	States and observations Stationary processes and the Markov assump	tion		States and observations Stationary processes and the Markov assumption	


• School of ...


informatics

161

Stationary processes and the Markov assumption

- Solution to second problem: Markov assumption the current state only depends on a finite history of previous states
- Such processes are called Markov processes or Markov chains
- Simplest form: first-order Markov processes, every state depends only on predecessor state
- We can write this as $\mathbf{P}(\mathbf{X}_t | \mathbf{X}_{0:t-1}) = \mathbf{P}(\mathbf{X}_t | \mathbf{X}_{t-1})$
- > This conditional distribution is called **transition model**
- Difference between first-order and second-order Markov processes:

Stationary processes and the Markov assumption

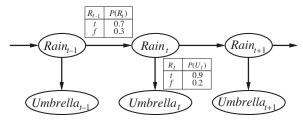
Additionally, we will assume that evidence variables depend only on current state:

$$\mathsf{P}(\mathsf{E}_t | \mathsf{X}_{0:t}, \mathsf{E}_{0:t-1}) = \mathsf{P}(\mathsf{E}_t | \mathsf{X}_t)$$

- This is called the sensor model (observation model) of the system
- Notice direction of dependence: state causes evidence (but inference goes in other direction!)
- In umbrella world, rain causes umbrella to appear
- Finally, we need a prior distribution over initial states $P(X_0)$
- ▶ These three distributions give a specification of the complete JPD:

$$\mathbf{P}(\mathbf{X}_0, \mathbf{X}_1, \dots, \mathbf{X}_t, \mathbf{E}_1, \dots, \mathbf{E}_t) = \mathbf{P}(\mathbf{X}_0) \prod_{i=1}^t \mathbf{P}(\mathbf{X}_i | \mathbf{X}_{i-1}) \mathbf{P}(\mathbf{E}_i | \mathbf{X}_i)$$

162


• School of

Introduction Time and uncertainty Inference in temporal models

States and observations Stationary processes and the Markov assumption

Umbrella world example

- ► Bayesian network structure and conditional distributions
- Transition model P(Rain_t|Rain_{t-1}), sensor model P(Umbrella_t|Rain_t)

Rain depends only on rainfall on previous day, whether this is reasonable depends on domain!

Stationary processes and the Markov assumption

- If Markov assumptions seems too simplistic for some domains (and hence, inaccurate), two measures can be taken
 - We can increase the order of the Markov process model
 - We can increase the set of state variables
- ▶ For example, add information about season, pressure or humidity
- But this will also increase prediction requirements (problem alleviated if we add new sensors)
- Example: dependency of predicting movement of robot on battery power level
 - add battery level sensor

		informatics			informatics
Informatics UoE	Informatics 2D	163	Informatics UoE	Informatics 2D	164
Introduction Time and uncertainty			Introduction Time and uncertainty		
Inference in temporal models Summary			Inference in temporal models Summary		

Inference tasks in temporal models

- Now that we have described general model, we need inference methods for a number of tasks
- Filtering/monitoring: compute belief state given evidence to date, i.e. P(X_t|e_{1:t})
- Interestingly, an almost identical calculation yields the likelihood of the evidence sequence P(e_{1:t})
- Prediction: computing posterior distribution over a future state given evidence to date: P(X_{t+k}|e_{1:t})
- Smoothing/hindsight: compute posterior distribution of past state, P(X_k|e_{1:t}), 0 ≤ k < t</p>
- Most likely explanation: compute arg max_{x1:t} P(x1:t|e1:t) i.e. the most likely sequence of states given evidence

Filtering and prediction

Done by recursive estimation: compute result for t+1 by doing it for t and then updating with new evidence e_{t+1}. That is, for some function f:

$$\mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) = f(\mathbf{e}_{t+1}, \mathbf{P}(\mathbf{X}_t|\mathbf{e}_{1:t}))$$

$$\begin{aligned} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t+1}) &= \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}, \mathbf{e}_{t+1}) \\ &= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}, \mathbf{e}_{1:t}) \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}) & (\text{Bayes' rule}) \\ &= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{e}_{1:t}) & (\text{Markov property}) \\ &= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \sum_{\mathbf{x}_{t}} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_{t}, \mathbf{e}_{1:t}) P(\mathbf{x}_{t}|\mathbf{e}_{1:t}) & (\text{conditioning}) \\ &= \alpha \mathbf{P}(\mathbf{e}_{t+1}|\mathbf{X}_{t+1}) \sum_{\mathbf{x}_{t}} \mathbf{P}(\mathbf{X}_{t+1}|\mathbf{x}_{t}) P(\mathbf{x}_{t}|\mathbf{e}_{1:t}) & (\text{Markov assumption}) \end{aligned}$$

• $P(\mathbf{e}_{t+1}|\mathbf{X}_{t+1})$ is sensor model; $P(\mathbf{X}_{t+1}|\mathbf{x}_t)$ is transition model, $P(\mathbf{x}_t|\mathbf{e}_{1:t})$ is recursive bit (current state distribution).

