Introduction Inference by enumeration The variable elimination algorithm

Where are we?

Informatics 2D – Reasoning and Agents Semester 2, 2019–2020

Alex Lascarides alex@inf.ed.ac.uk

informatics

Lecture 24 – Exact Inference in Bayesian Networks 13th March 2020

Last time ...

- Introduced Bayesian networks
- Allow for compact representation of JPDs
- Methods for efficient representations of CPTs
- But how hard is inference in BNs?

Today . . .

► Inference in Bayesian networks

	informati	cs	inför	matics
Informatics UoE	Informatics 2D	1 Informatics UoE	Informatics 2D	128
Introduction		Introduction		
Inference by enumeration		Inference by enumeration		
The variable elimination algorithm		The variable elimination algorithm		
Summary		Summarv		

Inference in BNs

- Basic task: compute posterior distribution for set of query variables given some observed event (i.e. assignment of values to evidence variables)
- Formally: determine P(X|e) given query variables X, evidence variables E (and non-evidence or hidden variables Y)
- Example:
 P(Burglary|JohnCalls = true, MaryCalls = true) = (0.284, 0.716)
- First we will discuss exact algorithms for computing posterior probabilities then approximate methods later

Inference by enumeration

- We have seen that any conditional probability can be computed from a full JPD by summing terms
- $\blacktriangleright \mathbf{P}(X|\mathbf{e}) = \alpha \mathbf{P}(X, \mathbf{e}) = \alpha \sum_{\mathbf{y}} \mathbf{P}(X, \mathbf{e}, \mathbf{y})$
- Since BN gives complete representation of full JPD, we must be able to answer a query by computing sums of products of conditional probabilities from the BN
- Consider query
 P(Burglary|JohnCalls = true, MaryCalls = true) = P(B|j, m)
- $\mathbf{P}(B|j,m) = \alpha \mathbf{P}(B,j,m) = \alpha \sum_{e} \sum_{a} \mathbf{P}(B,e,a,j,m)$

informatics

130

Inference by enumeration

- Recall $P(x_1, \ldots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$
- We can use CPTs to simplify this exploiting BN structure
- For Burglary = true:

$$P(b|j,m) = \alpha \sum_{e} \sum_{a} P(b)P(e)P(a|b,e)P(j|a)P(m|a)$$

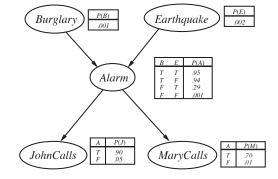
But we can improve efficiency of this by moving terms outside that don't depend on sums

$$P(b|j,m) = lpha P(b) \sum_{e} P(e) \sum_{a} P(a|b,e) P(j|a) P(m|a)$$

To compute this, we need to loop through variables in order and multiply CPT entries; for each summation we need to loop over variable's possible values

Example

- New burglar alarm has been fitted, fairly reliable but sometimes reacts to earthquakes
- Neighbours John and Mary promise to call when they hear alarm
- John sometimes mistakes phone for alarm, and Mary listens to loud music and sometimes doesn't hear alarm

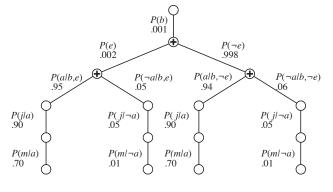


Informatics UoE	Informatics 2D	131	Informatics UoE	Informatics 2D	132
Introduction			Introduction		
Inference by enumeration			Inference by enumeration		
The variable elimination algorithm			The variable elimination algorithm		
Summary			Summary		

informatics

The variable elimination algorithm

- Enumeration method is computationally quite hard.
- You often compute the same thing several times; e.g. P(j|a)P(m|a) and P(j|¬a)P(m|¬a) for each value of e
- Evaluation of expression shown in the following tree:



The variable elimination algorithm

- ► Idea of variable elimination: avoid repeated calculations
- Basic idea: store results after doing calculation once
- Works bottom-up by evaluating subexpressions
- Assume we want to evaluate

$$\mathbf{P}(B|j,m) = \alpha \underbrace{\mathbf{P}(B)}_{\mathbf{f}_1(B)} \sum_{e} \underbrace{\mathbf{P}(e)}_{\mathbf{f}_2(E)} \sum_{a} \underbrace{\mathbf{P}(a|B,e)}_{\mathbf{f}_3(A,B,E)} \underbrace{\mathbf{P}(j|a)}_{\mathbf{f}_4(A)} \underbrace{\mathbf{P}(m|a)}_{\mathbf{f}_5(A)}$$

- We've annotated each part with a **factor**.
- A factor is a **matrix**, indexed with its argument variables. E.g.
 - Factor f₅(A) corresponds to P(m|a) and depends just on A because m is fixed (it's a 2 × 1 matrix).

$$\mathbf{f}_5(A) = \langle P(m|a), P(m|\neg a)
angle$$

• $\mathbf{f}_3(A, B, E)$ is a 2 × 2 × 2 matrix for $\mathbf{P}(a|B, e)$

informatics

informatics

The variable elimination algorithm $\mathbf{P}(B|j,m) = \alpha \mathbf{f}_1(B) \times \sum_e \mathbf{f}_2(E) \sum_a \mathbf{f}_3(A,B,E) \times \mathbf{f}_4(A) \times \mathbf{f}_5(A)$

