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oilEe
g
6
5
A
¢
Orns®

=

13th March 2020

Informatics UoE
Introduction

Informatics 2D

o g Schoslof o
informatics

Where are we?

Last time ...
» Introduced Bayesian networks
» Allow for compact representation of JPDs
» Methods for efficient representations of CPTs
» But how hard is inference in BNs?
Today ...
» Inference in Bayesian networks
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Inference by enumeration

Inference in BNs

» Basic task: compute posterior distribution for set of query

variables given some observed event (i.e. assignment of values to

evidence variables)

» Formally: determine P(X|e) given query variables X, evidence
variables E (and non-evidence or hidden variables Y)

» Example:

P(Burglary|JohnCalls = true, MaryCalls = true) = (0.284,0.716)

» First we will discuss exact algorithms for computing posterior
probabilities then approximate methods later
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Inference by enumeration

» We have seen that any conditional probability can be computed
from a full JPD by summing terms

> P(X|e) = aP(X,e) =a}  P(X.ey)
» Since BN gives complete representation of full JPD, we must be

able to answer a query by computing sums of products of
conditional probabilities from the BN

» Consider query
P(Burglary|JohnCalls = true, MaryCalls = true) = P(B|j, m)

» P(Blj,m)=aP(B,j,m)=a).. > ,P(B,ea,j,m)
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Inference by enumeration Inference by enumeration

Inference by enumeration Example
> Recall P(x1,...,x,) = [17_; P(xi|parents(X;)) » New burglar alarm has been fitted, fairly reliable but sometimes
» We can use CPTs to simplify this exploiting BN structure reacts to earthquakes
» For Burglary = true: » Neighbours John and Mary promise to call when they hear alarm
. » John sometimes mistakes phone for alarm, and Mary listens to
P(blj,m) = « P(b P(a|b, e a)P(m|a : . '
(blj; m ZZ b, €)P(jla)P(ma) loud music and sometimes doesn't hear alarm

Burglary =

But we can improve efficiency of this by moving terms outside
that don’t depend on sums

P(blj,m) = aP(b) )  P(e) )  P(alb, e)P(j|a)P(m|a)
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To compute this, we need to loop through variables in order and
multiply CPT entries; for each summation we need to loop over
variable's possible values s

A P(M)
T 70
F .01
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The variable elimination algorithm The variable elimination algorithm

The variable elimination algorithm The variable elimination algorithm
» Enumeration method is computationally quite hard. Idea- of variable elimination: av-0|d repeatefj calculations
. . » Basic idea: store results after doing calculation once
» You often compute the same thing several times; > ) )
e.g. P(jla)P(ml|a) and P(j|~a)P(m|=a) for each value of e Works bottom-up by evaluating subexpressions
) ) ) , » Assume we want to evaluate
» Evaluation of expression shown in the following tree:

P(B|j,m) = aP(B P(e P(a|B,e) P(jla) P(m
(Bl Z Z B, e) (J! ) ( |a)
fl(B) fg(E) f3(A,B,E) f4(A) f5(A)

» \We've annotated each part with a factor.
» A factor is a matrix, indexed with its argument variables. E.g:

» Factor f5(A) corresponds to P(m|a) and depends just on A because
Pla) Pima) m is fixed (it's a 2 x 1 matrix).

P(mla) P(ml-a) f5(A) = <P(m’a)7 P(m’_‘a)>
70 o1 70

> f3(A,B,E) is a2 x 2 x 2 matrix for P(a|B, e)
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The variable elimination algorithm The variable elimination algorithm

The variable elimination algorithm
P(Blj,m) = afi(B) x Y_.f2(E) Y, f3(A, B, E) x fa(A) x f5(A)
» Summing out A produces a 2 X 2 matrix
(via pointwise product):
fo(B,E) = > ,f3(A, B, E) x f4(A) x f5(A)
= (f3(a, B, E) x fu(a) x f5(a))+
(f3(—a, B, E) x fi(—a) x f5(—a))
» So now we have
P(B|j,m) = afi(B) x Y f2(E) x fs(B, E)
» Sum out E in the same way:
f2(B) = (f2(e) x f6(B, e)) +
» Using f1(B) =

(F2(—e) x f6(B, ~e))
P(B), we can finally compute

P(Blj, m) = af1(B) x f7(B)

» Remains to define pointwise product and summing out
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The variable elimination algorithm

An example

» Pointwise product yields product for union of variables in its
arguments:
Z) =f(X... X, V...

f(X ... X Y1 Y 2. Y)(Yi... Y 2. .. Z)

A|lB|fi(AB)||B| C|f(B,C)||A|B|C|f(ABNC)
T|T 0.3 T T 0.2 T|T|T| 03x0.2
T|F 0.7 T|F 0.8 T|T|F | 03x0.38
F|T 0.9 F|T 0.6 T|F|T|07x0.6
F|F 0.1 F|F 0.4 T|F|F | 07x04
F|T|T]|09x0.2
F|T|F | 09x08
FIF|T]|01x06
F|F|F|01l1x04
» For example f(T, T,F)=f(T,T) x fo( T, F)
inforimatics informatics
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The variable elimination algorithm

An example

» Summing out is similarly straightforward

» Trick: any factor that does not depend on the variable to be
summed out can be moved outside the summation process
» For example

Zfz x f3(A, B, E) x f4(A) x f5(A)

= X f5 Zf2

» Matrices are only multiplied when we need to sum out a variable
from the accumulated product

) x f3(A, B, E)

Another Example: P(J|b) = (P(j|b), P(—j|b))
P(JIb)= o) . > ,> ., P(J, be a m) prod., marg.
= ay . D> 0m P(b)P(e)P(a|b e)P(J| YP(m|a) cond. indep.
o' . P(e) Y. P(alb,e) ZP(m|a) move terms
S~~~ S—— R/—/
f]_(E) fQ(A, E) fg(J,A) T
= O/Ze fl(E) Za f2(A7E) f3(J7A)
2x1 2% 2 22
= o', fi(E) fu(J,E)
2x1 2x2
= d'f5(J)

Can eliminate all variables that aren't ancestors of query or evidence

infstmatis  variables! infStimaties
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Summary

Summary

» Inference in Bayesian Networks
» Exact methods: enumeration, variable elimination algorithm
» Computationally intractable in the worst case

» Next time: Approximate inference in Bayesian Networks
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