Informatics UoE Informatics 2D

informatics

Introduction Time and uncertainty Inference in temporal models

Filtering and prediction

- We can view estimate P(X_t|e_{1:t}) as "message" f_{1:t} propagated and updated through sequence
- We write this process as $\mathbf{f}_{1:t+1} = \alpha \text{FORWARD}(\mathbf{f}_{1:t}, \mathbf{e}_{t+1})$
- Time and space requirements for this are constant regardless of length of sequence
- This is extremely important for agent design!
- All this is very abstract, let's look at an example

Example Compute $\mathbf{P}(R_2|u_{1:2})$, $U_1 = true$, $U_2 = true$

- Suppose $P(R_0) = \langle 0.5, 0.5 \rangle$
- Recursive equations:

$$\mathbf{P}(R_2|u_1, u_2) = \alpha \mathbf{P}(u_2|R_2) \sum_{r_1} \mathbf{P}(R_2|r_1) P(r_1|u_1)$$

Time and uncertaint

Inference in temporal models

$$\begin{aligned} \mathbf{P}(R_1|u_1) &= & \alpha' \mathbf{P}(u_1|R_1) \sum_{r_0} \mathbf{P}(R_1|r_0) P(r_0) \\ &= & \alpha' \langle 0.9, 0.2 \rangle (\langle 0.7, 0.3 \rangle \times 0.5 + \langle 0.3, 0.7 \rangle \times 0.5) \\ &= & \alpha' \langle 0.9, 0.2 \rangle \langle 0.5, 0.5 \rangle \\ &= & \langle 0.818, 0.182 \rangle \end{aligned}$$

$$\mathbf{P}(R_2|u_1, u_2) = \alpha \langle 0.9, 0.2 \rangle (\langle 0.7, 0.3 \rangle \times 0.818 + \langle 0.3, 0.7 \rangle \times 0.182) \\
= \alpha \langle 0.9, 0.2 \rangle \langle 0.627, 0.373 \rangle \\
= \alpha \langle 0.565, 0.075 \rangle \\
= \langle 0.883, 0.117 \rangle$$

informatics

Informatics UoE	Informatics 2D	167	Informatics UoE	Informatics 2D	168
Introduction			Introduction		
Time and uncertainty			Time and uncertainty		
Inference in temporal models			Inference in temporal models		
Summary			Summary		

Filtering and prediction

- Prediction works like filtering without new evidence
- Computation involves only transition model and not sensor model:

$$\mathsf{P}(\mathsf{X}_{t+k+1}|\mathbf{e}_{1:t}) = \sum_{\mathsf{x}_{t+k}} \mathsf{P}(\mathsf{X}_{t+k+1}|\mathsf{x}_{t+k}) P(\mathsf{x}_{t+k}|\mathbf{e}_{1:t})$$

- ► As we predict further and further into the future, distribution of rain converges to (0.5, 0.5)
- This is called the stationary distribution of the Markov process (the more uncertainty, the quicker it will converge)

Filtering and prediction

- We can use the above method to compute likelihood of evidence sequence P(e_{1:t})
- Useful to compare different temporal models
- Use a likelihood message $I_{1:t} = P(X_t, e_{1:t})$ and compute

$$\mathbf{I}_{1:t+1} = \alpha \text{FORWARD}(\mathbf{I}_{1:t}, \mathbf{e}_{t+1})$$

• Once we compute $I_{1:t}$, summing out yields likelihood

$$L_{1:t} = P(\mathbf{e}_{1:t}) = \sum_{\mathbf{x}_t} \mathbf{I}_{1:t}(\mathbf{x}_t, \mathbf{e}_{1:t})$$

informatics

informatics

Introduction Time and uncertainty Inference in temporal models Summary

Summary

- Time and uncertainty (states and observations)
- Stationarity and Markov assumptions
- Inference in temporal models
- ► Filtering and prediction
- ► Next time: **Time and Uncertainty II**

informatics

171

Informatics LIDE Informatics 2D		
	Informatics UoE	Informatics 2D