- Summing out A produces a 2 × 2 matrix (via **pointwise product**): $\mathbf{f}_6(B, E) = \sum_a \mathbf{f}_3(A, B, E) \times \mathbf{f}_4(A) \times \mathbf{f}_5(A)$ $= (\mathbf{f}_3(a, B, E) \times \mathbf{f}_4(a) \times \mathbf{f}_5(a))+$
 - $= (\mathbf{f}_3(a, B, E) \times \mathbf{f}_4(a) \times \mathbf{f}_5(a)) + (\mathbf{f}_3(\neg a, B, E) \times \mathbf{f}_4(\neg a) \times \mathbf{f}_5(\neg a))$
- So now we have $\mathbf{P}(B|j,m) = \alpha \mathbf{f}_1(B) \times \sum_e \mathbf{f}_2(E) \times \mathbf{f}_6(B,E)$
- Sum out *E* in the same way: $\mathbf{f}_7(B) = (\mathbf{f}_2(e) \times \mathbf{f}_6(B, e)) + (\mathbf{f}_2(\neg e) \times \mathbf{f}_6(B, \neg e))$
- Using $\mathbf{f}_1(B) = \mathbf{P}(B)$, we can finally compute

$$\mathbf{P}(B|j,m) = \alpha \mathbf{f}_1(B) \times \mathbf{f}_7(B)$$

Remains to define pointwise product and summing out

An example

Pointwise product yields product for union of variables in its arguments:

$$\mathbf{f}(X_1\ldots X_i, Y_1\ldots Y_j, Z_1\ldots Z_k) = \mathbf{f}_1(X_1\ldots X_i, Y_1\ldots Y_j)\mathbf{f}_2(Y_1\ldots Y_j, Z_1\ldots Z_k)$$

A	В	$\mathbf{f}_1(A,B)$	В	С	$\mathbf{f}_2(B,C)$	A	В	С	f(A, B, C)
Т	Т	0.3	Т	Т	0.2	Т	Т	Т	0.3 imes 0.2
Т	F	0.7	Т	F	0.8	Т	Т	F	0.3 imes 0.8
F	Т	0.9	F	Т	0.6	Т	F	Т	0.7 imes 0.6
F	F	0.1	F	F	0.4	Т	F	F	0.7×0.4
						F	Т	Т	0.9 imes 0.2
						F	Т	F	0.9 imes 0.8
						F	F	Т	0.1×0.6
						F	F	F	0.1 imes 0.4

► For example
$$\mathbf{f}(T, T, F) = \mathbf{f}_1(T, T) \times \mathbf{f}_2(T, F)$$

	Ç				
Informatics UoE	Informatics 2D	135	Informatics UoE	Informatics 2D	136
Introduction			Introduction		
Inference by enumeration			Inference by enumeration		
The variable elimination algorithm			The variable elimination algorithm		
Summary			Summary		

informatics

An example

- Summing out is similarly straightforward
- Trick: any factor that does not depend on the variable to be summed out can be moved outside the summation process
- ► For example

$$\sum_{e} \mathbf{f}_{2}(E) \times \mathbf{f}_{3}(A, B, E) \times \mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A)$$
$$= \mathbf{f}_{4}(A) \times \mathbf{f}_{5}(A) \times \sum_{e} \mathbf{f}_{2}(E) \times \mathbf{f}_{3}(A, B, E)$$

 Matrices are only multiplied when we need to sum out a variable from the accumulated product

Another Example: $\mathbf{P}(J|b) = \langle P(j|b), P(\neg j|b) \rangle$

$$\begin{split} \mathbf{P}(J|b) &= \alpha \sum_{e} \sum_{a} \sum_{m} \mathbf{P}(J, b, e, a, m) & \text{prod., marg.} \\ &= \alpha \sum_{e} \sum_{a} \sum_{m} \mathcal{P}(b) \mathcal{P}(e) \mathcal{P}(a|b, e) \mathbf{P}(J|a) \mathcal{P}(m|a) & \text{cond. indep.} \\ &= \alpha' \sum_{e} \underbrace{\mathcal{P}(e)}_{\mathbf{f}_{1}(E)} \sum_{a} \underbrace{\mathcal{P}(a|b, e)}_{\mathbf{f}_{2}(A, E)} \underbrace{\mathbf{P}(J|a)}_{\mathbf{f}_{3}(J, A)} \underbrace{\sum_{m} \mathcal{P}(m|a)}_{=1} & \text{move terms} \\ &= \alpha' \sum_{e} \mathbf{f}_{1}(E) \sum_{a} \mathbf{f}_{2}(A, E) \mathbf{f}_{3}(J, A) & \underbrace{= 1} \\ &= \alpha' \sum_{e} \mathbf{f}_{1}(E) \int_{a} \mathbf{f}_{2}(A, E) \mathbf{f}_{3}(J, A) \\ &= 2 \times 1 & 2 \times 2 & 2 \times 2 \\ &= \alpha' \sum_{e} \mathbf{f}_{1}(E) \mathbf{f}_{4}(J, E) \\ &= 2 \times 1 & 2 \times 2 \\ &= \alpha' \mathbf{f}_{5}(J) \end{split}$$

Can eliminate all variables that aren't ancestors of query or evidence variables!

informatics

informatics

Summary

- ► Inference in Bayesian Networks
- Exact methods: enumeration, variable elimination algorithm
- Computationally intractable in the worst case
- Next time: Approximate inference in Bayesian Networks

informatics

139

Informatics UoE	Informatics 2D