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Where are we?

Last time . . .

! Introduced Bayesian networks

! Allow for compact representation of JPDs

! Methods for efficient representations of CPTs

! But how hard is inference in BNs?

Today . . .

! Inference in Bayesian networks
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Inference in BNs

! Basic task: compute posterior distribution for set of query
variables given some observed event (i.e. assignment of values to
evidence variables)

! Formally: determine P(X |e) given query variables X, evidence
variables E (and non-evidence or hidden variables Y)

! Example:
P(Burglary |JohnCalls = true,MaryCalls = true) = ⟨0.284, 0.716⟩

! First we will discuss exact algorithms for computing posterior
probabilities then approximate methods later
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Inference by enumeration

! We have seen that any conditional probability can be computed
from a full JPD by summing terms

! P(X |e) = αP(X , e) = α
∑

y P(X , e, y)

! Since BN gives complete representation of full JPD, we must be
able to answer a query by computing sums of products of
conditional probabilities from the BN

! Consider query
P(Burglary |JohnCalls = true,MaryCalls = true) = P(B |j ,m)

! P(B |j ,m) = αP(B , j ,m) = α
∑

e

∑
a P(B , e, a, j ,m)
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Inference by enumeration

! Recall P(x1, . . . , xn) =
∏n

i=1 P(xi |parents(Xi ))

! We can use CPTs to simplify this exploiting BN structure

! For Burglary = true:

P(b|j ,m) = α
∑

e

∑

a

P(b)P(e)P(a|b, e)P(j |a)P(m|a)

! But we can improve efficiency of this by moving terms outside
that don’t depend on sums

P(b|j ,m) = αP(b)
∑

e

P(e)
∑

a

P(a|b, e)P(j |a)P(m|a)

! To compute this, we need to loop through variables in order and
multiply CPT entries; for each summation we need to loop over
variable’s possible values
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Example

! New burglar alarm has been fitted, fairly reliable but sometimes
reacts to earthquakes

! Neighbours John and Mary promise to call when they hear alarm

! John sometimes mistakes phone for alarm, and Mary listens to
loud music and sometimes doesn’t hear alarm

B
T
T
F
F

E
T
F
T
F

P(A)
.95

.29

.001

.001
P(B)

.002
P(E)

Alarm

Earthquake

MaryCallsJohnCalls

Burglary

A P(J)
T
F

.90

.05

A P(M)
T
F

.70

.01

.94
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The variable elimination algorithm

! Enumeration method is computationally quite hard.

! You often compute the same thing several times;
e.g. P(j |a)P(m|a) and P(j |¬a)P(m|¬a) for each value of e

! Evaluation of expression shown in the following tree:

P(j|a)
.90

P(m|a)
.70 .01

P(m|¬a)

.05
P( j|¬a) P( j|a)

.90

P(m|a)
.70 .01

P(m|¬a)

.05
P( j|¬a)

P(b)
.001

P(e)
.002

P(¬e)
.998

P(a|b,e)
.95 .06

P(¬a|b,¬e)
.05
P(¬a|b,e)

.94
P(a|b,¬e)
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The variable elimination algorithm

! Idea of variable elimination: avoid repeated calculations

! Basic idea: store results after doing calculation once

! Works bottom-up by evaluating subexpressions
! Assume we want to evaluate

P(B|j , m) = αP(B)︸ ︷︷ ︸
f1(B)

∑

e

P(e)︸︷︷︸
f2(E)

∑

a

P(a|B, e)︸ ︷︷ ︸
f3(A,B,E)

P(j |a)︸ ︷︷ ︸
f4(A)

P(m|a)︸ ︷︷ ︸
f5(A)

! We’ve annotated each part with a factor.
! A factor is a matrix, indexed with its argument variables. E.g:

! Factor f5(A) corresponds to P(m|a) and depends just on A because
m is fixed (it’s a 2 × 1 matrix).

f5(A) = ⟨P(m|a), P(m|¬a)⟩
! f3(A, B, E ) is a 2 × 2 × 2 matrix for P(a|B, e)
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The variable elimination algorithm
P(B |j ,m) = αf1(B) × ∑

e f2(E )
∑

a f3(A,B ,E ) × f4(A) × f5(A)

! Summing out A produces a 2 × 2 matrix
(via pointwise product):
f6(B ,E ) =

∑
a f3(A,B ,E ) × f4(A) × f5(A)

= (f3(a,B ,E ) × f4(a) × f5(a))+
(f3(¬a,B ,E ) × f4(¬a) × f5(¬a))

! So now we have
P(B |j ,m) = αf1(B) × ∑

e f2(E ) × f6(B ,E )

! Sum out E in the same way:
f7(B) = (f2(e) × f6(B , e)) + (f2(¬e) × f6(B ,¬e))

! Using f1(B) = P(B), we can finally compute

P(B |j ,m) = αf1(B) × f7(B)

! Remains to define pointwise product and summing out
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An example

! Pointwise product yields product for union of variables in its
arguments:

f(X1 . . . Xi , Y1 . . . Yj , Z1 . . .Zk) = f1(X1 . . .Xi , Y1 . . . Yj)f2(Y1 . . . Yj , Z1 . . .Zk)

A B f1(A, B) B C f2(B, C ) A B C f(A, B, C )
T T 0.3 T T 0.2 T T T 0.3 × 0.2
T F 0.7 T F 0.8 T T F 0.3 × 0.8
F T 0.9 F T 0.6 T F T 0.7 × 0.6
F F 0.1 F F 0.4 T F F 0.7 × 0.4

F T T 0.9 × 0.2
F T F 0.9 × 0.8
F F T 0.1 × 0.6
F F F 0.1 × 0.4

! For example f(T ,T ,F ) = f1(T ,T ) × f2(T ,F )
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An example

! Summing out is similarly straightforward

! Trick: any factor that does not depend on the variable to be
summed out can be moved outside the summation process

! For example

∑

e

f2(E ) × f3(A, B, E ) × f4(A) × f5(A)

= f4(A) × f5(A) ×
∑

e

f2(E ) × f3(A, B, E )

! Matrices are only multiplied when we need to sum out a variable
from the accumulated product
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Another Example: P(J |b) = ⟨P(j |b), P(¬j |b)⟩

P(J|b) = α
∑

e

∑
a

∑
m P(J, b, e, a,m) prod., marg.

= α
∑

e

∑
a

∑
m P(b)P(e)P(a|b, e)P(J|a)P(m|a) cond. indep.

= α′ ∑
e P(e)︸︷︷︸

f1(E )

∑
a P(a|b, e)︸ ︷︷ ︸

f2(A,E )

P(J|a)︸ ︷︷ ︸
f3(J,A)

∑

m

P(m|a)
︸ ︷︷ ︸

= 1

move terms

= α′ ∑
e f1(E )

2 × 1

∑
a f2(A,E )

2 × 2
f3(J,A)
2 × 2

= α′ ∑
e f1(E )

2 × 1
f4(J,E )
2 × 2

= α′f5(J)

Can eliminate all variables that aren’t ancestors of query or evidence
variables!
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Summary

! Inference in Bayesian Networks

! Exact methods: enumeration, variable elimination algorithm

! Computationally intractable in the worst case

! Next time: Approximate inference in Bayesian Networks
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